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Review - Linear Algebra

vVvyvyVvYvVvyVvyYvVvyvy

Gauss-Jordan elimination method
Rank of a matrix

Matrix algebra

Inverse matrix

Determinant of a matrix
Cramer's rule

Vectors and linear independence
Bases of R”
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Review - Calculus of several variables

vVvVvvyVvvyYvyVvYvyy

Functions

Sequences and their limits

Continuous functions

Open and closed sets

Differentiable functions and partial derivatives
Chain rule

Higher order derivatives and Hessian matrix
Implicit function theorem

Homogeneous functions
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Review - Unconstrained optimization

vVvyvyVvYvVvyVvyYvVvyvy

Local and global extrema (minimizers or maximizers)
Weierstrass's Theorem

First order conditions for interior extrema

Second order conditions for interior extrema

Definite and semi-definite matrices

Convex sets; concave and convex functions
Quadratic forms

Monotone transformations
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Review - Some fundamentals

» We have seen several propositions of the form “If P, then Q"
» In more compact form, this is often indicated as P = Q, i.e. P implies Q
» E.g., If the matrix A is positive definite, then its diagonal entries are strictly positive

» \We say that P is a sufficient condition for Q; at the same time, Q is a necessary
condition for P

» We've also seen propositions of the form"P if and only if Q"
» In more compact form, this is often indicated as P < @, i.e. P is equivalent to @
» E.g., A function f is concave if and only if its Hessian matrix is negative semi-definite

» In this case, we say that P is both a necessary and sufficient condition for @, and
vice versa
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Review - Some fundamentals

» When you're doing calculations and come up with expressions like
2+ (4+5x2)2—-10/2+7 x (4 —5%)?2,
recall the order of operations:

Parentheses

Exponents

Multiplication and Division (from left to right)
Addition and Subtraction (from left to right)

o=

» The acronym PEMDAS is often used to indicate the above order (along with the
mnemonic “Please Excuse My Dear Aunt Sally")
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Introduction to Part Il

» Lectures 12-15: Constrained Optimization (Chapters 18-19)

» Lectures 16-17: Difference equations (Chapters 23)

» Lecture 18-21: Ordinary differential equations (Chapters 24-25)
> Lecture 22: Review

2/29



Optimization in economics

» Allocation of scarce resources is at the heart of economics
» What is scarcity?

Decision makers have constraints
» How do rational decision makers allocate resources?

They have an objective function to maximize/minimiza
profits, costs, social welfare, utility
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Constrained Optimization

> Most optimization problems in Economics are constrained

» Given a function f : U — R, with U C R", the constrained maximization of f
takes the form

max f(x)

subject to x € C,

where C C U is the constraint set
» In words, we want to maximize f over a subset of its domain
» Unconstrained maximization is when we have C = U
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Classes of Optimization Problems

» The general optimization problem (for C C R") is a nonlinear programming
problem
» When the problem involves time, we have a dynamic optimization problem
» when there is no time involved, the problem is a static optimization problem
» Nonlinear programming problems with constraints
C={xeR":g1(x)<0,...,8k(x) <0and hi(x) =0,..., hn(x) =0},
g R"—=R, h:R"—=R, i=1,...,k j=1,...,m
> the inequalities g1(x) <0, ..., gk(x) < 0 are inequality constraints (note that

gi(x) > 0 & —gi(x) < 0), and the constraints h;(x) =0, ..., hn(x) = 0 are equality
constraints

> iff, g1,...,8k h1,..., hy are linear (or affine) the problem is a linear programming
problem
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Constrained Optimization

» Example. Consider the following utility maximization problem with two
commodities:

max  u(xy, x2)

X1, X2
s. t. pix1+ paxo < w (1)
X1 Z 0 (2)

xp > 0. (3)

» The utility function u(xi, x2) is the objective function
» (1) is the budget constraint

» (2) and (3) are the non-negativity constraints on x; and x2, respectively
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Constrained Optimization

» Example (cont’d). The constraint set C is defined by the three inequalities (1),
(2) and (3)

> More specifically,

C ={(x1,x2) € R?: p1x1 + poxo < w}
N{(x1,x) € R? : x; > 0}
N{(x1,x) € R? : xp > 0}

» C is known as the consumer’s budget or opportunity set

» Notice that C is a strict subset of U = R?
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Constrained Optimization

> Example. Consider a firm that wants to find the cheapest way to produce g units
of output

» The firm’s cost minimization problem is

min  wixy + woxo

X1,X2

s. t. f(xi,x)=gq (4)
X1 Z 0 (5)
X2 2 0. (6)

» The choice variables x; and x» are production inputs, and w; > 0 and wy > 0 are
the corresponding unit prices

» f(x1,x2) is the firm's production function
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Constrained Optimization

» Example (cont’d). The constraint set C is now defined by one equality and two
inequalities

» More specifically,

C ={(x1,x) € R?: f(x1,%) = q}
N{(xa,x) € R*: x >0}
N {(x1,x) € R? : x, > 0}
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Constrained Optimization

» Like we did in unconstrained optimization, our goal is to find necessary and
sufficient conditions for solutions

» In this lecture, we'll consider two-variable maximization problems with one
equality constraint:
max f(x1,x2)
X1,X2

s. t. h(Xl,Xz) = C,

where f and h are C! functions on R?, and c € R

» The constraint set is C = {(xl,x2) € R?: h(x1,x) = c}
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Constrained Optimization

» Geometrically, the problem is to find the highest-valued level curve of f that
intersects the constraint set C

C

At the constrained max X*, the highest level curve of f is tangent to the constraint  11/2



Constrained Optimization

» In the previous figure, the highest-valued level curve of f is tangent to the
constraint h at the maximizer x* = (x{, x3). This means that

Ox1 .
f )
So(x*)  Fh(x)
or, equivalently,
of * Of (o x
371(’( ) _ 372(X )
() 2(e)

» (Recall how we derived the Marginal Rate of Substitution, i.e. the slope of
indifference curves, in Lecture 6)

12/29



Constrained Optimization

» Assume that both g—h(x*) d g—h(x*) are different from zero
X1 X0

» Introduce a new variable A\ such that

of of

8X1 (x*) o (x*) (7)
8X1 (X ) % X )

A=

» We can rewrite (7) as the two equations:

of Oh
6X1( A(9X1( ) =0
of Oh
Es x") — AaTQ( *)=0
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Lagrange Function
» Thus at a solution x*, the following must be true:

of Oh

o) Ao (<) =0 ®

of Oh

O ) A () =0 ©)
h(x{,x3) = ¢ (10)

» The crucial observation here is that the system of three equations (8)-(10)
identifies the critical points of the following function of three variables:

L(X]_,X27)\) = f(Xl,XQ) — )\(h(Xl,Xz) — C)

» [ is called the Lagrangian function

> )\ is called the Lagrange multiplier
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Critical Points of Lagrange Function

P> The idea is to solve a constrained optimization problem by studying the critical
points of an auxiliary function

» We can use the Lagrangian function provided that %’l(x*) # 0 or %(x*) # 0 (or
both)

» The latter condition on the partial derivatives of h is called constraint
qualification
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First Order Necessary Conditions

Proposition
Let f and h be C! functions defined over R?. Suppose that:
1. (x{,x3) is a solution of max,, x, f(x1,x2) subject to h(xi,x2) = ¢ or a solution of
Miny, x, f(x1,x2) subject to h(xi,x2) = ¢;
2. (x{,x3) is not a critical point of h.

Then, there exists a real number \* such that (x{, x5, \*) is a critical point of the
following Lagrangian function:

L(X1,X2, A) = f(Xl,Xg) — A(h(Xl,XQ) — C) .

» The proposition does not say that a solution exists. It says that, if a solution
exists, and if the constraint qualification is satisfied, the solution must be a critical
point of the Lagrangian
16 /29



Constrained Optimization

> Example. Consider the following maximization problem:

max XiXp
X1,X2

s. t. x1+4x =16
» Since 57’1 =1 and ng = 4, the constraint qualification is satisfied

» The Lagrangian is

L(Xl,Xz7 )\) = Xx1X0 — A (Xl + 4x — 16)
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Constrained Optimization

» Example (cont’d). Critical points of the Lagrangian are found by the following
three conditions:

oL
oL
oL
a :—(X1+4X2_16):0 (13)

» The unique solution of the system (11)-(13) is x; =8, xo =2, and A =2

» Can we use the proposition and conclude that (x;,x2) = (8,2) is a solution of our
constrained maximization problem?

» No! We can use the proposition only to conclude that, if our problem has a
solution, then it must be (8,2)
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Constrained Optimization

» First order conditions can be applied as follows:

1. Check the constraint qualification by finding the solutions of % =0 and g—)g =0
2. Find the critical points of the Lagrangian function

3. If the critical points of h are not included in the constraint set C, the constraint
qualification is satisfied. Therefore, the critical points of the Lagrangian are the only
candidates for a solution to the original constrained optimization problem

4. If some of the critical points of h are included in the constraint set C, then the
candidates for a solution to the original optimization problem are both i) the critical
points of the Lagrangian and ii) the critical points of h included in the constraint set
C
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Constrained Optimization

> Example. Let f(x,y) =y and g(x,y) = y> — x? be defined over R?. Consider
the following constrained problem:

min  f(x,y)
X?.y

st g(xy)=0.

» The Lagrangian is
L(X>y7>‘) =y - )\()/3 _X2)‘
» The critical points of L are found by solving

2Xx =0 (14)
1-302=0 (15)
yi-x?2=o. (16)
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Constrained Optimization

» Example (cont’d). From (14) we have either A=0o0r x =0. If A =0, (15)
cannot hold. If x =0, y = 0 by (16) and, consequently, (15) cannot hold. Thus
the system (14)-(16) does not admit any solution. This means that L does not
have critical points

» The constraint qualification fails when 8—g =98 — 0. Thatis, 3y? =2x =0,
which holds only at the point (x,y) = (0, ) Notlce that (0,0) belongs to the
constraint set.

» The only candidate for a solution is (0,0). To show that this point is actually a
solution, we can argue as follows. The constraint requires y3 = x2. Since x> > 0
for every x, this implies that y > 0. Since we want to minimize f, the lowest
possible value that f can take on is when y = 0, which requires x = 0. Thus
(0,0) is the unique global constrained minimizer.
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Sufficient Optimality Conditions

Proposition (Sufficient condition for the existence of a solution)

Let f and h be C functions defined over an open and convex set U C R". Suppose
there exists a real number \* and an interior point (xi,x3) € U such that (x{, x5, \*)
is a stationary point of the Lagrangian function:

L(X1,X2, /\) = f(Xl,XQ) — /\(h(Xl,XQ) — C) .

» If L is concave in (x1,x2) given X*—in particular, if f is concave and \*h is
convex—then (xi,x3) is a solution to maxy, x, f(x1,x2) subject to h(xi,x2) = ¢

» If L is convex in (x1,x2) given X*—in particular, if f is convex and \*h is
concave—then (x;,x3) is a solution to miny x, f(x1, x2) subject to h(x1,x2) = ¢
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Constrained Optimization

» A useful corollary of the proposition in the previous page applies to cases where
the constraint function h is linear. Recall that a linear function is both concave
and convex, and so is A*h for any value of \*

» Therefore, when h is linear, the proposition in the previous page implies that:

P If f is concave, then any critical point of the Lagrangian is a solution to
MaXy, x, (X1, x2) subject to h(xy,x2) = ¢

» If f is convex, then any critical point of the Lagrangian is a solution to
miny, x, f(x1,x2) subject to h(x1,x) = ¢
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Constrained Optimization
» Example. Consider the constrained optimization problem:

max X?'SXS'S
X1,X2

s. t. x1+4x =16

where both f and h are defined over R? |

» Here we have that f(xi, x2) is concave (see the slides from Lecture 8), and
h(x1,x2) is linear

» You can verify that the Lagrangian has a unique critical point
(x, %5, A7) = (8,2, 7)

» Thus we can conclude that (8,2) is a solution to this constrained maximization
problem
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Constrained Optimization

» Example (cont’d). A graphical representation of maxy, », x?->x9-% subject to
x1+4x =16

16
x1

25
x1
2
x1

— 4-0.25x1
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Constrained Optimization

> Example. Consider again the firm’s cost minimization problem, but without the
non-negativity constraints:

min  wixy + woxo
X1,X2

s. t. f(Xl,XQ) =q

» Suppose that the production function f is concave and that marginal products are
positive, i.e - - >0 and af > 0 for any (x1, x2)

» Notice that the objective function is convex (and concave too)

» So we can conclude that the critical points of the Lagrangian are solutions to this
constrained minimization problem
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Constrained Optimization

» Example (cont’d). Here the Lagrangian is:

L(x1,x2, A) = wix1 + waxo — A (f(x1, x2) — q)

» Critical points of L are the solutions to the system:

oL of

8X1 = Wi — )\a—(xl,xz) =0
oL

8—)(2:W —)\a (x1,x) =0
oL
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Constrained Optimization

» Example (cont’d). At a solution (xj, x5, A*), we have that:

wi wo
N = = >0
f f
SE(x,%3)  HE(x,x3)

» What is the economic interpretation of the above expression?
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Exercise

Consider the following constrained maximization problem:

max  xZxo
X1,%2

s .t 23+ x5 =3
1. What can you say about the existence of a solution? (Think about Weierstrass's
Theorem)

2. Solve this optimization problem
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