Timeline in the course

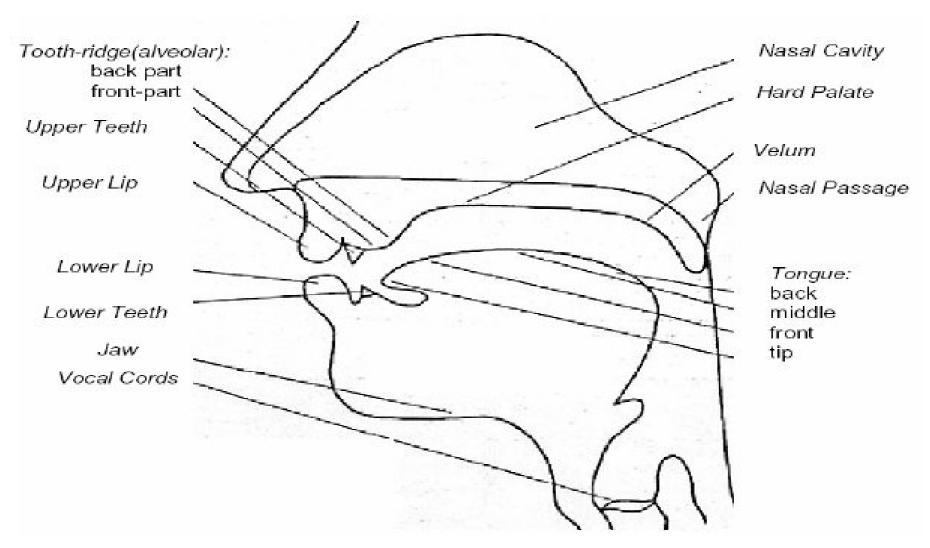
	Meetings	Thursdays or	Home exercises	Project work
	Wednesdays	Fridays		status
Week1	Speech features	Classification	Feature classifier	Literature study
	entry test			Meet tutors Wed
Week2	Phoneme modeling	Recognition	Word recognizer	Work plan
				Meet tutors Wed
Week3	Lexicon and language	Language model	Text predictor	Analysis
				Meet tutors Wed
Week4	Continuous speech	LVCSR	Speech recognizer	Experimentation
	advanced search			Meet tutors Wed
Week5	End-to-end ASR	End-to-end	End-to-end recognizer	Preparing reports
				Meet tutors Wed
Week6	Projects1	Projects2		Presentations
Week7	Projects3	Projects4		Report submissior
	-	Conclusion		

Content today

➡ 1.Phonemes, HMM

- 2.Vocabulary
- 3. Statistical language model
- 4.Home exercise: (3) Build a language model for recognition of continuous speech!
- 5.Neural network language model
- 6.Status of project group works

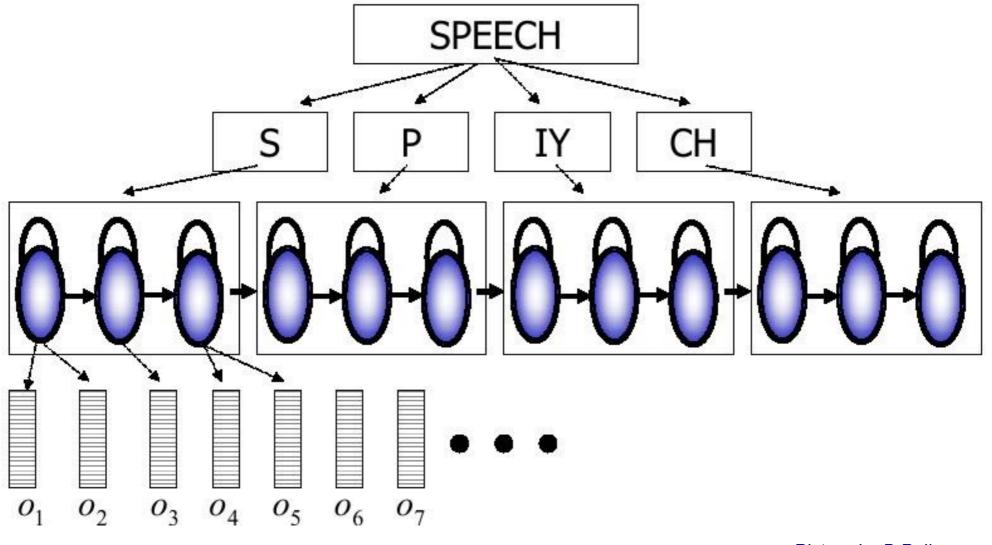
Review: Production of speech sounds



Speech recognition

Picture from Huands text book (2001)

Review: HMM as a phoneme model



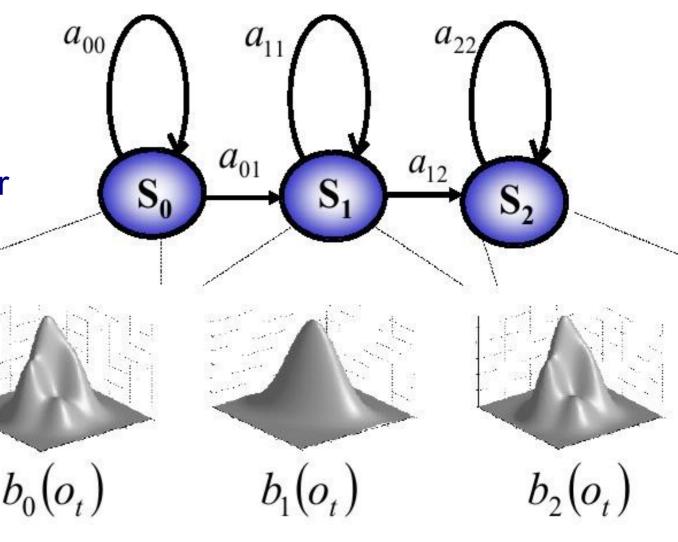
2020 Mikko Kurimo

Speech recognition

Picture by B.Pellom43

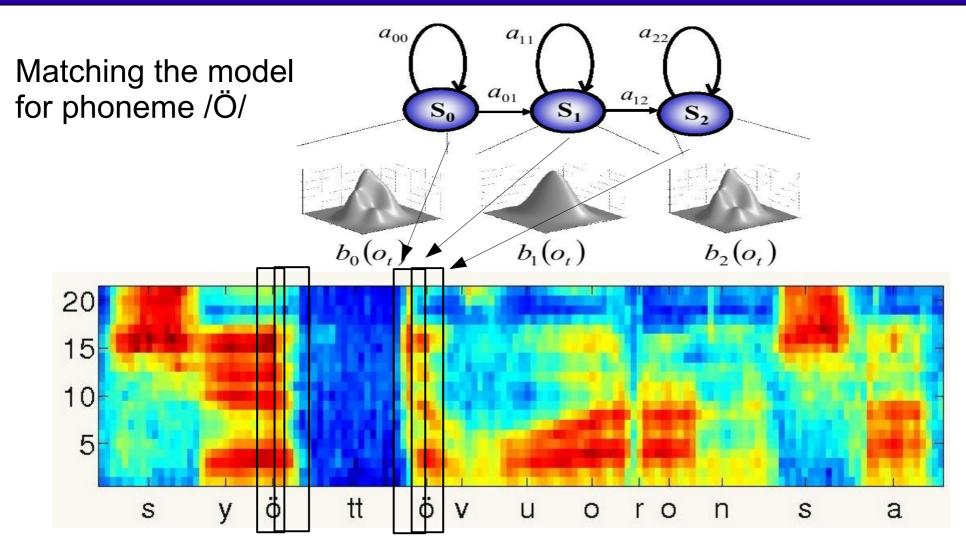
Review: GMM-HMM system

Each state emits sounds according to its GMM model
This generative model can be used for text-to-speech, too
The higher a(ii), the longer is the duration



Speech recognition

Review: An example of a GMM-HMM system



2020 Mikko Kurimo

Speech recognition

Picture by B.Pellom43

Result of isolated word recognition?

Dictionary	Corr	Sub	Del	Ins	Err	S. Err
numbers	100.00	0.00	0.00	0.00	0.00	0.00
w100	97.78	2.22	0.00	4.44	6.67	4.44
w1000	84.44	15.56	0.00	8.89	24.44	17.78
w10000	66.67	33.33	0.00	33.33	66.67	42.22

Taulukko 1: Word error rates using different dictionaries

- Rapid increase of errors for large vocabulary
- Real speech: (tens/hundreds) thousands of words...
- Continuous speech: much more difficult, because the words are glued together

Content today

1.Phonemes, HMM

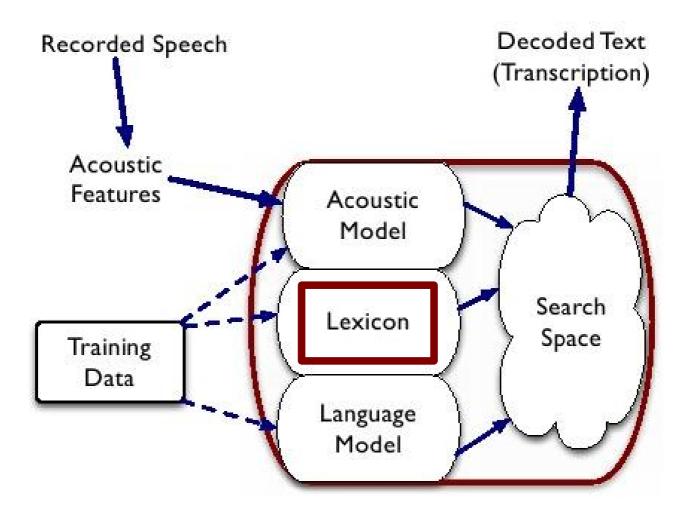
⇒ 2.Vocabulary

- 3. Statistical language model
- 4.Home exercise: (3) Build a language model for recognition of continuous speech!
- 5.Neural network language model
- 6.Status of project group works

What is speech recognition?

- Find the most likely word or word sequence given the acoustic signal and our models!
- Language model defines words and how likely they occur together
- Lexicon defines the word set and how the words are formed from sound units
- Acoustic model defines the sound units independent of speaker and recording conditions

Vocabulary = Lexicon



2020 Mikko Kurimo

Speech recognition

Picture by S.Remals 3

Small vocabulary

- Only listed words will appear in the task
- Only listed words will be recognized, others will always cause errors!
- Applications
 - Number dialling, name dialling
 - Command and control interfaces
 - Menu based services
- Prior probabilities can be added

one two three four five six seven eight nine zero

Pronunciation

- A lexicon or pronunciation dictionary tells how words are pronounced
- Each word is described as a sequence of phonemes (or triphones)
- Problems to think about:
- 1. One word may have several pronunciations to (with priors), does it matter?
- 2. Several words may have the same pronunciation, does it matter?
- 3. How to get pronunciations for new words?
- 4. Adding rare words or pronunciations decreases ASR performance. Why?

one	w ah n	
<u>two</u>	t uw	
three	th r iy	
tomato(0.5)	t ax m <u>ey</u> t ow	
tomato(0.5)	t ax m <u>aa</u> t ow	
<u>too</u>	t uw	

Test what you remember from week 1

Individual test for everyone, now:

- 1. Go to https://kahoot.it with your phone/laptop
- 2. Type in the ID number you see on the screen (also in chat)
- 3. Give your REAL (sur)name
- 4. Answer the questions by selecting **only one** of the options
 - There may be several right (or wrong) answers, but just pick one
 - About 1 min time per question
- 5. 1 activity points for everyone + 0.2 per correct answer in time
 - Kahoot score is just for fun, only the correct answers matter

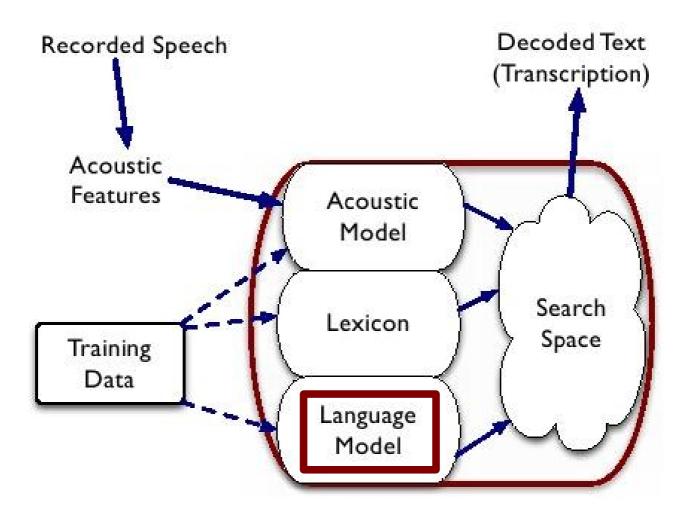
Content today

- 1.Phonemes, HMM
- 2.Vocabulary

3.Statistical language model

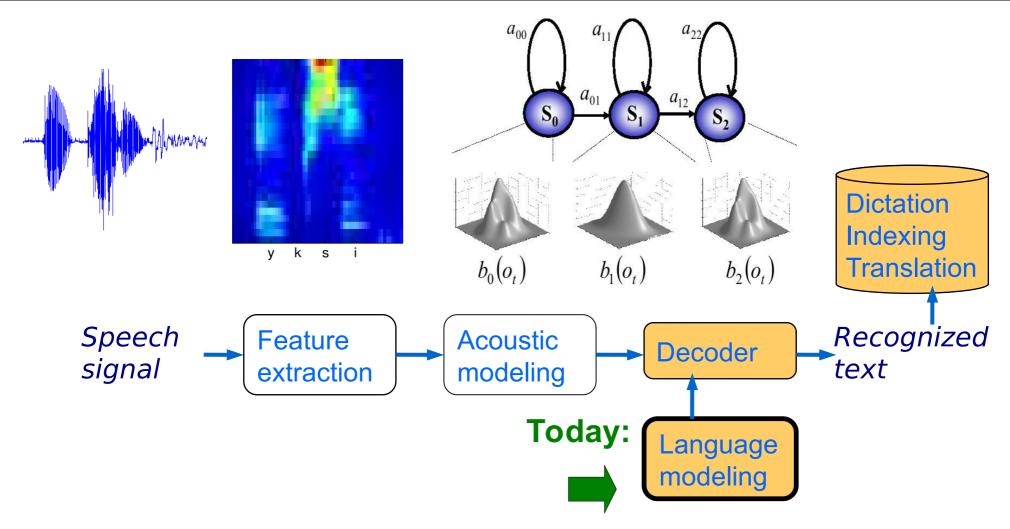
- 4.Home exercise: (3) Build a language model for recognition of continuous speech!
- 5.Neural network language model
- 6.Status of project group works

Language model



Speech recognition

Speech recognition -from beginning to end



What is speech recognition?

- Find the most likely word or word sequence given the acoustic signal and our models!
- Language model defines words and how likely they occur together
- Lexicon defines the word set and how the words are formed from sound units
- Acoustic model defines the sound units independent of speaker and recording conditions

Language model

- Assigns a prior probability to word sequences
- Reduces search space and ambiguity
- Resolve homonymes:
 - <u>Write</u> a letter to Mr. <u>Wright</u> right away
- Power vs. flexibility
- A good review and comparison of the latest methods:
 - "A bit of progress in language modeling", extended version (2001) by Joshua T. Goodman
 - www.research.microsoft.com/~joshuago/longcombine.pdf

When humans fail: popular misheard lyrics

- "Gladly, the cross-eyed bear." /"Gladly The Cross I'd Bear." Traditional Hymn
- "There's a bathroom on the right."/"There's a bad moon on the rise." Bad Moon Rising, Creedence Clearwater
- "Excuse me while I kiss this guy."/"Excuse me while I kiss the sky." Purple Haze, Jimi Hendrix
- "Dead ants are my friends; they're blowin' in the wind."/"The answer my friend is blowin' in the wind." Blowin' In The Wind, Bob Dylan
- "The girl with colitis goes by."/"The girl with kaleidoscope eyes." Lucy in the Sky With Diamonds, The Beatles

Why humans fail? Suggestions?

- "She's got a chicken to ride."/"She's got a ticket to ride." Ticket to Ride, The Beatles
- "Are you going to starve an old friend?"/"Are you going to Scarborough Fair?" Scarborough Fair, Simon and Garfunkel
- "What a nice surprise when you're out of ice."/"What a nice surprise bring your alibis." Hotel California, Eagles
- "Hope the city voted for you."/"Hopelessly devoted to you." Hopelessly Devoted to You, Grease
- "I'm a pool hall ace."/"My poor heart aches." Every Step You Take, The Police

Examples from: http://www.fun-with-words.com/

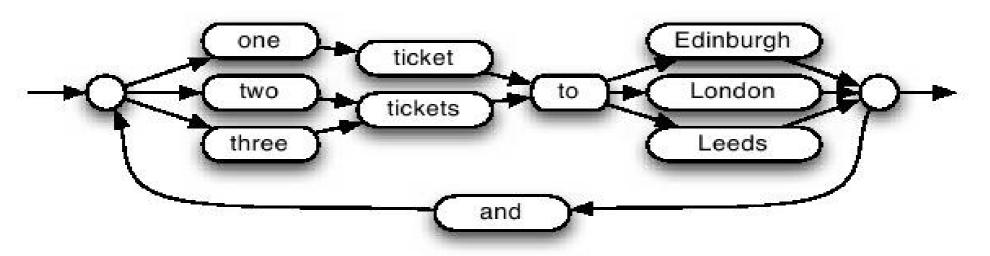
2020 Mikko Kurimo

Speech recognition

Applications of Statistical LMs

- 1.Spelling correction, text input
- 2.Optical character recognition, e.g. scanning old books
- 3. Automatic speech recognition
- 4. Statistical machine translation
- 5.Information retrieval
- 6.Text-to-speech
- 7...(Can you think of any other? Suggest!)
- 8....

Simple finite-state network grammar



- Limited domain models, constructed by hand
- Only a limited set of sentences are recognized
- Significant reduction of the recognition task

Speech recognition

HTK example: LM of spoken travel phrases

- \$GENPLACE = ((railway station) | (hotel) | the bus station) | (the airport));
- \$GEOPLACE = (london) | (brussels) | (tokyo) | (beijing) | (helsinki);
- \$FOOD = (chicken) | (beef) | (fish) | (ham) | (cheese) | (eggs) | (salad);
- \$DRINK = (coffee) | (tea) | (juice) | (water) | (beer) | (whiskey) | (vodka);
 (STARTSIL (
- (how much is a ticket to \$GEOPLACE) |
- (how do i get to (\$GENPLACE | \$GEOPLACE) |
- (could i have [some] (\$FOOD | \$DRINK) [please]) |
- (may i have a (glass | cup | bottle) of \$DRINK) |
- (a glass of \$DRINK [please])
-) ENDSIL)

HTK example: LM of spoken travel phrases

EMIME project (2010): https://www.youtube.com/watch?v=wqv7uYAyAQ0

\$GEOPAIKKAAN = Kyotoon | Hokkaidoon | (Lontooseen) | (Brysseliin) | (Edinburghiin) | (Tokioon) | (Pekingiin) | (Helsinkiin);

\$RUOKAA = (kanaa) | (naudanlihaa) | (kalaa) | (kinkkua) | (makkaraa) | (juustoa) | (munia) | (salaattia) | (vihanneksia);

\$JUOMAA = (kahvia) | (teetä) | (mehua) | (vissyä) | (vissy vettä)| (vettä) | (olutta) | (punaviiniä) | (valkoviiniä) | (viskiä) | (vodkaa) | (rommia);

(STARTSIL(

(paljonko maksaa lippu \$GEOPAIKKAAN) |

(miten pääsen (\$GEOPAIKKAAN)) |

(saisinko (\$RUOKAA | \$JUOMAA) [kiitos]) |

(Saisinko (lasillisen | kupillisen | pullollisen) \$JUOMAA) |

(lasillinen \$JUOMAA [kiitos])

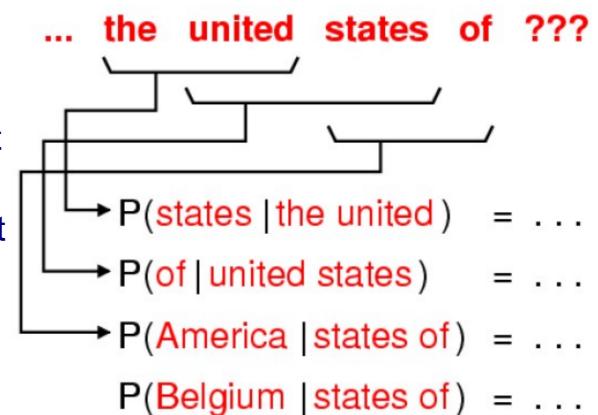
) ENDSIL) 2020 Mikko Kurimo

N-gram language model

- N can be 1,2,3,4,...
- Generative model which can be used to produce synthetic sentences
- Statistical, scalable, can deal with ungrammatical sequences
- Suitable for left-to-right search
- Suits well for languages of rigid word order

N-gram models

- E.g. trigram = 3-gram:
- Word occurrence depends only on its immediate short context
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)



Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(w_j)}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
 - works well only for frequent bigrams
 - Why not for rare bigrams?

Zero probability problem

- If an N-gram is not seen in the corpus, it will get probability = 0
- The higher N, the sparser data, and the more zero counts there will be
- 20K words => 400M 2-grams => 8000G 3-grams, so even a gigaword corpus has MANY zero counts!
- Smoothing: Redistribute some probability mass from seen N-grams to unseen ones

Smoothing methods

- 1.Add-one: Add 1 to each count and normalize => gives too much probability to unseen N-grams
- **2.Absolute discounting**: Subtract a constant from all counts and redistribute this to unseen ones using N-1 gram probs and back-off (normalization) weights
- 3. Best: Kneser-Ney smoothing: Instead of the number of occurrences, weigh the back-offs by the number of contexts the word appears in
- 4. Instead of only back-off cases, **interpolate** all N-gram counts with N-1 counts

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(w_j)}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
 - works well only for frequent bigrams
 - Why not for good rare bigrams?

Backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= P(w_i)b_{w_j} \quad otherwise$$

- Divide the room of rare bigrams, e.g. "eggplant francisco", in proportion to the unigram P("francisco")
- The sum of all these rare bigrams "eggplant [word j]" is b("eggplant") which is called the back-off weight

Absolute discounting and backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= P(w_i)b_{w_j} \quad otherwise$$

- If bigram is common: Subtract constant *D* from the count
- If not: Back off to the unigram probability normalized by the back-off weight
- Similarly back off all rare N-grams to N-1 grams

Kneser-Ney smoothing

$$egin{aligned} P(w_i \mid w_j) &= rac{c(w_j, w_i) - D}{c(w_j)} & ext{if } c(w_j, w_i) > c \ &= \mathbf{V}(w_i) b_{w_j} & ext{otherwise} \end{aligned}$$

- Instead of the number of occurrences, weigh the back-offs by the number of contexts V(word) the word appears in:
 - In this case the context is the previous word: how many different previous words the corpus has for each word
 - E.g. *P(Stew | EggPlant)* is high, because stew occurs in many contexts
 - But P(Francisco | EggPlant) is low, because Francisco is common, but only in "San Francisco"

2020 Mikko Kurimo

Speech recognition

Picture by B.Pellom₄₃

Smoothing by interpolation

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)}$$

+ $P(w_i)b_{w_j}$

- Like backing off, but always compute the probability as a linear combination (weighted average) with lower order (N-1)gram probabilities
- Improves the probabilities of rare N-grams
- Discounts (D) (and interpolation weights) can be separately optimized for each N using a held-out data

Testing the language model ?

- 1. Compute the log-likelihood of the words and sentences
- 2. Perplexity, the average number of word choices
- **3. Entropy**, the average number of bits-per-word
- 4. Recognition error rate
- **5.Re-scoring** intermediate ASR results, "word lattices" with pre-computed acoustic probs

Text-only tests

- Compute the log-likelihood of the words and sentences
 - use held-out test data
- **Perplexity**, the average number of word choices
 - inverse of the geom. average word probability
- Entropy, the average number of bits-per-word
 - logarithm of the perplexity
- Fast to compute, careful LM normalization required
- Indicates ASR improvements but no guarantees
- Can not compare over different vocabularies

ASR tests

- Recognition error rate
 - requires speech data and the full ASR run
 - shows which LM improvements are relevant
 - solving confusable word sequences is important
- **Re-scoring** intermediate ASR results, "word lattices" with pre-computed acoustic probs
 - much faster than full ASR runs
 - errors in lattices can not be recovered

Software for statistical LMs

- CMU/Cambridge Statistical LM toolkit
 - www.speech.cs.cmu.edu/SLM_info.html
 - Easy to use, but some limitations
- SRI Statistical Language Model Toolkit
 - www.speech.sri.com/projects/srilm/
 - State-of-the-art, well maintained, used in our course
- HTK (some support for low order N-grams)
- Morfessor and VariKN made at TKK
 - www.cis.hut.fi/projects/{speech,morpho}/
 - Split words into morphemes, train variable length N-grams

More advanced language models

- Skip n-gram
- Cache n-gram
- Interpolated n-gram
- Topic model, mixture n-gram
- Class LM, Sub-word LM
- Maximum Entropy LM
- Neural Network LM

Home exercise 3

- Build a language model for large vocabulary speech recognition!
- Details, instructions and help given in the Thursday/Friday meeting
- To be returned before the next Friday

Content today

- 1.Phonemes, HMM
- 2.Vocabulary
- 3. Statistical language model
- 4.Home exercise: (3) Build a language model for recognition of continuous speech!

⇒ 5.Neural Network language model

6.Status of project group works

Feedback

Now: Go to **MyCourses > Lectures** and fill in the feedback for **Lecture3**.

- Some pics of the feedback from the previous week:
- + example of HMM and Viterbi
- + all interactivity
- running out of time at the end
- need a longer break
- How do the HMMs and GMMs compare to the state-of-the-art today?
- I have no python backgroud can I still pass the course?

Ave weekly time in Study: 3/50h, Exercise: 5/40h, Project: 3/40h (Max:15,10,8) Thanks for all the valuable feedback!

Speech recognition

Summary of today

- Phonemes, Hidden Markov models
- Vocabulary
- Statistical Language models
 - N-gram models
 - Smoothing
 - Testing the models
- Neural network LMs
- **Exercise:** Building LMs for large vocabulary ASR using SRI toolkit: *www.speech.sri.com/projects/srilm/*
- Next week: Continuous speech recognition

2020 Mikko Kurimo

Speech recognition

Project work receipt

- 1.Form a group (3 persons)
- 2.Get a topic
- 3.Get reading material from Mycourses or your group tutor
- 4.1st meeting: Specify the topic, start literature study
- 5. 2nd meeting: Write a work plan
- 6. Perform analysis, experiments, and write a report
- 7.Book your presentation time for weeks 6 7
- 8. Prepare and keep your 20 min presentation
- 9.Return the report

Speech recognition

Start