## Formulas.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+O\left(x^{n+1}\right) & \text { as } x \rightarrow 0 \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+O\left(x^{2 n+2}\right) & \text { as } x \rightarrow 0 \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+O\left(x^{2 n+3}\right) & \text { as } x \rightarrow 0 \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+O\left(x^{n+1}\right) & \text { as } x \rightarrow 0 \\
\sin (\pi) & =0=1+\cos (\pi) & \\
\frac{d}{d x} \sqrt{x} & =\frac{1}{2 \sqrt{x}} &
\end{aligned}
$$

