CS-E4500 Advanced Course in Algorithms

Week 05 - Tutorial

We return to the satisfiability question. For the k-satisfiability (k-SAT) problem, the formula is restricted so that each clause has exactly k literals. Again, we assume that no clause contains both a literal and its negation, as these clauses are trivial. We prove that any k-SAT formula in which no variable appears in too many clauses has a satisfying assignment.

1. If no variable in a k-SAT formula appears in more than $T=2^{k} / 4 k$ clauses, then the formula has a satisfying assignment.
2. Show that if

$$
4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1
$$

then it is possible to 2-color the edges of K_{n} such that it has no monochromatic K_{k} as a subgraph.

