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Review - Linear Algebra

▶ Gauss-Jordan elimination method

▶ Rank of a matrix

▶ Matrix algebra

▶ Inverse matrix

▶ Determinant of a matrix

▶ Cramer’s rule

▶ Vectors and linear independence

▶ Bases of Rn
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Review - Calculus of several variables

▶ Functions

▶ Sequences and their limits

▶ Continuous functions

▶ Open and closed sets

▶ Differentiable functions and partial derivatives

▶ Chain rule

▶ Higher order derivatives and Hessian matrix

▶ Implicit function theorem

▶ Homogeneous functions
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Review - Unconstrained optimization

▶ Local and global extrema (minimizers or maximizers)

▶ Weierstrass’s Theorem

▶ First order conditions for interior extrema

▶ Second order conditions for interior extrema

▶ Definite and semi-definite matrices

▶ Convex sets; concave and convex functions

▶ Quadratic forms

▶ Monotone transformations
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Review - Some fundamentals

▶ We have seen several propositions of the form “If P , then Q”
▶ In more compact form, this is often indicated as P =⇒ Q, i.e. P implies Q
▶ E.g., If the matrix A is positive definite, then its diagonal entries are strictly positive
▶ We say that P is a sufficient condition for Q; at the same time, Q is a necessary

condition for P

▶ We’ve also seen propositions of the form“P if and only if Q”
▶ In more compact form, this is often indicated as P ⇐⇒ Q, i.e. P is equivalent to Q
▶ E.g., A function f is concave if and only if its Hessian matrix is negative semi-definite
▶ In this case, we say that P is both a necessary and sufficient condition for Q, and

vice versa
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Review - Some fundamentals

▶ When you’re doing calculations and come up with expressions like

2 + (4 + 5× 2)2 − 10/2 + 7× (4− 52)2,

recall the order of operations:

1. Parentheses
2. Exponents
3. Multiplication and Division (from left to right)
4. Addition and Subtraction (from left to right)

▶ The acronym PEMDAS is often used to indicate the above order (along with the
mnemonic “Please Excuse My Dear Aunt Sally”)
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Introduction to Part II

▶ Lectures 12-15: Constrained Optimization (Chapters 18-19)

▶ Lectures 16-17: Difference equations (Chapters 23)

▶ Lecture 18-21: Ordinary differential equations (Chapters 24-25)

▶ Lecture 22: Review
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Optimization in economics

▶ Allocation of scarce resources is at the heart of economics

▶ What is scarcity?

Decision makers have constraints

▶ How do rational decision makers allocate resources?

They have an objective function to maximize/minimiza
profits, costs, social welfare, utility
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Constrained Optimization

▶ Most optimization problems in Economics are constrained

▶ Given a function f : U → R, with U ⊆ R
n, the constrained maximization of f

takes the form

max
x

f (x)

subject to x ∈ C ,

where C ⊆ U is the constraint set

▶ In words, we want to maximize f over a subset of its domain

▶ Unconstrained maximization is when we have C = U
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Classes of Optimization Problems

▶ The general optimization problem (for C ⊆ R
n) is a nonlinear programming

problem

▶ When the problem involves time, we have a dynamic optimization problem
▶ when there is no time involved, the problem is a static optimization problem

▶ Nonlinear programming problems with constraints
C = {x ∈ R

n : g1(x) ≤ 0, . . . , gk(x) ≤ 0 and h1(x) = 0, . . . , hm(x) = 0},
gi : R

n 7→ R, hj : R
n 7→ R, i = 1, . . . , k , j = 1, . . . ,m

▶ the inequalities g1(x) ≤ 0, . . . , gk(x) ≤ 0 are inequality constraints (note that
gi (x) ≥ 0 ⇔ −gi (x) ≤ 0), and the constraints h1(x) = 0, . . . , hm(x) = 0 are equality
constraints

▶ if f , g1, . . . , gk , h1, . . . , hm are linear (or affine) the problem is a linear programming
problem
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Constrained Optimization

▶ Example. Consider the following utility maximization problem with two
commodities:

max
x1,x2

u(x1, x2)

s. t. p1x1 + p2x2 ≤ w (1)

x1 ≥ 0 (2)

x2 ≥ 0. (3)

▶ The utility function u(x1, x2) is the objective function

▶ (1) is the budget constraint

▶ (2) and (3) are the non-negativity constraints on x1 and x2, respectively
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Constrained Optimization

▶ Example (cont’d). The constraint set C is defined by the three inequalities (1),
(2) and (3)

▶ More specifically,

C ={(x1, x2) ∈ R
2 : p1x1 + p2x2 ≤ w}

∩ {(x1, x2) ∈ R
2 : x1 ≥ 0}

∩ {(x1, x2) ∈ R
2 : x2 ≥ 0}

▶ C is known as the consumer’s budget or opportunity set

▶ Notice that C is a strict subset of U = R
2
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Constrained Optimization

▶ Example. Consider a firm that wants to find the cheapest way to produce q units
of output

▶ The firm’s cost minimization problem is

min
x1,x2

w1x1 + w2x2

s. t. f (x1, x2) = q (4)

x1 ≥ 0 (5)

x2 ≥ 0. (6)

▶ The choice variables x1 and x2 are production inputs, and w1 > 0 and w2 > 0 are
the corresponding unit prices

▶ f (x1, x2) is the firm’s production function
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Constrained Optimization

▶ Example (cont’d). The constraint set C is now defined by one equality and two
inequalities

▶ More specifically,

C ={(x1, x2) ∈ R
2 : f (x1, x2) = q}

∩ {(x1, x2) ∈ R
2 : x1 ≥ 0}

∩ {(x1, x2) ∈ R
2 : x2 ≥ 0}
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Constrained Optimization

▶ Like we did in unconstrained optimization, our goal is to find necessary and
sufficient conditions for solutions

▶ In this lecture, we’ll consider two-variable maximization problems with one
equality constraint:

max
x1,x2

f (x1, x2)

s. t. h(x1, x2) = c ,

where f and h are C 1 functions on R
2, and c ∈ R

▶ The constraint set is C =
{

(x1, x2) ∈ R
2 : h(x1, x2) = c

}
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Constrained Optimization
▶ Geometrically, the problem is to find the highest-valued level curve of f that

intersects the constraint set C
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Constrained Optimization

▶ In the previous figure, the highest-valued level curve of f is tangent to the
constraint h at the maximizer x∗ = (x∗1 , x

∗

2 ). This means that

∂f
∂x1

(x∗)
∂f
∂x2

(x∗)
=

∂h
∂x1

(x∗)
∂h
∂x2

(x∗)

or, equivalently,
∂f
∂x1

(x∗)
∂h
∂x1

(x∗)
=

∂f
∂x2

(x∗)
∂h
∂x2

(x∗)

▶ (Recall how we derived the Marginal Rate of Substitution, i.e. the slope of
indifference curves, in Lecture 6)
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Constrained Optimization

▶ Assume that both ∂h
∂x1

(x∗) and ∂h
∂x2

(x∗) are different from zero

▶ Introduce a new variable λ such that

λ =
∂f
∂x1

(x∗)
∂h
∂x1

(x∗)
=

∂f
∂x2

(x∗)
∂h
∂x2

(x∗)
(7)

▶ We can rewrite (7) as the two equations:

∂f

∂x1
(x∗)− λ

∂h

∂x1
(x∗) = 0

∂f

∂x2
(x∗)− λ

∂h

∂x2
(x∗) = 0
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Lagrange Function
▶ Thus at a solution x∗, the following must be true:

∂f

∂x1
(x∗)− λ

∂h

∂x1
(x∗) = 0 (8)

∂f

∂x2
(x∗)− λ

∂h

∂x2
(x∗) = 0 (9)

h(x∗1 , x
∗

2 ) = c (10)

▶ The crucial observation here is that the system of three equations (8)-(10)
identifies the critical points of the following function of three variables:

L(x1, x2, λ) = f (x1, x2)− λ (h(x1, x2)− c)

▶ L is called the Lagrangian function

▶ λ is called the Lagrange multiplier
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Critical Points of Lagrange Function

▶ The idea is to solve a constrained optimization problem by studying the critical
points of an auxiliary function

▶ We can use the Lagrangian function provided that ∂h
∂x1

(x∗) ̸= 0 or ∂h
∂x2

(x∗) ̸= 0 (or
both)

▶ The latter condition on the partial derivatives of h is called constraint
qualification
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First Order Necessary Conditions

Proposition

Let f and h be C 1 functions defined over R2. Suppose that:

1. (x∗1 , x
∗

2 ) is a solution of maxx1,x2 f (x1, x2) subject to h(x1, x2) = c or a solution of
minx1,x2 f (x1, x2) subject to h(x1, x2) = c;

2. (x∗1 , x
∗

2 ) is not a critical point of h.

Then, there exists a real number λ∗ such that (x∗1 , x
∗

2 , λ
∗) is a critical point of the

following Lagrangian function:

L(x1, x2, λ) = f (x1, x2)− λ (h(x1, x2)− c) .

▶ The proposition does not say that a solution exists. It says that, if a solution
exists, and if the constraint qualification is satisfied, the solution must be a critical
point of the Lagrangian
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Constrained Optimization

▶ Example. Consider the following maximization problem:

max
x1,x2

x1x2

s. t. x1 + 4x2 = 16

▶ Since ∂h
∂x1

= 1 and ∂h
∂x2

= 4, the constraint qualification is satisfied

▶ The Lagrangian is

L(x1, x2, λ) = x1x2 − λ (x1 + 4x2 − 16)
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Constrained Optimization
▶ Example (cont’d). Critical points of the Lagrangian are found by the following

three conditions:

∂L

∂x1
= x2 − λ = 0 (11)

∂L

∂x2
= x1 − 4λ = 0 (12)

∂L

∂λ
= −(x1 + 4x2 − 16) = 0 (13)

▶ The unique solution of the system (11)-(13) is x1 = 8, x2 = 2, and λ = 2

▶ Can we use the proposition and conclude that (x1, x2) = (8, 2) is a solution of our
constrained maximization problem?

▶ No! We can use the proposition only to conclude that, if our problem has a
solution, then it must be (8, 2)
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Constrained Optimization

▶ First order conditions can be applied as follows:

1. Check the constraint qualification by finding the solutions of ∂h
∂x1

= 0 and ∂h
∂x2

= 0

2. Find the critical points of the Lagrangian function

3. If the critical points of h are not included in the constraint set C , the constraint
qualification is satisfied. Therefore, the critical points of the Lagrangian are the only
candidates for a solution to the original constrained optimization problem

4. If some of the critical points of h are included in the constraint set C , then the
candidates for a solution to the original optimization problem are both i) the critical
points of the Lagrangian and ii) the critical points of h included in the constraint set
C
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Constrained Optimization

▶ Example. Let f (x , y) = y and g(x , y) = y3 − x2 be defined over R2. Consider
the following constrained problem:

min
x ,y

f (x , y)

s.t. g(x , y) = 0.

▶ The Lagrangian is
L(x , y , λ) = y − λ(y3 − x2).

▶ The critical points of L are found by solving

2λx = 0 (14)

1− 3λy2 = 0 (15)

y3 − x2 = 0. (16)
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Constrained Optimization

▶ Example (cont’d). From (14) we have either λ = 0 or x = 0. If λ = 0, (15)
cannot hold. If x = 0, y = 0 by (16) and, consequently, (15) cannot hold. Thus
the system (14)-(16) does not admit any solution. This means that L does not
have critical points

▶ The constraint qualification fails when ∂g
∂x

= ∂g
∂y

= 0. That is, 3y2 = 2x = 0,
which holds only at the point (x , y) = (0, 0). Notice that (0, 0) belongs to the
constraint set.

▶ The only candidate for a solution is (0, 0). To show that this point is actually a
solution, we can argue as follows. The constraint requires y3 = x2. Since x2 ≥ 0
for every x , this implies that y ≥ 0. Since we want to minimize f , the lowest
possible value that f can take on is when y = 0, which requires x = 0. Thus
(0, 0) is the unique global constrained minimizer.
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Sufficient Optimality Conditions

Proposition (Sufficient condition for the existence of a solution)

Let f and h be C 1 functions defined over an open and convex set U ⊆ R
n. Suppose

there exists a real number λ∗ and an interior point (x∗1 , x
∗

2 ) ∈ U such that (x∗1 , x
∗

2 , λ
∗)

is a stationary point of the Lagrangian function:

L(x1, x2, λ) = f (x1, x2)− λ (h(x1, x2)− c) .

▶ If L is concave in (x1, x2) given λ∗–in particular, if f is concave and λ∗h is
convex–then (x∗1 , x

∗

2 ) is a solution to maxx1,x2 f (x1, x2) subject to h(x1, x2) = c

▶ If L is convex in (x1, x2) given λ∗–in particular, if f is convex and λ∗h is
concave–then (x∗1 , x

∗

2 ) is a solution to minx1,x2 f (x1, x2) subject to h(x1, x2) = c
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Constrained Optimization

▶ A useful corollary of the proposition in the previous page applies to cases where
the constraint function h is linear. Recall that a linear function is both concave
and convex, and so is λ∗h for any value of λ∗

▶ Therefore, when h is linear, the proposition in the previous page implies that:

▶ If f is concave, then any critical point of the Lagrangian is a solution to
maxx1,x2 f (x1, x2) subject to h(x1, x2) = c

▶ If f is convex, then any critical point of the Lagrangian is a solution to
minx1,x2 f (x1, x2) subject to h(x1, x2) = c
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Constrained Optimization
▶ Example. Consider the constrained optimization problem:

max
x1,x2

x0.51 x0.52

s. t. x1 + 4x2 = 16

where both f and h are defined over R2
++

▶ Here we have that f (x1, x2) is concave (see the slides from Lecture 8), and
h(x1, x2) is linear

▶ You can verify that the Lagrangian has a unique critical point
(x∗1 , x

∗

2 , λ
∗) =

(

8, 2, 14
)

▶ Thus we can conclude that (8, 2) is a solution to this constrained maximization
problem
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Constrained Optimization

▶ Example (cont’d). A graphical representation of maxx1,x2 x
0.5
1 x0.52 subject to

x1 + 4x2 = 16
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Constrained Optimization

▶ Example. Consider again the firm’s cost minimization problem, but without the
non-negativity constraints:

min
x1,x2

w1x1 + w2x2

s. t. f (x1, x2) = q

▶ Suppose that the production function f is concave and that marginal products are
positive, i.e ∂f

∂x1
> 0 and ∂f

∂x2
> 0 for any (x1, x2)

▶ Notice that the objective function is convex (and concave too)

▶ So we can conclude that the critical points of the Lagrangian are solutions to this
constrained minimization problem

26 / 29



Constrained Optimization

▶ Example (cont’d). Here the Lagrangian is:

L(x1, x2, λ) = w1x1 + w2x2 − λ (f (x1, x2)− q)

▶ Critical points of L are the solutions to the system:

∂L

∂x1
= w1 − λ

∂f

∂x1
(x1, x2) = 0

∂L

∂x2
= w2 − λ

∂f

∂x2
(x1, x2) = 0

∂L

∂λ
= −(f (x1, x2)− q) = 0
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Constrained Optimization

▶ Example (cont’d). At a solution (x∗1 , x
∗

2 , λ
∗), we have that:

λ∗ =
w1

∂f
∂x1

(x∗1 , x
∗

2 )
=

w2

∂f
∂x2

(x∗1 , x
∗

2 )
> 0

▶ What is the economic interpretation of the above expression?
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Exercise

Consider the following constrained maximization problem:

max
x1,x2

x21x2

s. t. 2x21 + x22 = 3

1. What can you say about the existence of a solution? (Think about Weierstrass’s
Theorem)

2. Solve this optimization problem
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