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Decision Analysis
Lecture 6b
• Ordinal weighting methods
• Incomplete preference statements
• Modeling incomplete information
• Dominance and non-dominated alternatives
• Computing dominance relations
• Decision rules

Salo, Liesiö, Punkka, Vilkkumaa



A reminder

❑ The only meaningful interpretation for the attribute weight 𝑤𝑖: 

The improvement in overall value when attribute 𝑎𝑖 is changed from its worst

level to its best relative to similar changes in other attributes

❑ Attribute weights cannot be interpreted without this interpretation

▪ Changing the measurement scale changes the weights

❑ In trade-off weighting, specify equally preferred alternatives (or changes

in alternatives) which differ with regard to two or more attributes

▪ Use trade-off weighting whenever possible

26.10.2022

2

𝑥 ∼ 𝑦 ⇔ σ𝑖=1
𝑛 𝑤𝑖𝑣𝑖

𝑁(𝑥𝑖)=σ𝑖=1
𝑛 𝑤𝑖𝑣𝑖

𝑁(𝑦𝑖)



Can we simplify weight elicitation?
❑ Specifying equally preferred alternatives requires quite an effort. 

Do we need such an exhaustive representation of preferences to 

produce defensible decision recommendations?

❑ Answer: Typically not, we can for example derive decision 
recommendations based only on ordinal information – like SWING 
without giving the points to the attributes

– But… many such methods have severe methodological problems

❑ Answer2: Typically not, we learn how to

– Accommodate incomplete preference statements in the decision
model

– Generate robust decision recommendations that are compatible with
such statements
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Ordinal weighting methods

❑ The DM is only asked to rank the attributes in terms of their

importance (i.e., preferences over changing the attributes from

the worst to the best level, cf. SWING)

– 𝑅𝑗 = 1 for the most important attribute

– 𝑅𝑗 = 𝑛 for the least important attribute

❑ This ranking is then converted into numerical weights such that

these weights are compatible with the ranking

– 𝑤𝑖 > 𝑤𝑗 ⇔ 𝑅𝑖 < 𝑅𝑗
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Ordinal weighting methods

❑ Rank sum weights are proportional to the

opposite number of the ranks

𝑤𝑖 ∝ 𝑛 − 𝑅𝑖 + 1

❑ Rank exponent weights are relative to some

power of (𝑛 − 𝑅𝑖 + 1)

𝑤𝑖 ∝ (𝑛 − 𝑅𝑖 + 1)𝑧

– If z > 1 (z < 1), the power increases (decreases) the
weights of the most important attributes compared
to rank sum weights.
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e.g. attribute 1 more 
important

𝑊1 = 2 − 1 + 1 = 2
𝑊2 = 2 − 2 + 1 = 1

Normalize to get

𝑤1 =
2

3
, 𝑤2 =

1

3



Ordinal weighting methods

❑ Rank reciprocal weights are proportional to the inverse of the ranks

𝑤𝑖 ∝
1

𝑅𝑖

❑ Centroid weights are in the center of the set of weights that are

compatible with the rank ordering

– Order the attributes such that 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛.

– Then, the extreme points of the compatible weight set are (1,0,0,0…), (½, ½,0,0,…), 
(1/3, 1/3, 1/3,0,…),… (1/n,…,1/n).

– The average of these extreme points is

𝑤𝑖 =
1

𝑛
෍

𝑗=𝑖

𝑛 1

𝑅𝑖
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Example: centroid weights

❑ Rank ordering 𝑤1 ≥ 𝑤2 ≥ 𝑤3:

𝑤1 =
1

3
1 +

1

2
+
1

3
=
11

18
≈ 0.61

𝑤2 =
1

3

1

2
+
1

3
=

5

18
≈ 0.28

𝑤3 =
1

3
∙
1

3
=
1

9
≈ 0.11
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w1

w2

w3 (0,0,1)

(1,0,0)

(0,1,0)

𝑤2 = 𝑤3

𝑤1 ≥ 𝑤2 ≥ 𝑤3

1

3
,
1

3
,
1

3

1

2
,
1

2
, 0

𝑤1 = 𝑤2

𝑤𝑖 =
1

𝑛
෍

𝑗=𝑖

𝑛 1

𝑅𝑖



Ordinal weighting methods: example

❑ Four attributes 𝑎1, 𝑎2, 𝑎3, 𝑎4 in descending order of importance ➔

𝑅1 = 1, 𝑅2 = 2, 𝑅3 = 3, 𝑅4 = 4.

❑ Different methods produce different weights!
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a1 a2 a3 a4 ∑

Rank sum 4 3 2 1 10

weights 0.4 0.3 0.2 0.1 1

Rank exp(z=2) 16 9 4 1 30

weights 0.53 0.30 0.13 0.03 1

Rank reciprocal 1 1/2 1/3 1/4 25/12

weights 0.48 0.24 0.16 0.12 1

Centroid 25/48 13/48 7/48 3/48 1

weights 0.52 0.27 0.15 0.06 1



Ordinal weighting methods: example 
(cont’d)
❑ Assume that the measurement scale of the most important attribute

𝑎1 is changed from [0€,1000€] to [0€,2000€].

❑ Because 𝑤1 ∝ 𝑣1 𝑥1
∗ − 𝑣1(𝑥1

0), the weight of attribute 𝑎1 should 

become much larger.

❑ Still,

– Ranking among the attributes remains the same →  rank-based weights
remain the same

– The alternatives’ normalized scores on attribute 𝑎1 become smaller → 

attribute 𝑎1 has a smaller impact on the decision recommendation

❑ Avoid using ordinal methods which produce a “point estimate” 

weight
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Weighting in value trees

❑ Two modes of weighting

– Hierarchical: all weights are
elicited and then multiplied
vertically

o Problem: elicitation questions for the
higher-level attributes are difficult to 
interpret:

෥𝑤1=𝑤1+𝑤2 ∝ (𝑣1(𝑥1
∗)-𝑣1(𝑥1

0)) +(𝑣2(𝑥2
∗)-𝑣2(𝑥2

0))

→ Avoid!

– Non-hierarchical: weights are only
elicited for the twig-level
attributes at the lowest level of the 
hierarchy
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Ideal car

Driving Economy

Top speedAccelerationPrice Expenses

Ideal car

Driving Economy

Top speedAccelerationPrice Expenses

෥𝑤2 = 0.78෥𝑤1 = 0.22

𝑤1 = 0.22 ∙ 0.45 = 0.10

0.50 0.500.550.45
𝑤2 = 0.12 𝑤3 = 0.39 𝑤4 = 0.39

𝑤1 = 0.10 𝑤2 = 0.12 𝑤3 = 0.39 𝑤4 = 0.39

0.22 0.78



Recap: elements of MAVT

❑ Elements of MAVT:

– Alternatives 𝑋 = 𝑥1, … , 𝑥𝑚

– Attributes 𝐴 = 𝑎1, … , 𝑎𝑛
– Attribute weights 𝑤 = [𝑤1, … , 𝑤𝑛] ∈ ℝ𝑛

– Attribute-specific (normalized) values 𝑣 ∈ ℝ𝑚×𝑛, 𝑣𝑗𝑖 = 𝑣𝑖
𝑁 𝑥𝑖

𝑗
∈ [0,1]

– Overall values of alternatives 𝑉 𝑥𝑗 , 𝑤, 𝑣 = σ𝑖=1
𝑛 𝑤𝑖𝑣𝑗𝑖 , 𝑗 = 1, … ,𝑚
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Recap: Elicitation of attribute weights
❑ Defining equally preferred alternatives / changes between

alternatives leads on a linear equation on the weights

– E.g., “All else being equal, a change 150 → 250 km/h in top speed is 
equally preferred to a change 14 → 7 s in acceleration time” ⇒

𝑤1𝑣1
𝑁 250 + 𝑤2𝑣2

𝑁 14 + 𝑤3𝑣3
𝑁 𝑥3 + 𝑤4𝑣4

𝑁 𝑥4 − 𝑉 150,14, 𝑥3,𝑥4 =

𝑤1𝑣1
𝑁 150 + 𝑤2𝑣2

𝑁 7 + 𝑤3𝑣3
𝑁 𝑥3 + 𝑤4𝑣4

𝑁 𝑥4 − 𝑉 150,14, 𝑥3,𝑥4
⟺𝑤1𝑣1

𝑁 250 − 𝑤1𝑣1
𝑁 150 = 𝑤𝟐𝑣𝟐

𝑁 7 − 𝑤𝟐𝑣𝟐
𝑁 14

❑ Question: What if the DM finds it difficult or is unable to define such

alternatives / changes?

– E.g., she can only state that a change 150 → 250 km/h in top speed is 
preferred to a change 14 → 7 s in acceleration time?
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Incomplete preference statements
❑ Set the performance levels of two

imaginary alternatives 𝑥 and 𝑦 such

that 𝑥 ≽ 𝑦 ⇒
𝑤1𝑣1

𝑁 𝑥1 +⋯+𝑤𝑛𝑣𝑛
𝑁 𝑥𝑛

≥ 𝑤1𝑣1
𝑁 𝑦1 +⋯+𝑤𝑛𝑣𝑛

𝑁 𝑦𝑛 .

26.10.2022
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Attribute Measurement scale

𝑎1: Top speed (km/h) [150, 250]

𝑎2: Acceleration time (s) [7, 14]

𝑎3: CO2 emissions (g/km) [120, 150]

𝑎4: Maintenance costs (€/year) [400,600]

❑ For instance, a change 150 → 250 km/h in top speed is preferred to 

a change 14 → 7 s in acceleration time: 
𝑤1𝑣1

𝑁 250 + 𝑤2𝑣2
𝑁 14 + 𝑤3𝑣3

𝑁 𝑥3 + 𝑤4𝑣4
𝑁 𝑥4 − 𝑉 150,14, 𝑥3,𝑥4 ≥

𝑤1𝑣1
𝑁 150 + 𝑤2𝑣2

𝑁 7 + 𝑤3𝑣3
𝑁 𝑥3 + 𝑤4𝑣4

𝑁 𝑥4 − 𝑉 150,14, 𝑥3,𝑥4
⟺𝑤1 ≥ 𝑤2

❑ Incomplete preference statements result in linear inequalities

between the weights



Incomplete preference statements: 
example
❑ Consider attributes

– CO2 emissions 𝑎3 ∈ [120𝑔, 150𝑔]

– Maintenance costs 𝑎4 ∈ [400€ , 600€]

❑ Preferences are elicited with SMARTS:

– Q: “If the reduction 600€ → 400€ in maintenance costs is worth 10 points, 
how valuable is the lowering of 150g → 120g in CO2 emissions?”

– A: “Between 15 and 20 points”

1.5𝑤4[𝑣4
𝑁 400 − 𝑣4

𝑁 600 ] ≤ 𝑤3[𝑣3
𝑁 120 − 𝑣3

𝑁 150 ] ≤ 2𝑤4[𝑣4
𝑁 400 − 𝑣4

𝑁 600 ]

⇒ 1.5𝑤4 ≤ 𝑤3 ≤ 2𝑤4
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Incomplete preference statements: 
example
❑ Preferences are elicited with trade-off methods:

– Q: “Define an interval for x such that the reduction 600€ → 400€ in 
maintenance costs is as valuable as 150 g → x g in CO2 emissions.”

– A: “x is between 130 and 140 g”

For x>140, the reduction in maintenance

costs is more valuable

For x<130, the lowering of CO2 emissions 

is more valuable

𝑤3[𝑣3
𝑁 140 − 𝑣3

𝑁 150 ] ≤ 𝑤4[𝑣4
𝑁 400 − 𝑣4

𝑁 600 ] ≤ 𝑤3[𝑣3
𝑁 130 − 𝑣3

𝑁 150 ]
⇒ 𝑣3

𝑁 140 𝑤3 ≤ 𝑤4 ≤ 𝑣3
𝑁 130 𝑤3

⇒
1

3
𝑤3 ≤ 𝑤4 ≤

2

3
𝑤3,  if 𝑣3

𝑁 is linear and decreasing.
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Attribute Measurement scale

𝑎1: Top speed (km/h) [150, 250]

𝑎2: Acceleration time (s) [7, 14]

𝑎3: CO2 emissions (g/km) [120, 150]

𝑎4: Maintenance costs (€/year) [400,600]

Highest and lowest x for which equality possible



Modeling incomplete information

❑ Incomplete information about attribute weights can be modeled as 

a set 𝑆 of feasible weights that are consistent with the DM’s 

preference statements:

𝑆 ⊆ 𝑆0 = 𝑤 ∈ ℝ𝑛|෍
𝑖=1

𝑛

𝑤𝑖 = 1,𝑤𝑖 ≥ 0 ∀𝑖
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Modeling incomplete information

❑ Linear inequalities on weights can 

correspond to 

1. Weak ranking 𝑤𝑖 ≥ 𝑤𝑗

2. Strict ranking 𝑤𝑖 − 𝑤𝑗 ≥ 𝛼 where 𝛼 > 0

3. Ranking with multiples 𝑤𝑖 ≥ 𝛼𝑤𝑗
(equivalent to incompletely defined 
weight ratios 𝑤𝑖/𝑤𝑗 ≥ 𝛼)

4. Interval form 𝛼 ≤ 𝑤𝑖 ≤ 𝛼 + 𝜀

5. Ranking of differences 𝑤𝑖 − 𝑤𝑗 ≥ 𝑤𝑘 − 𝑤𝑙
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w1

w2

w3 (0,0,1)

(1,0,0)

(0,1,0)

𝑤2 = 𝑤3

𝑤2 ≤ 𝑤3 ≤ 3𝑤2,
2𝑤1 ≤ 𝑤3 ≤ 4𝑤1

2𝑤1 = 𝑤3

3𝑤2 = 𝑤3

4𝑤1 = 𝑤3

S



Overall value intervals

❑ Because the weights are incompletely specified, 

the alternatives’ overall values are intervals:

𝑉 𝑥, 𝑤, 𝑣 ∈ min
𝑤∈𝑆

𝑉(𝑥, 𝑤, 𝑣) ,max
𝑤∈𝑆

𝑉(𝑥, 𝑤, 𝑣)

❑ Note: linear functions obtain their minima and 

maxima at an extreme point of 𝑆

– E.g., 𝑆 = 𝑤 ∈ 𝑆0 ⊆ ℝ2|0.4 ≤ 𝑤1 ≤ 0.7 ⇒ 𝑒𝑥𝑡 𝑆 =
0.4, 0.6 , (0.7, 0.3)

❑ Note: 𝑤 ∈ 𝑒𝑥𝑡(𝑆) is an extreme point of 𝑆
∄ 𝑤1, 𝑤2 ∈ 𝑆,𝑤1 𝑤2 such that 𝑤 = t 𝑤1+ (1-t) 𝑤2

for some t ∈ (0,1)
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𝑤1

𝑤2

0.4 0.7

0.6 0.3
𝑤2 = 1 − 𝑤1

𝑉 𝑉

Value 

intervals

𝑉(𝑥1)
𝑉(𝑥3)

𝑉(𝑥2)



Dominance

❑ Preference over interval-valued alternatives can be established 

through a dominance relation

❑ Definition: 𝑥𝑘 dominates 𝑥𝑗 in 𝑆, denoted 𝑥𝑘 ≻𝑆 𝑥
𝑗, if and only if (=iff)

൝
𝑉 𝑥𝑘 , 𝑤, 𝑣 ≥ 𝑉 𝑥𝑗 , 𝑤, 𝑣 for all 𝑤 ∈ 𝑆

𝑉 𝑥𝑘 , 𝑤, 𝑣 > 𝑉 𝑥𝑗 , 𝑤, 𝑣 for some 𝑤 ∈ 𝑆

i.e., iff the overall value of 𝑥𝑘 is greater than or equal to that of 𝑥𝑗 for

all feasible weights and strictly greater for some.
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Non-dominated alternatives

❑ An alternative is non-dominated if no other alternative dominates it

❑ The set of non-dominated alternatives is 

𝑋𝑁𝐷 = 𝑥𝑘 ∈ 𝑋|∄𝑗 such that 𝑥𝑗 ≻𝑆 𝑥
𝑘

❑ 𝑋𝑁𝐷 contains all alternatives that would be meaningful recommendations

– These are the alternatives for which there is no other alternative that has at 
least as high value for all feasible weights and strictly higher for some feasible 
weights
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Non-dominated alternatives

𝑥𝑘 is non-dominated if no other alternative

has higher value than 𝑥𝑘 for all feasible

weights

• Alternative 𝑥1 dominates 𝑥3

• Alternatives 𝑥1 and 𝑥2 are non-dominated

26.10.2022
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𝑤1

𝑤2

0.4 0.7

0.6 0.3
𝑤1 = 1 − 𝑤2

𝑉 𝑉

Value 

intervals

𝑉(𝑥1)
𝑉(𝑥3)

𝑉(𝑥2)



Non-dominated vs. potentially optimal 
alternatives

❑ A non-dominated alternative is not necessarily

optimal for any 𝑤 ∈ 𝑆

– 𝑥1, 𝑥2 and 𝑥3 are all non-dominated

– Only 𝑥1 and 𝑥2 are potentially optimal: they

maximize V for some 𝑤 ∈ 𝑆

– Still, neither of them is guaranteed to be better than

𝑥3
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𝑤1

𝑤2

0.4 0.7

0.6 0.3

𝑉 𝑉

𝑉(𝑥1)

𝑉(𝑥3)

𝑉(𝑥2)



Properties of dominance relation

❑ Transitive

– If A dominates B and B dominates
C, then A dominates C

❑ Asymmetric

– If A dominates B, then B does not
dominate A

❑ Irreflexive

– A does not dominate itself
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A

D

B C E

F

G

H

I

J

K

L
Non-dominated

alternatives

Dominance relations

expressed with a directed

arc: B dominates D



Computing dominance relations

❑ If 𝑥𝑘 dominates 𝑥𝑗:

1.    𝑉 𝑥𝑘 , 𝑤, 𝑣 ≥ 𝑉 𝑥𝑗 , 𝑤, 𝑣 for all 𝑤 ∈ 𝑆

⇔ min
𝑤∈𝑆

𝑉 𝑥𝑘 , 𝑤, 𝑣 − 𝑉 𝑥𝑗 , 𝑤, 𝑣 ≥ 0 ⇔ min
𝑤∈𝑆

σ𝑖=1
𝑛 𝑤𝑖(𝑣𝑘𝑖 − 𝑣𝑗𝑖) ≥ 0

2. 𝑉 𝑥𝑘 , 𝑤, 𝑣 > 𝑉 𝑥𝑗 , 𝑤, 𝑣 for some 𝑤 ∈ 𝑆

⇔ max
𝑤∈𝑆

𝑉 𝑥𝑘 , 𝑤, 𝑣 − 𝑉 𝑥𝑗 , 𝑤, 𝑣 > 0 ⇔ max
𝑤∈𝑆

σ𝑖=1
𝑛 𝑤𝑖(𝑣𝑘𝑖 − 𝑣𝑗𝑖) > 0

❑ Dominance relations between two alternatives can be established by

comparing their minimum and maximum value differences
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Computing dominance relations: 
example
❑ Consider three cars with normalized attribute-specific values:

❑ Assume that the feasible weights 𝑆 are characterized by the 

following inequalities 

𝑆 = 𝑤 ∈ 𝑆0 ⊆ ℝ4|𝑤1 = 𝑤2 ≥ 3𝑤3, 𝑤3≥ 𝑤4 ≥ 0.1
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Car 𝒗𝟏
𝑵: Top speed 𝒗𝟐

𝑵: Acceleration 𝒗𝟑
𝑵: CO2 emissions 𝒗𝟒

𝑵: Maintenance

𝑥1 0.7 0.5 1 1

𝑥2 0.75 0.75 0.33 0.5

𝑥3 0.87 0.95 0 0



Computing dominance relations: 
example
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Matlab function 

linprog(f,A,b,Aeq,beq)

solves the optimization 

problem:

min
𝑥

𝑓𝑇𝑥 such that 

ቊ
𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞



Computing dominance relations: 
example
❑ Minimum and maximum value differences

min
𝑤∈𝑆

𝑉 𝑥1, 𝑤, 𝑣 − 𝑉 𝑥2, 𝑤, 𝑣 = −0.003 < 0

max
𝑤∈𝑆

𝑉 𝑥1, 𝑤, 𝑣 − 𝑉 𝑥2, 𝑤, 𝑣 = 0.0338 > 0

min
𝑤∈𝑆

𝑉 𝑥2, 𝑤, 𝑣 − 𝑉 𝑥3, 𝑤, 𝑣 = −0.045 < 0

max
𝑤∈𝑆

𝑉 𝑥2, 𝑤, 𝑣 − 𝑉 𝑥3, 𝑤, 𝑣 = −0.0163 < 0

min
𝑤∈𝑆

𝑉 𝑥1, 𝑤, 𝑣 − 𝑉 𝑥3, 𝑤, 𝑣 = −0.048 < 0

max
𝑤∈𝑆

𝑉 𝑥1, 𝑤, 𝑣 − 𝑉 𝑥3, 𝑤, 𝑣 = 0.0175 > 0

❑ 𝑋𝑁𝐷 = {𝑥1, 𝑥3}
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→ Neither 𝑥1 nor 𝑥2

dominate the other

→ Neither 𝑥1 nor 𝑥3

dominate the other

→ 𝑥3 dominates 𝑥2



Computing dominance relations: 
example 
❑ Note: because value differences

are linear in w, minimum and 

maximum value differences are

obtained at the extreme points of 

the set of feasible weights 𝑆

𝑤1 = 0.4 0.4 0.1 0.1

𝑤2=
27

70
,
27

70
,
9

70
,
1

10

≈ (0.386, 0.386, 0.129, 0.10)

𝑤3 =
3

8
,
3

8
,
1

8
,
1

8

≈ (0.375, 0.375, 0.125, 0.125)
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𝑤1 𝑤2 𝑤3

𝑽 𝒙𝟏 -𝑽 𝒙𝟐 -0.003 0.0204 0.0338

𝑽 𝒙𝟐 −𝑽 𝒙𝟑 -0.045 -0.031 -0.0163

𝑽 𝒙𝟏 −𝑽 𝒙𝟑 -0.048 -0.0106 0.0175



Additional information

❑ If the information set S results leads to too many non-dominated

alternatives, additional preference statements (i.e., linear constraints) 

can be elicited

❑ New information set 𝑆′ ⊂ 𝑆 preserves all dominance relations and 

usually yields new ones → 𝑋𝑁𝐷 stays the same or becomes smaller

𝑆′ ⊂ 𝑆, 𝑟𝑖 𝑆 ∩ 𝑆′ ≠ ∅: ቊ
𝑥𝑘 ≻𝑆 𝑥

𝑗 ⇒ 𝑥𝑘 ≻𝑆′ 𝑥
𝑗

𝑋𝑁𝐷(𝑆) ⊇ 𝑋𝑁𝐷(𝑆′)
,

where 𝑟𝑖 𝑆 is the relative interior of 𝑆

– 𝑟𝑖 𝑆 ∩ 𝑆′ ≠ ∅: S’ is not entirely on the “border” of S

– 𝑤  𝑟𝑖 𝑆  ∃𝜀 > 0 such that if 𝑤′ − 𝑤 < 𝜀 ⇒ 𝑤′ S
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Additional information: example

❑ No weight information

𝑆 = 𝑆0 = 𝑤 ∈ ℝ2|෍
𝑖=1

2

𝑤𝑖 = 1 ,𝑤𝑖 ≥ 0

❑ Dominance relations

1. B dominates D

2. C dominates D

❑ Non-dominated alternatives

– A,B,C,E

26.10.2022
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Additional information: example (2/3)

❑ Ordinal weight information
𝑆 = 𝑤 ∈ 𝑆0|𝑤1 ≥ 𝑤2

❑ Dominance relations

1. B dominates D

2. C dominates D

3. E dominates D

4. B dominates A

5. C dominates A

❑ Non-dominated alternatives

– B,C,E
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Additional information: example (3/3)
❑ More information

𝑆 = 𝑤 ∈ 𝑆0|𝑤2 ≤ 𝑤1 ≤ 2𝑤2

❑ Dominance relations

1. B dominates D

2. C dominates D

3. E dominates D

4. B dominates A

5. C dominates A

6. B dominates C

7. B dominates E

❑ Non-dominated alternatives: B
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Value intervals
Can value intervals be used in deriving 

decision recommendations?

Some suggestions for “decision rules” from the 

literature:

• Maximax: choose the alternative with the 

highest maximum overall value over the 

feasible weights

• Maximin: choose the alternative with the 

highest lowest overall value over the feasible 

weights

• Central values: choose the alternative with the 

highest sum of the maximum and minimum 

values
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…more decision rules

• Minimax regret: choose the 

alternative with the smallest maximum 

regret (= value difference compared to 

any other alternative)

• Domain criterion: choose the 

alternative which is favored by the 

largest set of weights
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Minimax regret
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Example

❑ DM asks 2 experts to compare fruit baskets (x1,x2) containing

apples x1 and oranges x2

❑ Linear attribute-specific value functions v1 and v2

❑ DM: (2,0) >~ (0,1) and (0,2)>~(1,0)
❑ One orange is not preferred to 2 apples, one apple is not preferred to 2 oranges

❑ Fruit baskets (1,2) and (2,1) do not dominate each other

❑ What recommendations are suggested by the decision rules?
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Expert 1: 
x0=(0,0), x*=(2,4)
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On decision rules

❑ A common concern in all of the above decision rules: changing the

measurement scales [xi
0,xi*] can change the recommendations

❑ Different attribute weightings w and w* represent value functions V 

and V* – they cannot be compared
❑ If V represents the DM’s preferences, so do all its positive affine transformations, 

too

❑ How to choose one of the value functions which all represent the same 
preferences?

❑ Avoid using measures which compare overall values across 

different value functions (i.e. attribute weightings)
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Rank (sensitivity) analysis

❑ For any weights, the alternatives can

be ranked based on their overall

values
❑ This ranking is not influenced by

normalization (i.e., positive affine
transformations of V)

❑ How do the rankings of alternatives 

change when attribute weights vary?
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Computation of rank intervals

The minimum ranking of xk is

which is obtained as a solution to the mixed integer LP 

Maximum rankings with a similar model
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Rank analysis – example (1/5)

❑ Academic ranking of world universities 2007

❑ 508 universities

❑ Additive multi-attribute model

❑ 6 attributes

❑ Attribute weights (denoted by w*) and scores

❑ Universities ranked based on overall values

26.10.2022

41



Rank analysis – example (2/5)
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Rank analysis –
example (3/5)

Scores (some of them)
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Rank analysis – example (4/5)

Incomplete weight information

❑Relative intervals:
❑ For =0.1, 0.2, 0.3

❑ e.g. =0.2 , wi*=0.20:

❑Incomplete ordinal:
❑ Consistent with initial weights and lower bound b = 0.02

❑Only lower bound:

❑No weight information:

26.10.2022

44

0 * *{ | (1 ) (1 ) }w i i iw w S w w w   −   +

0.16 0.24iw 

0{ | 0.02 {2,3,4,5}, {1,6}}w i kw w S w w i k      

0{ | 0.02 1,...,6}w iw w S w i    =

0

ww S



Rank analysis – example (5/5)
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Example: Prioritization of innovation
ideas*

❑ 28 “innovation ideas” evaluated by several experts on a scale from

1 – 7 with regard to novelty, feasibility and relevance
▪ For each attribute, each idea assessed by the average of reported evaluations

❑ No preference information about the relative values of the

attributes

❑ “Which 10 innovation ideas should be selected for further

development?”
❑ Sets of ideas called portfolios

❑ The value of a portfolio is the sum of its constituent projects
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Example: prioritization of innovation
ideas
❑ Robust Portfolio Modeling* was used to compute non-dominated

portfolios of 10 ideas and discriminate between
▪ Core ideas that belong to all non-dominated portfolios

▪ Borderline ideas that belong to some non-dominated portfolios

▪ Exterior ideas that do not belong to any non-dominated portfolio

❑ How do ranking intervals relate to this classification?
▪ If the ranking of an idea cannot be worse than 10, is it a core project?

▪ If the ranking of an idea cannot be better than 11, is it an exterior project?
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Ranking intervals divide the innovation ideas into core, borderline and exterior ideas

among potentially optimal portfolios

Ranking intervals vs. core, borderline
and exterior ideas
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Rationales for using incomplete
information
❑ Often only limited time and effort can be devoted to preference elicitation

❑ Complete preference specification may not be needed to reach a 

decision

❑ DM’s preferences may evolve during the analysis → iteration supports 

learning

❑ Experts / stakeholders may have conflicting preferences

❑ Take-it-or-leave-it solutions may be resented in group decision settings

→ results based on incomplete information leave room for negotiation
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Summary

❑ Complete specification of attribute weights is often difficult

– Trade-off methods take time and effort

– SWING and SMARTS are prone to biases

❑ Incomplete preference statements can be modeled by linear inequalities

on the weights → alternatives’ overall values become intervals

❑ Preference over interval-valued alternatives can be established through

dominance relations

▪ Non-dominated alternatives are defensible decision recommendations
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