Mathematics for Economists

Mitri Kitti
Aalto University

Summary of Part 1

Review - Linear Algebra

- Gauss-Jordan elimination method
- Rank of a matrix
- Matrix algebra
- Inverse matrix
- Determinant of a matrix
- Cramer's rule
- Vectors and linear independence
- Bases of \mathbb{R}^{n}

Review - Calculus of several variables

- Functions
- Sequences and their limits
- Continuous functions
- Open and closed sets
- Differentiable functions and partial derivatives
- Chain rule
- Higher order derivatives and Hessian matrix
- Implicit function theorem
- Homogeneous functions

Review - Unconstrained optimization

- Local and global extrema (minimizers or maximizers)
- Weierstrass's Theorem
- First order conditions for interior extrema
- Second order conditions for interior extrema
- Definite and semi-definite matrices
- Convex sets; concave and convex functions
- Quadratic forms
- Monotone transformations

Review - Some fundamentals

- We have seen several propositions of the form "If P, then Q "
- In more compact form, this is often indicated as $P \Longrightarrow Q$, i.e. P implies Q
- E.g., If the matrix A is positive definite, then its diagonal entries are strictly positive
- We say that P is a sufficient condition for Q; at the same time, Q is a necessary condition for P
- We've also seen propositions of the form " P if and only if Q "
- In more compact form, this is often indicated as $P \Longleftrightarrow Q$, i.e. P is equivalent to Q
- E.g., A function f is concave if and only if its Hessian matrix is negative semi-definite
- In this case, we say that P is both a necessary and sufficient condition for Q, and vice versa

Review - Some fundamentals

- When you're doing calculations and come up with expressions like

$$
2+(4+5 \times 2)^{2}-10 / 2+7 \times\left(4-5^{2}\right)^{2}
$$

recall the order of operations:

1. Parentheses
2. Exponents
3. Multiplication and Division (from left to right)
4. Addition and Subtraction (from left to right)

- The acronym PEMDAS is often used to indicate the above order (along with the mnemonic "Please Excuse My Dear Aunt Sally")

Mathematics for Economists

Mitri Kitti
Aalto University
Constrained Optimization

Introduction to Part II

- Lectures 12-15: Constrained Optimization (Chapters 18-19)
- Lectures 16-17: Difference equations (Chapters 23)
- Lecture 18-21: Ordinary differential equations (Chapters 24-25)
- Lecture 22: Review

Optimization in economics

- Allocation of scarce resources is at the heart of economics
- What is scarcity?

Decision makers have constraints

- How do rational decision makers allocate resources?

They have an objective function to maximize/minimiza profits, costs, social welfare, utility

Constrained Optimization

- Most optimization problems in Economics are constrained
- Given a function $f: U \rightarrow \mathbb{R}$, with $U \subseteq \mathbb{R}^{n}$, the constrained maximization of f takes the form

$$
\begin{gathered}
\max _{\mathbf{x}} f(\mathbf{x}) \\
\text { subject to } \mathbf{x} \in C,
\end{gathered}
$$

where $C \subseteq U$ is the constraint set

- In words, we want to maximize f over a subset of its domain
- Unconstrained maximization is when we have $C=U$

Classes of Optimization Problems

- The general optimization problem (for $C \subseteq \mathbb{R}^{n}$) is a nonlinear programming problem
- When the problem involves time, we have a dynamic optimization problem
- when there is no time involved, the problem is a static optimization problem
- Nonlinear programming problems with constraints $C=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \leq 0, \ldots, g_{k}(\mathbf{x}) \leq 0\right.$ and $\left.h_{1}(\mathbf{x})=0, \ldots, h_{m}(\mathbf{x})=0\right\}$, $g_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, h_{j}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1, \ldots, k, j=1, \ldots, m$
- the inequalities $g_{1}(\mathbf{x}) \leq 0, \ldots, g_{k}(\mathbf{x}) \leq 0$ are inequality constraints (note that $\left.g_{i}(\mathbf{x}) \geq 0 \Leftrightarrow-g_{i}(\mathbf{x}) \leq 0\right)$, and the constraints $h_{1}(\mathbf{x})=0, \ldots, h_{m}(\mathbf{x})=0$ are equality constraints
- if $f, g_{1}, \ldots, g_{k}, h_{1}, \ldots, h_{m}$ are linear (or affine) the problem is a linear programming problem

Constrained Optimization

- Example. Consider the following utility maximization problem with two commodities:

$$
\begin{array}{cl}
\max _{x_{1}, x_{2}} & u\left(x_{1}, x_{2}\right) \\
\text { s. t. } & p_{1} x_{1}+p_{2} x_{2} \leq w \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 . \tag{3}
\end{array}
$$

- The utility function $u\left(x_{1}, x_{2}\right)$ is the objective function
- (1) is the budget constraint
- (2) and (3) are the non-negativity constraints on x_{1} and x_{2}, respectively

Constrained Optimization

- Example (cont'd). The constraint set C is defined by the three inequalities (1), (2) and (3)
- More specifically,

$$
\begin{aligned}
C= & \left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: p_{1} x_{1}+p_{2} x_{2} \leq w\right\} \\
& \cap\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 0\right\} \\
& \cap\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \geq 0\right\}
\end{aligned}
$$

- C is known as the consumer's budget or opportunity set
- Notice that C is a strict subset of $U=\mathbb{R}^{2}$

Constrained Optimization

- Example. Consider a firm that wants to find the cheapest way to produce q units of output
- The firm's cost minimization problem is

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { s. t. } & f\left(x_{1}, x_{2}\right)=q \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 . \tag{6}
\end{array}
$$

- The choice variables x_{1} and x_{2} are production inputs, and $w_{1}>0$ and $w_{2}>0$ are the corresponding unit prices
- $f\left(x_{1}, x_{2}\right)$ is the firm's production function

Constrained Optimization

- Example (cont'd). The constraint set C is now defined by one equality and two inequalities
- More specifically,

$$
\begin{aligned}
C= & \left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: f\left(x_{1}, x_{2}\right)=q\right\} \\
& \cap\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 0\right\} \\
& \cap\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \geq 0\right\}
\end{aligned}
$$

Constrained Optimization

- Like we did in unconstrained optimization, our goal is to find necessary and sufficient conditions for solutions
- In this lecture, we'll consider two-variable maximization problems with one equality constraint:

$$
\begin{array}{rl}
\max _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right) \\
\text { s. t. } & h\left(x_{1}, x_{2}\right)=c
\end{array}
$$

where f and h are C^{1} functions on \mathbb{R}^{2}, and $c \in \mathbb{R}$

- The constraint set is $C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: h\left(x_{1}, x_{2}\right)=c\right\}$

Constrained Optimization

- Geometrically, the problem is to find the highest-valued level curve of f that intersects the constraint set C

Constrained Optimization

- In the previous figure, the highest-valued level curve of f is tangent to the constraint h at the maximizer $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$. This means that

$$
\frac{\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}{\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}=\frac{\frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}{\frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}
$$

or, equivalently,

$$
\frac{\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}{\frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}=\frac{\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}{\frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}
$$

- (Recall how we derived the Marginal Rate of Substitution, i.e. the slope of indifference curves, in Lecture 6)

Constrained Optimization

- Assume that both $\frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right)$ and $\frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right)$ are different from zero
- Introduce a new variable λ such that

$$
\begin{equation*}
\lambda=\frac{\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}{\frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}=\frac{\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}{\frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right)} \tag{7}
\end{equation*}
$$

- We can rewrite (7) as the two equations:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right)-\lambda \frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & =0 \\
\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}^{*}\right)-\lambda \frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right) & =0
\end{aligned}
$$

Lagrange Function

- Thus at a solution \mathbf{x}^{*}, the following must be true:

$$
\begin{align*}
\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right)-\lambda \frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & =0 \tag{8}\\
\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}^{*}\right)-\lambda \frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right) & =0 \tag{9}\\
h\left(x_{1}^{*}, x_{2}^{*}\right) & =c \tag{10}
\end{align*}
$$

- The crucial observation here is that the system of three equations (8)-(10) identifies the critical points of the following function of three variables:

$$
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)-\lambda\left(h\left(x_{1}, x_{2}\right)-c\right)
$$

- L is called the Lagrangian function
- λ is called the Lagrange multiplier

Critical Points of Lagrange Function

- The idea is to solve a constrained optimization problem by studying the critical points of an auxiliary function
- We can use the Lagrangian function provided that $\frac{\partial h}{\partial x_{1}}\left(\mathbf{x}^{*}\right) \neq 0$ or $\frac{\partial h}{\partial x_{2}}\left(\mathbf{x}^{*}\right) \neq 0$ (or both)
- The latter condition on the partial derivatives of h is called constraint qualification

First Order Necessary Conditions

Proposition

Let f and h be C^{1} functions defined over \mathbb{R}^{2}. Suppose that:

1. $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a solution of $\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$ or a solution of $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$;
2. $\left(x_{1}^{*}, x_{2}^{*}\right)$ is not a critical point of h.

Then, there exists a real number λ^{*} such that $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$ is a critical point of the following Lagrangian function:

$$
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)-\lambda\left(h\left(x_{1}, x_{2}\right)-c\right) .
$$

- The proposition does not say that a solution exists. It says that, if a solution exists, and if the constraint qualification is satisfied, the solution must be a critical point of the Lagrangian

Constrained Optimization

- Example. Consider the following maximization problem:

$$
\begin{aligned}
\max _{x_{1}, x_{2}} & x_{1} x_{2} \\
\text { s. t. } & x_{1}+4 x_{2}=16
\end{aligned}
$$

- Since $\frac{\partial h}{\partial x_{1}}=1$ and $\frac{\partial h}{\partial x_{2}}=4$, the constraint qualification is satisfied
- The Lagrangian is

$$
L\left(x_{1}, x_{2}, \lambda\right)=x_{1} x_{2}-\lambda\left(x_{1}+4 x_{2}-16\right)
$$

Constrained Optimization

- Example (cont'd). Critical points of the Lagrangian are found by the following three conditions:

$$
\begin{align*}
& \frac{\partial L}{\partial x_{1}}=x_{2}-\lambda=0 \tag{11}\\
& \frac{\partial L}{\partial x_{2}}=x_{1}-4 \lambda=0 \tag{12}\\
& \frac{\partial L}{\partial \lambda}=-\left(x_{1}+4 x_{2}-16\right)=0 \tag{13}
\end{align*}
$$

- The unique solution of the system (11)-(13) is $x_{1}=8, x_{2}=2$, and $\lambda=2$
- Can we use the proposition and conclude that $\left(x_{1}, x_{2}\right)=(8,2)$ is a solution of our constrained maximization problem?
- No! We can use the proposition only to conclude that, if our problem has a solution, then it must be $(8,2)$

Constrained Optimization

- First order conditions can be applied as follows:

1. Check the constraint qualification by finding the solutions of $\frac{\partial h}{\partial x_{1}}=0$ and $\frac{\partial h}{\partial x_{2}}=0$
2. Find the critical points of the Lagrangian function
3. If the critical points of h are not included in the constraint set C, the constraint qualification is satisfied. Therefore, the critical points of the Lagrangian are the only candidates for a solution to the original constrained optimization problem
4. If some of the critical points of h are included in the constraint set C, then the candidates for a solution to the original optimization problem are both i) the critical points of the Lagrangian and ii) the critical points of h included in the constraint set C

Constrained Optimization

- Example. Let $f(x, y)=y$ and $g(x, y)=y^{3}-x^{2}$ be defined over \mathbb{R}^{2}. Consider the following constrained problem:

$$
\begin{array}{ll}
\min _{x, y} & f(x, y) \\
\text { s.t. } & g(x, y)=0 .
\end{array}
$$

- The Lagrangian is

$$
L(x, y, \lambda)=y-\lambda\left(y^{3}-x^{2}\right)
$$

- The critical points of L are found by solving

$$
\begin{array}{r}
2 \lambda x=0 \\
1-3 \lambda y^{2}=0 \\
y^{3}-x^{2}=0 \tag{16}
\end{array}
$$

Constrained Optimization

- Example (cont'd). From (14) we have either $\lambda=0$ or $x=0$. If $\lambda=0$, (15) cannot hold. If $x=0, y=0$ by (16) and, consequently, (15) cannot hold. Thus the system (14)-(16) does not admit any solution. This means that L does not have critical points
- The constraint qualification fails when $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0$. That is, $3 y^{2}=2 x=0$, which holds only at the point $(x, y)=(0,0)$. Notice that $(0,0)$ belongs to the constraint set.
- The only candidate for a solution is $(0,0)$. To show that this point is actually a solution, we can argue as follows. The constraint requires $y^{3}=x^{2}$. Since $x^{2} \geq 0$ for every x, this implies that $y \geq 0$. Since we want to minimize f, the lowest possible value that f can take on is when $y=0$, which requires $x=0$. Thus $(0,0)$ is the unique global constrained minimizer.

Sufficient Optimality Conditions

Proposition (Sufficient condition for the existence of a solution)

Let f and h be C^{1} functions defined over an open and convex set $U \subseteq \mathbb{R}^{n}$. Suppose there exists a real number λ^{*} and an interior point $\left(x_{1}^{*}, x_{2}^{*}\right) \in U$ such that $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$ is a stationary point of the Lagrangian function:

$$
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)-\lambda\left(h\left(x_{1}, x_{2}\right)-c\right) .
$$

- If L is concave in $\left(x_{1}, x_{2}\right)$ given λ^{*}-in particular, if f is concave and $\lambda^{*} h$ is convex-then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a solution to $\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$
- If L is convex in $\left(x_{1}, x_{2}\right)$ given λ^{*}-in particular, if f is convex and $\lambda^{*} h$ is concave-then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a solution to $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$

Constrained Optimization

- A useful corollary of the proposition in the previous page applies to cases where the constraint function h is linear. Recall that a linear function is both concave and convex, and so is $\lambda^{*} h$ for any value of λ^{*}
- Therefore, when h is linear, the proposition in the previous page implies that:
- If f is concave, then any critical point of the Lagrangian is a solution to $\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$
- If f is convex, then any critical point of the Lagrangian is a solution to $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$ subject to $h\left(x_{1}, x_{2}\right)=c$

Constrained Optimization

- Example. Consider the constrained optimization problem:

$$
\begin{aligned}
\max _{x_{1}, x_{2}} & x_{1}^{0.5} x_{2}^{0.5} \\
\text { s. t. } & x_{1}+4 x_{2}=16
\end{aligned}
$$

where both f and h are defined over \mathbb{R}_{++}^{2}

- Here we have that $f\left(x_{1}, x_{2}\right)$ is concave (see the slides from Lecture 8), and $h\left(x_{1}, x_{2}\right)$ is linear
- You can verify that the Lagrangian has a unique critical point $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)=\left(8,2, \frac{1}{4}\right)$
- Thus we can conclude that $(8,2)$ is a solution to this constrained maximization problem

Constrained Optimization

- Example (cont'd). A graphical representation of $\max _{x_{1}, x_{2}} x_{1}^{0.5} x_{2}^{0.5}$ subject to $x_{1}+4 x_{2}=16$

Constrained Optimization

- Example. Consider again the firm's cost minimization problem, but without the non-negativity constraints:

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { s. t. } & f\left(x_{1}, x_{2}\right)=q
\end{aligned}
$$

- Suppose that the production function f is concave and that marginal products are positive, i.e $\frac{\partial f}{\partial x_{1}}>0$ and $\frac{\partial f}{\partial x_{2}}>0$ for any $\left(x_{1}, x_{2}\right)$
- Notice that the objective function is convex (and concave too)
- So we can conclude that the critical points of the Lagrangian are solutions to this constrained minimization problem

Constrained Optimization

- Example (cont'd). Here the Lagrangian is:

$$
L\left(x_{1}, x_{2}, \lambda\right)=w_{1} x_{1}+w_{2} x_{2}-\lambda\left(f\left(x_{1}, x_{2}\right)-q\right)
$$

- Critical points of L are the solutions to the system:

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}} & =w_{1}-\lambda \frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)=0 \\
\frac{\partial L}{\partial x_{2}} & =w_{2}-\lambda \frac{\partial f}{\partial x_{2}}\left(x_{1}, x_{2}\right)=0 \\
\frac{\partial L}{\partial \lambda} & =-\left(f\left(x_{1}, x_{2}\right)-q\right)=0
\end{aligned}
$$

Constrained Optimization

- Example (cont'd). At a solution $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$, we have that:

$$
\lambda^{*}=\frac{w_{1}}{\frac{\partial f}{\partial x_{1}}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{w_{2}}{\frac{\partial f}{\partial x_{2}}\left(x_{1}^{*}, x_{2}^{*}\right)}>0
$$

- What is the economic interpretation of the above expression?

Exercise

Consider the following constrained maximization problem:

$$
\begin{aligned}
\max _{x_{1}, x_{2}} & x_{1}^{2} x_{2} \\
\text { s. t. } & 2 x_{1}^{2}+x_{2}^{2}=3
\end{aligned}
$$

1. What can you say about the existence of a solution? (Think about Weierstrass's Theorem)
2. Solve this optimization problem
