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Part I

Mikko’s lectures



Lecture 1 1

1.1 Intended learning outcomes
I Identify how the course is technically implemented

I Identify Hilbert space and subspace of physical states

I Operate to state vectors by linear operators

1.2 Preface

Quantummechanics is a mathematical framework to model nature.

It is said to be the most successful theory in all of physics, owing

to its success in describing a wide range of phenomena, including

atomic orbitals, quantum tunneling, and superconductivity.

The aim of this course is to formulate quantum mechanics based

on a solid mathematical foundation. We start by introducing the

basic mathematical objects required to describe physical systems.

Then, we introduce the postulates of quantum mechanics, and

discuss how to quantize a classical system. We also consider

some example systems, including qubits and a brief discussion on

quantum computing. Overall, we aim to be fairly rigorous with

the mathematical details, especially in the beginning, but certain

subtleties are left out in order to fit more useful tools into the

course. You may encounter such advanced mathematics in the

Master’s courses to fill in the gaps in your knowledge. To keep you

on track, we intend to tell you when we do not prove or discuss

something rigorously.

Enjoy!
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1: Not going to ask about Cauchy se-

quences in the exam, but this condi-

tion is what makes a Hilbert space

complete. Thus, if you are unfamiliar

with the term Cauchy sequence, no

need to study it for this course.

2: A functional 5 acting on a vector

space + is a mapping 5 : + → C.

5 is said to be bounded, if ∀E ∈ + ,
there exists a constant " such that

|5 (E) | ≤ " ‖E ‖.
3: Not going to ask about this in the

exam.

1.3 Hilbert space and ket vectors Math recap on vector spaces

A vector space + over a scalar

field � is a set where addition,

denoted by +, is defined such that

for D, E,F ∈ + , + : + × + → + ,

0, 1 ∈ � , the following properties

hold:

1. D + (E +F) = (D + E) +F
2. D + E = E + D
3. ∃ 0 ∈ + s.t.+ + 0 = +

4. ∀E ∈ + ∃ − E ∈ + s.t. E +
(−E) = 0

5. 0(1E) = (01)E
6. 1E = E , when 1 ∈ �
7. 0(D + E) = 0D + 0E
8. (0 + 1)E = 0E + 1E

For our purposes, the scalar field

� is always either R or C.

The fundamental mathematical structure in quantum mechanics

is the Hilbert space, which is a generalization of Euclidean space

that may be infinite-dimensional, and whose coordinates may be

complex numbers. The elements of a Hilbert space are referred to

as ket vectors, denoted by |k 〉. A Hilbert spaceH is a complete inner

product space, which means that it has the following properties:

1. H = {|k 〉} is a vector space over the scalar field C (see math

recap on the right)

2. For any pair of elements |k 〉 , |q〉 ∈ H , there is a scalar (inner)

product 〈k |q〉 B ( |k 〉 , |q〉) ∈ C that satisfies

(a) 〈k |q〉 = (〈q |k 〉)∗ = 〈q |k 〉∗ (conjugate symmetry)

(b) 〈k |0q1 + 1q2〉 = 〈k | (0 |q1〉 + 1 |q2〉) = 0 〈k |q1〉 +1 〈k |q2〉
(linearity)

(c) 〈k |k 〉 ≥ 0; 〈k |k 〉 = 0 ⇐⇒ |k 〉 = 0 (positive definite-

ness)

3. All Cauchy sequences converge into H . That is, if ∃{|k8〉}
s.t. ‖ |k=〉 − |k<〉 ‖ → 0 for =,< → ∞ then ∃ |Ψ〉 ∈ H s.t.

|k<〉 → |Ψ〉 for< →∞.1

Consequently, we can define a norm ‖ |k 〉 ‖ = ‖k ‖ B
√
〈k |k 〉 ≥ 0.

For example, the following inequalities apply:

I | 〈k |q〉 | ≤ ‖k ‖‖q ‖, i.e., Cauchy–Schwarz inequality

I ‖ |k 〉 + |q〉 ‖ ≤ ‖k ‖ + ‖q ‖, i.e., triangle inequality

Physical states, i.e., objects that can be used to model the states

of physical systems on the quantum-mechanical level, are those

elements ofH which have a norm of unity, i.e., 〈k |k 〉 = 1. In this

course, we use the terms ket vector and state somewhat interchange-

ably, since we are concerned mostly with physical states. But many

of the results also hold for ket vectors with any finite norm.

1.4 Bra vectors

As discussed above, the ket vectors are the elements of H , i.e.,

H = {|k 〉}. For each given ket vector |q〉 we symbolically define

an object 〈q |, through the inner product such that for all |k 〉 ∈ H ,

we have 〈q |k 〉 := ( |q〉 , |k 〉) ∈ C. Below, we justify why 〈q | can be

referred to as a bra vector, i.e., the set of all bra vectors {〈q |} forms

a vector space.

For a fixed |q〉, the inner product ( |q〉 , |k 〉) can be identified as

a mapping that takes any ket vector |k 〉 to a complex number.

Thus 〈q | is a linear and bounded functional
2

acting on H . The

so-called Riesz representation theorem
3
states that for any linear
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bounded functional 〈q |, there exists a corresponding unique ket

vector |q〉 ∈ H such that 〈q |k 〉 = ( |q〉 , |k 〉) for all |k 〉 ∈ H . This is

the definition of the bra vector 〈q |; it is the functional whose action

on any |k 〉 corresponds to taking the inner product with the ket

|q〉.

From the above-noted uniqueness of the ket vector |q〉 correspond-
ing to its bra 〈q |, it folows that there is a one-to-one correspondence

betweenH = {|k 〉} and the set of all bra vectorsH ∗ B {〈q |}. The
setH ∗ is referred to as the dual space ofH .

1.5 Linear operators

Definition 1.5.1 A mapping ˆ� is a linear operator on H ⇐⇒
ˆ� : H → H s.t. ∀ |k 〉 , |q〉 ∈ H , 0, 1 ∈ C:

ˆ� (0 |k 〉 + 1 |q〉) = 0 ˆ� |k 〉 + 1 ˆ� |q〉 . (1.1)

We denote the set of linear operators on H by L(H). We also

define the notation

| ˆ�k 〉 B ˆ� |k 〉 B ˆ� ( |k 〉) . (1.2)

It follows that ∀ ˆ�, ˆ� ∈ L(H), we have

ˆ�
(
ˆ� |k 〉

)
=

(
ˆ� ˆ�

)
|k 〉 . (1.3)

1.6 Outer product

An important example of a linear operator is the outer product of

two vectors.

Definition 1.6.1 We define the outer product |k 〉〈q | : H → H ,
where |k 〉 , |q〉 ∈ H s.t. ∀ |j〉 ∈ H we have:

( |k 〉〈q |) |j〉 = |k 〉〈q |j〉 = 〈q |j〉|k 〉 (1.4)

Note that in the second equality above, we moved the term 〈q |j〉
to the front, since it is simply a scalar.



1: Defined similarly for infinite-

dimensional spaces.

Lecture 2 2

2.1 Intended learning outcomes
I Use bases to represent operators

I Identify the minimal mathematical structure to describe a

physical system quantum mechanically

2.2 Bases of H

Above, we have discussed bra and ket vectors in a very abstract

way, without a way to visualize these vectors. To make them more

tangible, we will introduce coordinates for them using a basis.

Definition 2.2.1 A set of ket vectors {|q8〉}#8=1
∈ H , # ∈ Z+, is

referred to as linearly independent if
∑#
8=1
28 |q8〉 = 0 implies 28 =

0∀28 ∈ C.

The dimension of H , Dim{H}, is the largest # for which such a

linearly independent set of vectors exists.

The set {|q8〉}#8=1
is referred to as complete if∀ |k 〉 ∈ H ,∃ {2: }#:=1

, 2: ∈
C s.t. |k 〉 = ∑#

:=1
2: |q:〉.1 That is, any ket vector in H may be ex-

pressed as a linear combination of the vectors |q:〉. The coefficients

2: are the coordinates of |k 〉. We have thus arrived at the definition

of a basis:

Definition2.2.2 Acomplete set of linearly independent vectors {|q:〉}
is referred to as a basis forH .

A basis {|q:〉} is referred to as orthonormal if

〈q; |q<〉 = X;< =

{
0, for ; ≠<,

1, for ; =<.
(2.1)

The symbol X;< is referred to as the Kronecker delta.

An observation for the orthonormal basis {|q:〉}: for an arbitrary

|k 〉 ∈ H , we have

|k 〉 =
∑
:

2: |q:〉 (2.2)

=⇒ 〈q< |k 〉 =
∑
:

2: 〈q< |q:〉 = 2< . (2.3)
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In other words, we can express the coefficient 2: of the :th compo-

nent of |k 〉 in the basis |q:〉 as 〈q: |k 〉. Plugging this into the right

hand side of Eq. (2.2), we find

|k 〉 =
∑
:

〈q: |k 〉|q:〉 (2.4)

=
∑
:

|q:〉〈q: |k 〉

=

(∑
:

|q:〉〈q: |
)
|k 〉 ,

where in the last step,we have used the fact that the outer product is

linear. Based on this, we conclude that

∑
: |q:〉〈q: | = ˆ� , the identity

operator. Importantly, this holds for any orthonormal basis. It is a

useful trick to insert the identity operator in strategic places, and

expand it in terms of an orthonormal basis like this.

2.3 States vs. vectors

For a given basis {|q:〉} and a ket vector |k 〉 ∈ H , we may write

|k 〉 =
∑
:

2: |q:〉 (2.5)

=̂


21

0

0

...

︸︷︷︸
21 |q1 〉

+


0

22

0

...

︸︷︷︸
22 |q2 〉

+


0

0

23

...

︸︷︷︸
23 |q3 〉

+ · · · =


21

22

23

...


,

where =̂ stands for represented by. In a given basis, a basis ket vector

|q<〉 is represented by a column vector where 2< = 1 and 2: = 0

for : ≠ <. Note that the vector representation of a state may be

infinite-dimensional.

Given a column vector representation of |k 〉 with the coefficients

{2: }, the corresponding bra vector 〈k | may be represented by the

conjugate transpose of the column vector representing |k 〉:

〈k | =̂
[
2∗

1
2∗

2
2∗

3
. . .

]
. (2.6)

This can be shown using the inner product.

2.4 Operators vs. matrices

Analogously to representing kets as column vectors, it is possible

to represent operators as matrices. Let
ˆ� ∈ L(H) and {|q<〉} be
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2: An operator
ˆ� is said to be

bounded if ∀ |k 〉 ∈ H there exists

a constant " such that ‖ ˆ� |k 〉 ‖ ≤
" ‖ |k 〉 ‖.

an orthonormal basis ofH . Then,

ˆ� = ˆ� ˆ� ˆ� =

(∑
<

|q<〉〈q< |
)

ˆ�

(∑
:

|q:〉〈q: |
)

(2.7)

=
∑
<,:

|q<〉〈q< | ˆ�|q:〉︸      ︷︷      ︸
B�<: ∈C

〈q: |

=
∑
<,:

�<: |q<〉〈q: |

=̂


�11 �12 . . .

�21 �22 . . .
...

...
. . .

 .
This is the matrix representation of the operator

ˆ� in this basis. The

matrix element at row< and column: is given by�<: = 〈q< | ˆ�|q:〉.
Note that the matrix might be infinite-dimensional.

Using the matrix representation, the operation of
ˆ� on a ket vector

|k 〉 = ∑
; 2; |q; 〉 may be written explicitly:

ˆ� |k 〉 =
∑
<,:,;

�<: |q<〉〈q: |2; |q; 〉 (2.8)

=
∑
<,:,;

�<:2; |q<〉 〈q: |q; 〉︸  ︷︷  ︸
= X:;

(2.9)

=
∑
<,:

�<:2: |q<〉 .

We observe that the expression

∑
<,: �<:2: corresponds to matrix-

vector multiplication, and conclude that

ˆ� |k 〉 =̂

�11 �12 . . .

�21 �22 . . .
...

...
. . .



21

22

...

 .
In other words, we obtain the column vector representation of

|k ′〉 = ˆ� |k 〉 by calculating the matrix-vector product between the

matrix representation of
ˆ� and the column vector representation

of |k 〉.
Math on complex conjugation

∀I ∈ C we have G,~ ∈ R and i is

the imaginary unit, then:

I = G + i~

I∗ = G − i~2.5 Adjugate

Let
ˆ� ∈ L(H), and furthermore, let

ˆ� be bounded.
2

We define

the action of
ˆ� on a left-lying bra vector (i.e. an element in the dual
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3: Note that here we use the regular

equals symbol instead of =̂. The in-

ner product is just a number, which

is equal for both the matrix/vector

and abstract operator/ket vector rep-

resentations.

spaceH ∗), ˆ� : H ∗ →H ∗, ∀ |q〉 , |k 〉 ∈ H through the relation

About notation

These are equivalent:

〈q | ˆ�|k 〉 =
(
|q〉 , ˆ� |k 〉

)
)

=

(
ˆ�† |q〉 , |k 〉

)
= 〈 ˆ�†q |k 〉

(
〈q | ˆ�

)
|k 〉 = 〈q |

(
ˆ� |k 〉

)
. (2.10)

We observe that the operation 〈q | ˆ� is a linear functional onH and

is bounded since
ˆ� is bounded.

Thus it follows from the Riesz representation theorem that ∃ |q ′〉 ∈
H s.t. 〈q ′ | = 〈q | ˆ�. This also defines a linear operator

ˆ�† as

ˆ�† |q〉 = |q ′〉 , (2.11)

which is referred to as the adjugate of ˆ�. The symbol † is pronounced
“dagger”, and

ˆ�† is pronounced “A dagger”.

The dagger notation is also used to denote the bra vector cor-

responding to a given ket vector: ( |k 〉)† = 〈k | and similarly

(〈k |)† = |k 〉.

For example, we have for 2 ∈ C

〈q |2 |k 〉 = ( |q〉 , 2 |k 〉) (2.12)

= 2 ( |q〉 , |k 〉)
= (2∗ |q〉 , |k 〉) ,

Thus, 2† = 2∗ ∈ C, i.e., the adjugate of a complex number is just its

complex conjugate.

As another example, consider the operator and ket vectors repre-

sented by the following matrix and vectors:

ˆ� =̂

[
0 1

2 3

]
, |q〉 =̂

[
G

~

]
, |k 〉 =̂

[
D

E

]
, (2.13)

where 0, 1, 2, 3, G, ~, D, E are complex numbers. So, what is the

matrix representation of
ˆ�†? We know that

ˆ� |k 〉 =̂
[
0D + 1E
2D + 3E

]
. (2.14)

Using Eq. (2.10) and the Riesz representation theorem, we know

there must exist some vector

|q ′〉 =̂
[
I

F

]
(2.15)

that satisfies

〈q ′ | = 〈q | ˆ� =̂
[
I∗ F∗

]
. (2.16)

Using the definition of the inner product, we have
3
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〈q | ˆ�|k 〉 =
(
|q〉 , ˆ� |k 〉

)
(2.17)

=

( [
G

~

]
,

[
0D + 1E
2D + 3E

] )
=

[
G∗ ~∗

] [
0D + 1E
2D + 3E

]
(2.18)

= G∗(0D + 1E) + ~∗(2D + 3E) .

But on the other hand

〈q | ˆ�|k 〉 = 〈q ′ |k 〉 (2.19)

=
[
I∗ F∗

] [
D

E

]
= I∗D +F∗E,

which means that

I∗D +F∗E = G∗(0D + 1E) + ~∗(2D + 3E) (2.20)

= (G∗0 + ~∗2)D + (G∗1 + ~∗3)E

⇒ I = (G∗0 + ~∗2)∗ = G0∗ + ~2∗ (2.21)

F = (G∗1 + ~∗3)∗ = G1∗ + ~3∗. (2.22)

From Eq. (2.11), it follows that the matrix representation of
ˆ�†

should be a matrix �† that satisfies

ˆ�† |q〉 = |q ′〉 =̂ �†
[
G

~

]
=

[
I

F

]
=

[
G0∗ + ~2∗
G1∗ + ~3∗

]
. (2.23)

We can clearly see that this matrix is

�† =

[
0∗ 2∗

1∗ 3∗

]
=

([
0 1

2 3

]) )∗
. (2.24)

In other words, the matrix representation of the adjugate
ˆ�† is

the conjugate transpose of the matrix representation of
ˆ�, which

is obtained by taking the transpose and then conjugating each

element. While the above is not a rigorous proof, this holds in

general.
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2.6 Properties of adjugate

The following equalities are not proven here, but proofs can be

constructed based on the above definitions.(
ˆ�†

)†
= ˆ�, (2.25)(

0 ˆ�
)†

= 0∗ ˆ�†, (0 ∈ C), (2.26)(
ˆ� + ˆ�

)†
= ˆ�† + ˆ�†, (2.27)(

ˆ� ˆ�
)†

= ˆ�† ˆ�†, (2.28)

( |k 〉〈q |)† = |q〉〈k | , (2.29)

(0 |k 〉)† = 〈k | 0∗ = 0∗ 〈k | , (0 ∈ C), (2.30)(
ˆ� |k 〉

)†
= 〈k | ˆ�†. (2.31)

2.7 Eigenvalues and eigenstates

For an operator
ˆ� ∈ L(H), if a ket vector |k:〉 ∈ H satisfies the

eigenvalue equation

ˆ� |k:〉 = _: |k:〉 (2.32)

for some scalar _: ∈ C, we define |k:〉 to be an eigenvector, or

eigenstate, of
ˆ� with an eigenvalue _: . The subscript : signifies

that there may be (infinitely) many eigenstates and corresponding

eigenvalues.

The set of eigenvalues {_: } is referred to as the spectrum of
ˆ�.

It is possible that for a given eigenvalue _: , there are multiple

eigenvectors |k:,8〉 that satisfy Eq. (2.32), with 8 = 1, . . . , 6: . The

number of eigenvectors 6: corresponding to _: is referred to as the

degeneracy of _: .

2.8 Hermitian operators

Definition 2.8.1 The operator ˆ� ∈ L(H) is defined to be Hermitian
iff4 4: If and only if

ˆ� † = ˆ� .

Hermitian operators are very important in quantum mechanics as

discovered below.

The key feature of Hermitian operators comes from the so-called

generalized spectral theorem, which states that for a Hermitian
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operator
ˆ� ∈ L(H), there exists a complete orthonormal basis of

H , {|k:〉}, which satisfies

ˆ� |k:〉 = _: |k:〉 . (2.33)

Importantly, it also follows from the spectral theorem that the

eigenvalues _: are real numbers.

The above result implies that for any Hermitian operator
ˆ� , it is

always possible to find a basis such that

ˆ� =
∑
:

_: |k:〉〈k: | . (2.34)

In the matrix representation, this is a matrix with just the eigenval-

ues _: on the diagonal. This is useful for many reasons. For one, it

is very easy to operate on any vector with such an operator. Fur-

thermore, it turns out that many problems in quantum mechanics

boil down to finding the eigenvalues of Hermitian operators. The

process of finding such a basis in which the eigenvalues are on the

diagonal is referred to as diagonalization, and much of the effort

in theoretical physics is spent on trying to diagonalize operators

related to different physical systems.

2.9 Postulates of quantum mechanics

We finally have introduced all the necessary mathematics to start

discussing physical systems. The theory of quantum mechanics is

in essence built upon the six postulatesdiscussed below. They are the

fundamental assumptions, or axioms, of quantum mechanics, i.e.,

they are not proven, but rather they are based on empirical evidence.

Predictions derived from the postulates have been experimentally

verified to extremely high precision. In this course, we consider

quantum mechanics simply as a model for such experimental

observations.

Postulate I

For each physical system there exists a corresponding (rigged)
5

5: We discuss this later

Hilbert space.

Postulate II

Each physical state of this system can be represented by a quantum

state |k 〉 ∈ H , where 〈k |k 〉 = 1.
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6: Recall that since
ˆ� is Hermitian,

this implies that all measurement out-

comes are real numbers, as onewould

expect.

Postulate III

For each measurable quantity � of the system we have a corre-

sponding operator
ˆ� ∈ L(H) s.t. ˆ�† = ˆ�. Such an operator (and

often also the corresponding quantity) is referred to as an observable
of the system.

In an ideal measurement of the quantity �, any measurement

outcome equals to an eigenvalue of
ˆ�.6

Postulate IV: Measurement

Let |k 〉 ∈ H and
ˆ�† = ˆ� ∈ L(H) with a discrete spectrum {0=}.

As discussed in Sec. 2.8, there always exists an orthonormal basis

for H , {|q=,8〉}=,8=∈{1,...,6= }, where 6= is the amount of degeneracy,

such that the basis vectors are eigenstates of
ˆ�.

The probability of obtaining a specific measurement result 0= is

given by

% (0=) B
6=∑
8=1

��〈q=,8 |k 〉��2 . (2.35)

Phase factor

Acomplex number e
ii

withi ∈ R
is called a phase factor, because
multiplying any complex number

by it just shifts the phase (i.e. ar-

gument, or angle) of that number

by i . A phase factor has unit mag-

nitude: ��
e

ii
�� = 1 ∀i.

See the Brief Summary for more

details.

Note that if the state is multiplied by a phase factor e
ii
, the

measurement probabilities are unaffected: If we replace |k 〉 by
e
8i |k 〉 in Eq. (2.35), we get the exact same result:

6=∑
8=1

��〈q=,8 |e8i |k 〉��2 =

6=∑
8=1

|eii |2︸︷︷︸
= 1

��〈q=,8 |k 〉��2 = % (0=) . (2.36)

This is why a global phase offset cannot be measured.

Postulate V: Effect of measurement on the state

Suppose that a system is in the state |k 〉 ∈ H . If we measure the

quantity corresponding to
ˆ� and obtain the measurement result

0= (an eigenvalue of
ˆ�), the state of the system collapses into the

state

|k ′〉 =
ˆ%= |k 〉
‖ ˆ%= |k 〉 ‖

, ˆ%= =

6=∑
8=1

|q=,8〉〈q=,8 | . (2.37)

ˆ%= is referred to as a projector onto the subspace corresponding to

the subspace spanned by the eigenstates {|q=,8〉}6=8=1
.
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Definition 2.9.1 ˆ%= ∈ L(H) is a projector iff ˆ%2

= = ˆ%=.

Postulate VI: Temporal evolution

If a system is in the state |k 〉, the temporal evolution of the state

|k (C)〉 is determined by the time-dependent Schrödinger equation:

iℏmC |k (C)〉 = ˆ� |k (C)〉 , (2.38)

where mC B
m
mC
, ℏ = 1.0545718 × 10

−34
Js is the reduced Planck

constant, and
ˆ� = ˆ� †, ˆ� ∈ L(H) is theHamiltonian, the observable

corresponding to the total energy of the system.
7

7: The measurable quantity corre-

sponding to the observable
ˆ� is the

Hamiltonian � from classical Hamil-

tonian mechanics.

Note that
ˆ� may also depend on time through temporally de-

pendent parameters {U8 (C)}, i.e., ˆ� = ˆ� [U1(C), U2(C), . . . ]. This is
discussed later.
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3.1 Intended learning outcomes
I Differentiate between a measurement outcome and its expec-

tation value

I Identify continuous bases for Hilbert spaces

I Apply Lagrangian formalism to quantize physical systems

3.2 Expectation values

Definition 3.2.1 Let ˆ� ∈ L(H) and |k 〉 ∈ H . The expectation value
of ˆ� when the system is in the state |k 〉 is defined by

〈 ˆ�〉k = 〈 ˆ�〉 B 〈k | ˆ�|k 〉 . (3.1)

This definition is valid for any linear operator
ˆ�. However, it is

particularly interesting when
ˆ� is Hermitian, with a corresponding

observable quantity �. In this case, the expectation value is equal

to the classical expectation value 〈�〉 of �. That is, repeatedly
preparing the system in the state |k 〉 and measuring�, one obtains

on average the result 〈�〉, even though individual measurements

only yield discrete values 0: , the eigenvalues of ˆ�.

Mathematically, the above discussion maybe considered as follows:

Recall that
ˆ� = ˆ�† implies that there exists an orthonormal basis

{|q:〉} such that
ˆ� |q:〉 = 0: |q:〉, 0: ∈ R. Subsequently, we write

the state as |k 〉 = ∑
: 2: |q:〉, from which we obtain

〈k | ˆ�|k 〉 =
(∑
:

2: |q:〉
)†

ˆ�
∑
:

2: |q:〉 (3.2)

=

(∑
:

2: |q:〉
)†∑

:

2:0: |q:〉

=
∑
=,:

2∗=0:2: 〈q= |q:〉

=
∑
:

0: |2: |2︸︷︷︸
% (0: )

=
∑
:

0:% (0: ) .

The sum on the right side of the last equality above is the classical

definition of the expectation value for the measurement outcomes.

It is important to note that the involved probabilities % (0: ) arise
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1: The theory of probabilistically pre-

pared quantum states is described by

the so-called density matrix formalism,

which is not discussed here.

2: It is possible to verify that all the

properties of a Hilbert space hold

even with such non-normalizable

states, but it is fairly laborious and

therefore we do not discuss it further.

from quantum mechanics. Even if a system is completely deter-

ministically prepared in some state, the measurement outcomes

will follow some probability distribution. This is not the same as

preparing the system probabilistically in some state.
1

3.3 Variance

Definition 3.3.1 We define the variance of ˆ� when the system is in
the state |k 〉 as

Δ�2 = 〈k |
(

ˆ� − 〈k | ˆ�|k 〉
)
2 |k 〉 (3.3)

= 〈k | ˆ�2 |k 〉 −
(
〈k | ˆ�|k 〉

)
2

=
∑
:

02

:
% (0: ) −

(∑
:

0:% (0: )
)

2

.

Powers of operators

An operator raised to a power just

means repeatedly applying the

operator:

ˆ�= = ˆ� ˆ� · · · ˆ�.︸    ︷︷    ︸
Repeated = times

For example,
ˆ�2 |k 〉 = ˆ� ˆ� |k 〉.

As above in the case of the expectation value, if
ˆ� is a Hermitian

operator corresponding to the observable �, the above definition

coincides with that of the classical variance of �.

3.4 Continuous bases

If a quantum system has some continuous variable, it can be useful

to express the state vectors in a continuous basis.

Let {|kU 〉}U ∈R ∈ H be such that

〈kU |kU′〉 = X (U − U ′), (3.4)

where U, U ′ ∈ R and X (G) is the Dirac delta function. Such a set of

vectors is a continuous basis forH .

Note that 〈kU |kU 〉 = X (0) = ∞. Thus |kU 〉 is not possible to normal-

ize. This is why we consider rigged Hilbert spaces, which allow

such states.
2

Math on Dirac delta function

For a smooth function, i.e., 5 ∈
�∞, the Dirac delta is defined as

the generalized function X that sat-
isfies∫

{X (G) 5 (G)}dG = 5 (0) .

Now, similarly as for discrete bases, we may write any |k 〉 ∈ H
using this basis, but with an integral instead of a sum:

|k 〉 =
∫

2U |kU 〉 dU (3.5)

=

∫
〈kU |k 〉|kU 〉 dU

=

∫
|kU 〉〈kU |k 〉 dU =

(∫
|kU 〉〈kU | dU

)
︸                ︷︷                ︸

ˆ�

|k 〉
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3: Here we consider a particle lying

on a one-dimensional line, but this

treatment can be extended to three

dimensions, where G ∈ R is replaced

by ®G ∈ R3
.

This is equivalent to the result of Eq. (2.4) in the continuous case.

Note that the index U ∈ R of the coefficients 2U ∈ C is continuous.

Often, instead of 2U we write 〈kU |k 〉 B k (U), wherek (U) : R→ C
is generally referred to as the wave function.

Using the definition of the identity operator from Eq. (3.5) above,

we can see that the inner product between two vectors |q〉 and |j〉
in a continuous basis is given by

〈q |j〉 = 〈q |
(∫
|kU 〉 〈kU | dU

)
|j〉 (3.6)

=

∫
〈q |kU 〉 〈kU |j〉 dU

=

∫
q∗(U)j (U)dU,

where q∗(U) B (q (U))∗.

The most common example of a continuous basis and the corre-

sponding wave function is the position basis. Often, the state |k 〉
describes some particle, such as an atom or electron. In this case,

the eigenstate that corresponds to finding the particle at a position

G ∈ R is written as just |G〉 (instead of |kG 〉).3 The wave function

is then a function of position: k (G) B 〈G |k 〉, and the probability

density of finding the particle at G is |k (G) |2.

Again using the trick of inserting the identity operator, we can find

the position basis representation of a state |k 〉 as an integral over

the eigenstates of the position basis |G〉:

|k 〉 = ˆ� |k 〉 =
(∫
|G〉〈G | dG

)
|k 〉 (3.7)

=

∫
|G〉 〈G |k 〉 dG

=

∫
|G〉 k (G)︸︷︷︸

∈C

dG

=

∫
k (G) |G〉 dG .

This is analogous to the discrete basis case, where we wrote

|k 〉 = ∑
: 2: |q:〉.

Note that wave functions cannot fully describe all quantum sys-

tems, only those where such continuous variables exist and are

sufficient.

Definition 3.4.1 In a continuous basis {|k 〉U }, the measurement
probability of the measurement outcome to reside in the interval
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Figure 3.1: Ideal classical pendulum,

where a mass< is attached to a mass-

less rigid rod of length ; . The rod may

rotate without friction about a single

axis as described by the angle \ . We

assume a uniform gravitational field

described by 6.

[U, U + dU] is defined by

d% (U) = |〈kU |k 〉|2 dU. (3.8)

3.5 Commutators

Definition 3.5.1 The commutator of ˆ�, ˆ� ∈ L(H) is given by

[ ˆ�, ˆ�] = ˆ� ˆ� − ˆ� ˆ�.

If two operators satisfy [ ˆ�, ˆ�] = 0, i.e., ˆ� ˆ� = ˆ� ˆ�, it is defined that ˆ�

and ˆ� commute.

The commutator is an important operation between two operators

and appears in numerous places in quantum mechanics.

3.6 Classical pendulum

Above, we introduced how to connect mathematics to physics

through the postulates. The Hamiltonian of the system is the key

here. Once one has it, also the relevant Hilbert space arises from

its eigenstates in addition to the temporal evolution of any state.

However, how do we obtain the Hamiltonian for the system?

To answer this question, we take a slight detour to classical mechan-

ics. As an illustrative example, we discuss a classical pendulum,

and construct the classical Hamiltonian for it. Subsequently, in the

next section, we provide a general procedure, or recipe, for convert-

ing the classical Hamiltonian of any system to the corresponding

quantum Hamiltonian. In the next lecture, we use the obtained

Hamiltonian for the pendulum to describe the quantum harmonic

oscillator.

Recall from classical mechanics that a system with # degrees of

freedom can be described by a set of # generalized coordinates

{@8}#8=1
. The coordinates may for example be just the position of

a particle, but often the description of the system is drastically

simplified if one chooses the generalized coordinates wisely.

We consider the pendulum shown in Fig. 3.1. Even though themass

at the end of the pendulum moves in a 2D plane, we recognize

that there is only one degree of freedom in the system; the position

is fully determined by the angle \ . We thus choose the generalized

position

@ = ;\ . (3.9)
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Wedrop the subscript 8 becausewehaveonly onedegree of freedom,

but all the definitions below apply in general for multidimensional

systems as well.

The potential energy + depends only on @, and not on the time

derivative ¤@. For small \ , it assumes the form

Math on dot notation

¤~ =
d~

dC
≠
m~

mC︸︷︷︸
generally

Math on Taylor series

cosG = 1 − G
2

2

+ G
4

24

− · · ·

+ = 6<ℎ (3.10)

=<6; (1 − cos\ ) ≈ 1

2

<6;\2 =
<6

2;
@2.

It is straightforward to write the kinetic energy) in terms of ¤@:

) =
1

2

<E2 =
1

2

<;2 ¤\2 =
1

2

< ¤@2. (3.11)

Definition 3.6.1 The Lagrangian is defined as

! B ) −+ . (3.12)

Thus, the Lagrangian for our case is

! = ) −+ =
1

2

<;2 ¤\2 − 1

2

<6;\2

(3.13)

=
1

2

< ¤@2 − <6
2;
@2.

Definition 3.6.2 The generalized momentum corresponding to the
coordinate @8 is defined as

?8 B
m!

m ¤@8
.

Note that when computing the momentum from the Lagrangian,

@8 and ¤@8 should be considered independent variables. Using the

above definition, the generalized momentum is (again, dropping

the subscript)

? =
m

m ¤@

(
1

2

< ¤@2 − <6
2;
@2

)
=< ¤@. (3.14)

Definition 3.6.3 The classical Hamiltonian is defined as

� B
∑
8

¤@8?8 − !.

Using this, we obtain the Hamiltonian of the pendulum (i.e. the
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4: This is discussed in the Quantum

Circuits course.

1D harmonic oscillator):

� = ¤@? − ! =< ¤@2 −
(
1

2

< ¤@2 − <6
2;
@2

)
(3.15)

=
?2

2<
+ <6

2;
@2 = ) ++ .

3.7 Quantizing a classical system

The term quatization refers to the process of building a quantum-

mechanical model from the classical description of the system in

question. In general, given the classical Hamiltonian of a system, it

can be quantized using the following procedure:

1. Operator substitution:Replace all generalized positions and

momenta with corresponding Hermitian operators, simply

by writing hats on the classical quantities:

@8 −→ @̂8 , @̂8 : H → H , @̂8 = @̂
†
8
,

?8 −→ ?̂8 , ?̂8 : H → H , ?̂8 = ?̂
†
8
.

2. Quantized Hamiltonian: Using step 1, convert the classical

Hamiltonian � to the operator
ˆ� , i.e., replace all classical

generalized positions and momenta in � by their quantum

mechanical counterparts.

3. Canonical commutation relation: The positions and mo-

menta must satisfy [?̂8 , @̂8] = ?̂8@̂8 − @̂8 ?̂8 = −iℏ, which is

referred to as the canonical commutation relation (CCR).

4. Temporal evolution:With the above operators and the con-

straint imposed by the CCR, the temporal evolution of the

system is given by the Schrödinger equation iℏmC |k 〉 = ˆ� |k 〉.

For the pendulum discussed above, the quantization procedure

simply yields

ˆ� =
?̂2

2<
+ <6

2;
@̂2. (3.16)

The significance of the CCR and the temporal evolution for the

harmonic oscillator will be discussed on the following lectures.

The above procedure maybe used for many different systems. For

example, it is possible to quantize electric circuits by choosing

charge as the generalized position and magnetic flux as the mo-

mentum, or vice versa.
4

Another important application is the

quantization of the electromagnetic field, which follows a similar

procedure but with a continuous set of generalized coordinates.
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4.1 Intended learning outcomes
I Apply creation and annihilation operators for a harmonic

oscillator

I Apply canonical commutation relations

I Identify Heisenberg’s uncertainty relation

4.2 One-dimensional quantum harmonic
oscillator

As we derived above in Eq. (3.16), the operator corresponding to

the classical Hamiltonian of the harmonic oscillator is given by

ˆ� =
?̂2

2<
+ <

2

6

;︸︷︷︸
≕l2

@̂2

(4.1)

=
?̂2

2<
+ 1

2

<l2@̂2, (4.2)

where [@̂, ?̂] = iℏ, @̂ = @̂†, ?̂ = ?̂†.

Math on C

For G,~ ∈ R,

(G + ~) (G − ~) = G2 − ~2

(G + i~)︸   ︷︷   ︸
≕I

(G − i~)︸   ︷︷   ︸
=I∗

= G2 + ~2 = |I |2

Next, we wish to solve the eigenstates of the oscillator. To this

end, we try to rewrite the Hamiltonian in the following form, with

�, �,� ∈ R:

ˆ� = (�@̂ − i�?̂) (�@̂ + i�?̂) +�. (4.3)

With some algebraic manipulation and the help of the CCR, we

find

ˆ� = �2@̂2 + i��@̂?̂ − i�?̂�@̂ + �2?̂2 +� (4.4)

= �2@̂2 + �2?̂2 + i�� [@̂, ?̂]︸︷︷︸
=iℏ︸     ︷︷     ︸

=−ℏ��

+�.
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Comparing this to Eq. (4.2), we choose

� =

√
1

2

<l2, (4.5)

� =

√
1

2<
, (4.6)

� = ℏ�� =
ℏl

2

. (4.7)

With these, we may write

ˆ� =
?̂2

2<
+ 1

2

<l2@̂2

(4.8)

=

(
@̂

√
<l2

2

+ i?̂

√
1

2<

)† (
@̂

√
<l2

2

+ i?̂

√
1

2<

)
+ 1

2

ℏl

= ℏl

[√
<l

2ℏ

(
@̂ + i

<l
?̂

)†
︸                   ︷︷                   ︸

=0̂†

√
<l

2ℏ

(
@̂ + i

<l
?̂

)
︸                 ︷︷                 ︸

≕0̂

+1

2

]

= ℏl

(
0̂†0̂ + 1

2

)
.

Definition 4.2.1 For the one-dimensional quantum harmonic oscilla-
tor, we define

0̂ B

√
<l

2ℏ

(
@̂ + i

<l
?̂

)
,

from which is follows that

0̂† =

√
<l

2ℏ

(
@̂ − i

<l
?̂

)
,

and

ˆ� = ℏl

(
0̂†0̂ + 1

2

)
.

The operator 0̂ is referred to as the lowering or annihilation operator
and 0̂† is referred to as the raising or creation operator. Sometimes, 0̂

and 0̂† together are referred to as ladder operators.

Note that 0̂ ≠ 0̂†, i.e. 0̂ is not Hermitian, which means that it does

not correspond to an observable. However, the product 0̂†0̂ is

Hermitian. Thus it is enough to find its eigenvalues and eigen-

states to solve the quantum-mechanical problem of the harmonic

oscillator.
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Let us calculate the commutator of 0̂ and 0̂† as

[0̂, 0̂†] = <l
2ℏ

[
@̂ + i

<l
?̂, @̂ − i

<l
?̂

]
(4.9)

=
<l

2ℏ

[
@̂,− i

<l
?̂

]
+

[
i

<l
?̂, @̂

]
=

i

2ℏ

(
− [@̂, ?̂]︸︷︷︸

=iℏ

+ [?̂, @̂]︸︷︷︸
=−iℏ

)
= 1.

Some observations about the quantum harmonic oscillator:

1. 〈k | ˆ� |k 〉 ≥ 0 ∀ |k 〉, since

〈 ˆ� 〉 = 〈k |ℏl
(
0̂†0̂ + 1

2

)
|k 〉 (4.10)

=
ℏl

2

+ 〈k |ℏl0̂†0̂ |k 〉

= ℏl

(
1

2

+ ‖0̂ |k 〉 ‖2
)
≥ 0.

Thus all eigenenergies are positive.

2. Let |k 〉 be an eigenstate of
ˆ� s.t.

ˆ� |k 〉 = Y |k 〉. Then,

ˆ�0̂ |k 〉 = ℏl

(
0̂†0̂︸︷︷︸

=0̂0̂†−1

+1

2

)
0̂ |k 〉 (4.11)

= 0̂ℏl

(
0̂†0̂ + 1

2

− 1

)
|k 〉

= 0̂
(

ˆ� − ℏl
)
|k 〉

= 0̂ (Y − ℏl) |k 〉 = (Y − ℏl)0̂ |k 〉 .

In other words, |k ′〉 = 0̂ |k 〉 is also an eigenstate of
ˆ� , with

energy Y − ℏl . Similarly, we have
ˆ�0̂† |k 〉 = (Y + ℏl)0† |k 〉.

Thus, 0̂ lowers and 0̂† raises the energy of the state |k 〉 by
one quantum of energy ℏl . This is where their names come

from.

From points 1. and 2., it follows that there exists a state |0〉 ∈ H
s.t. 0̂ |0〉 = 0. Thus, |0〉 is referred to as the ground state, i.e., the
state with the lowest possible energy. Let us find the energy of the

oscillator in the state |0〉:

ˆ� |0〉 = ℏl

(
0̂†0̂ + 1

2

)
|0〉 (4.12)

=
ℏl

2

|0〉 .

Thus the spectrum of
ˆ� is {Y=} =

{
ℏl

(
= + 1

2

)}
, and the corre-

sponding eigenstates are simply written as {|=〉}. That is, ˆ� |=〉 =



4 Lecture 4 23

ℏl

(
= + 1

2

)
|=〉.

4.3 Symbolic operator differential

Let @̂ and ?̂ be a conjugate pair and @̂ be such that it has a continuous

spectrum.

Such a conjugate pair satisfies the commutation relation [@̂, ?̂] =
iℏ. Some calculations are simplified if we symbolically define

?̂ = −iℏm@̂ , where m@̂ means we take symbolically the derivative

w.r.t. @̂. We will check below that this symbolical differentiation is

consistent with the commutation relation.

For example, ∀ |k 〉 ∈ H

m@̂ 5 (@̂) |k 〉 =
(
5 ′(@̂) + 5 (@̂)m@̂

)
|k 〉 , (4.13)

where 5 is a continuously differentiable function and 5 ′ denotes

its derivative.

Let us check the above claim that [@̂, ?̂] = iℏwhen ?̂ = −iℏm@̂ :

[@̂, ?̂] = @̂?̂ − ?̂@̂ (4.14)

= @̂
(
−iℏm@̂

)
−

(
−iℏm@̂

)
@̂

= −iℏ@̂m@̂ + iℏm@̂@̂

= −iℏ@̂m@̂ + iℏ
(
m@̂@̂

)︸︷︷︸
= ˆ�

+iℏ@̂m@̂

= iℏ.

4.4 Solving the ground state in the position
representation

Using the fact that 0̂ |0〉 = 0 and the above definition of the symbolic

differential, we have

0 = 〈G ′ |0̂ |0〉 (4.15)

= 〈G ′ |
√
<l

2ℏ

(
Ĝ + i

<l
(−iℏmĜ )

)
︸                          ︷︷                          ︸

= 0̂

(∫
dG̃ |G̃〉〈G̃ |

)
︸            ︷︷            ︸

= ˆ�

|0〉

=

√
<l

2ℏ

∫
dG̃ 〈G ′ |G̃〉︸︷︷︸

X (G̃−G′)

(
G̃ + ℏ

<l
mG̃

)
k0(G̃)︸︷︷︸
≕〈G̃ |0〉
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⇒
(
G + ℏ

<l
mG

)
k0(G) = 0 (4.16)

⇒ k0(G) = � exp

(
−G

2<l2

2ℏ

)
, (4.17)

where� =
(
<l
cℏ

)
1/4

is a normalization coefficient.

We may further derive the wave function of the first excited state

from k1(G) = 〈G |1〉 = ˜� 〈G | 0̂† |0〉 where we do not even need to

solve a differential equation since we know k0(G) and we may

simply multiply it and take the first derivative. Similarly, we may

proceed to derive the wave function of any state |=〉. However, we

do not do this here, but come back to the harmonic oscillator on

the second half of the course where we study the wave functions

of the excited states further.

4.5 Uncertainty relations

Definition 4.5.1 The Heisenberg uncertainty relation is defined as

Δ@Δ? ≥ ℏ

2

, (4.18)

where Δ�2 = 〈 ˆ�2〉 − 〈 ˆ�〉2 and [@̂, ?̂] = iℏ since @̂ and ?̂ are a canonical
conjugate pair1 1: Warning: does not strictly speaking

apply if an operator is not bounded

.

Definition 4.5.2 The Robertson uncertainty relation is defined as

Δ�Δ� ≥ 1

2

��〈[ ˆ�, ˆ�]〉
�� , (4.19)

where ˆ�, ˆ� ∈ L(H) may be unbounded, ˆ� = ˆ�†, ˆ� = ˆ�†, and
〈·〉 B 〈k | · |k 〉.

Let us prove the above relations. To this end, we define |5 〉 =(
ˆ� − 〈 ˆ�〉

)
|k 〉 and |6〉 =

(
ˆ� − 〈 ˆ�〉

)
|k 〉. Then, Math on norm of C

For I ∈ C,

|I |2 = (Re I)2 + (Im I)2

≥ (Im I)2 =

(
I − I∗

2i

)
2

Δ�2 = 〈k |
(

ˆ� − 〈 ˆ�〉
)
2 |k 〉 (4.20)

= 〈k |
(

ˆ� − 〈 ˆ�〉 ˆ�
)︸          ︷︷          ︸

(( ˆ�−〈 ˆ�〉 ˆ�) |k 〉)†

(
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

= 〈5 |5 〉 = ‖|5 〉‖2 ,

and similarly,

Δ�2 = 〈6|6〉 = ‖|6〉‖2 . (4.21)



4 Lecture 4 25

Then, the Cauchy–Schwarz inequality implies

|〈5 |6〉| ≤ ‖|5 〉‖ ‖ |6〉‖ (4.22)

⇒ Δ�2Δ�2 ≥ | 〈5 |6〉︸︷︷︸
∈C

|2 (4.23)

=
��〈k | ( ˆ� − 〈 ˆ�〉 ˆ�

) (
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

��2
≥

��〈k | ( ˆ� − 〈 ˆ�〉 ˆ�
) (

ˆ� − 〈 ˆ�〉 ˆ�
)
|k 〉 − 〈k |

(
ˆ� − 〈 ˆ�〉 ˆ�

) (
ˆ� − 〈 ˆ�〉 ˆ�

)
|k 〉

��2
4

=

��〈k | [ ˆ� − 〈 ˆ�〉 ˆ� , ˆ� − 〈 ˆ�〉 ˆ� ] |k 〉
��2

4

=

��〈[ ˆ�, ˆ�]〉
��2

4

�



1: The general expression for
ˆ� in

e

ˆ�
e

ˆ� = e

ˆ�
is given by the Baker–

Campbell–Hausdorff formula.

Lecture 5 5

5.1 Intended learning outcomes
I Apply the operator exponential to symbolically solve the

Schrödinger equation

I Differentiate between a qubit and a general quantum system

I Represent a qubit state on the Bloch sphere

5.2 Unitary temporal evolution

Let |k (C)〉 ∈ H and
ˆ� ∈ L(H) be the Hamiltonian of a system. Let

|k (C = 0)〉 = |k (0)〉 be the initial state of the system, the state at

C = 0. As discussed before, the temporal evolution is then given by

the Schrödinger equation:

iℏmC |k (C)〉 = ˆ� |k (C)〉 (5.1)

⇐⇒ mC |k (C)〉 = −
i

ˆ�

ℏ
|k (C)〉 .

Note that we have assumed that
ˆ� is independent of time.

Definition 5.2.1 For ˆ� ∈ L(H), let

e

ˆ� B
∞∑
==0

ˆ�=

=!

. (5.2)

Note that in general e
ˆ�
e

ˆ� ≠ e
ˆ�+ ˆ�

. The equality holds if
ˆ� and

ˆ�

commute.
1

Math on a diff.eq.

mG 5 (G) = _5 (G) =⇒ 5 (G) = �e
_G

With this definition,

mCe
ˆ�C = mC

( ∞∑
==0

ˆ�=C=

=!

)
(5.3)

=

∞∑
==1

ˆ�==C=−1

=!

= ˆ�

∞∑
==1

(
ˆ�C
)=−1

(= − 1)!

= ˆ�

∞∑
==0

(
ˆ�C
)=

=!

= ˆ�e

ˆ�C .
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The temporal evolution can then be written as

|k (C)〉 = e
−i

ˆ�C/ℏ |k (0)〉 (5.4)

C ˆ* (C) |k (0)〉 ,

where
ˆ* (C) = exp

(
−i

ˆ�C/ℏ
)
is the time-evolution operator, or some-

times referred to as the propagator of the system.

Recalling that
ˆ� † = ˆ� , we observe that

ˆ* (C)† =
(
e
−i

ˆ�C/ℏ
)†

(5.5)

= e
i

ˆ�C/ℏ

= ˆ* (−C),

from which it follows that

ˆ* (C)† ˆ* (C) |k (0)〉 = ˆ* (C)† |k (C)〉 (5.6)

= ˆ* (−C) |k (C)〉
= |k (0)〉 ,

or in other words,
ˆ* † ˆ* = ˆ� , or ˆ* † = ˆ* −1

. Such an operator
ˆ� that

satisfies
ˆ�† ˆ� = ˆ� is said to be unitary.

Let {|k=〉} ∈ H be an eigenbasis of the Hamiltonian
ˆ� , i.e.,

ˆ� |k=〉 =
_= |k=〉, where {_=}∞==0

∈ R. We can expand the initial state in this

basis as |k (0)〉 = ∑∞
==0

2= |k=〉, where 2= = 〈k= |k 〉 ∈ C, and thus

write the state at time C as

|k (C)〉 = e
−8 ˆ�C/ℏ |k (0)〉 (5.7)

=

( ∞∑
==0

(
−i

ˆ�C/ℏ
)=

=!

) ( ∞∑
<=0

2< |k<〉
)

=

∞∑
<=0

( ∞∑
==0

2<

(
−i

ˆ�C/ℏ
)=

=!

|k<〉
)

=

∞∑
<=0

e
−i_<C/ℏ2< |k<〉

=

∞∑
<=0

2<e
−i_<C/ℏ |k<〉 .
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5.3 Case of temporally dependent
Hamiltonian

Let now the Hamiltonian
ˆ� = ˆ� (C) be time-dependent. The

Schrödinger equation still holds:

iℏmC |k (C)〉 = ˆ� (C) |k (C)〉 , (5.8)

and the evolution is unitary. Thus ∃{ ˆ* (C)} ∈ L(H) s.t.

ˆ* (C) |k (0)〉 = |k (C)〉 , ∀ |k (C)〉 ∈ H (5.9)

⇒ iℏmC
(

ˆ* (C) |k (0)〉
)
= ˆ� (C)

(
ˆ* (C) |k (0)〉

)
(5.10)

⇒ iℏmC ˆ* (C) = ˆ� (C) ˆ* (C) . (5.11)

This is equivalent to the Schrödinger equation.

Exercise

Build
ˆ* (C) for ˆ� (C).

5.4 Properties of unitary operators

For any two unitary operators
ˆ*1 and

ˆ*2, we have(
ˆ*1

ˆ*2

)†
= ˆ*

†
2

ˆ*
†
1
= ˆ* −1

2

ˆ* −1

1
=

(
ˆ*1

ˆ*2

)−1

. (5.12)

That is,
ˆ*1

ˆ*2 is also unitary.

Let |k 〉 , |q〉 ∈ H and
ˆ* † = ˆ* −1 ∈ L(H). We define

|k ′〉 = ˆ* |k 〉 and |q ′〉 = ˆ* |q〉 , (5.13)

for which we have

〈k |q〉 = 〈k | ˆ� |q〉 = 〈k | ˆ* −1 ˆ* |q〉 (5.14)

= 〈k | ˆ* † ˆ* |q〉 =
(

ˆ* |k 〉 , ˆ* |q〉
)

= 〈k ′ |q ′〉 .

Unitary operators can be considered as rotations.
2

2: sometimes reflections as well

5.5 Qubit

A qubit can refer either to a physical system or to a mathematical

construction. In either case, it is modeled by a a two-level quantum

system as follows:
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3: Ground and excited

JJQHO

C
om

p.
 

Superconducting phase

En
er

gy

su
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pa
ce

-   -   

0
0

1

2

3

4

5

Figure 5.1: Non-linear harmonic os-

cillator with a Josephson junction (JJ).

Notice that the gap ℏl
01

≠ ℏl
12
, i.e.,

the energy states are non-equidistant.

Figure from Ref. [1].

LetH2 = span{| ˜0〉 , | ˜1〉}, where 〈˜0| ˜0〉 = 1 = 〈˜1| ˜1〉.

H2 fully describes all possible states of the qubit where

|k 〉 ∈ H2 and ‖ |k 〉 ‖ = 1. (5.15)

Thus the qubit Hamiltonian
ˆ�@ has just two eigenvalues Y1 ≤ Y2 ∈ R

and the corresponding eigenvectors are |g〉 and |e〉, respectively.3

Thus,

ˆ�@ = Y1 |g〉〈g| + Y2 |e〉〈e| (5.16)

=
Y

2

(
− |g〉〈g| + |e〉〈e|

)
+ (Y1 + Y2)

2

|g〉〈g| + (Y1 + Y2)
2

|e〉〈e|

=
Y

2

(
− |g〉〈g| + |e〉〈e|

)
+ Y1 + Y2

2

ˆ�︸   ︷︷   ︸
We can disregard this since it just equally changes the phase of all |k 〉 ∈ H2

where Y = Y2 − Y1.

Thus
ˆ�@ = − Y

2

(
|g〉〈g| − |e〉〈e|

)
.

We can define the qubit states |0〉 B |g〉 and |1〉 B |e〉.

Thus,

ˆ�@ = − Y
2

f̂z, f̂z = |0〉〈0| − |1〉〈1| (5.17)

=̂

[
− Y

2
0

0 + Y
2

]
.

The temporal evolution is given by

|k (C)〉 = e
−i

ˆ�@C/ℏ |k (0)〉 , |k (0)〉 = 20 |0〉 + 21 |1〉 (5.18)

= e
+i Y

2
f̂zC/ℏ |k (0)〉

= e
i
Y
2
C/ℏ20 |0〉 + e

−i
Y
2
C/ℏ21 |1〉 .

5.6 How to set up a qubit from a physical
system

Very few physical systems are qubits. However, it is possible to take

some physical systems and confine the dynamics to a subspace

of two states. For example, a spin is a natural two-level system,

but confined (for example in atoms). Another example is a non-

linear system where Y0 < Y1 < Y2 · · · are eigenvalues of
ˆ� s.t.

Y1 − Y0 ≠ Y2 − Y1. See Fig. 5.1.
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Figure 5.2: Bloch sphere representa-

tion [2].

5.7 Pauli operators

Definition 5.7.1 The Pauli operators are

f̂z = |0〉〈0| − |1〉〈1| (5.19)

f̂x = |0〉〈1| + |1〉〈0| (5.20)

f̂y = −i |0〉〈1| + i |1〉〈0| (5.21)

Properties

The Pauli operators have a number of interesting properties:

f̂2

U = ˆ� ∀U ∈ {x, y, z} (5.22)

f̂†U = f̂U ∀U (5.23)

[f̂8 , f̂ 9 ] =
∑

:∈{x,y,z}
2if̂:Y8 9: , ∀8, 9 ∈ {x, y, z}, (5.24)

where

Y8 9: =


+1 if (8, 9, :) ∈ {(x, y, z), (z, x, y), (y, z, x)},
−1 if (8, 9, :) ∈ {(y, x, z), (z, y, x), (x, z, y)},

0 otherwise,

(5.25)

is the Levi-Civita symbol.

Definition 5.7.2

f̂− = |0〉〈1| (5.26)

f̂+ = (f̂−)† = |1〉〈0| . (5.27)

Exercise

Show that

e
ii ®0 · ˆ®f = ˆ� cosi + i ®0 · ˆ®f sini,

where ®0 ∈ R3
, ‖ ®0‖ = 1 and ®0 · ˆ®f = 0xf̂x + 0yf̂y + 0yf̂z.

5.8 Bloch sphere

Definition 5.8.1 A qubit state can always be expressed as

|k 〉 = cos

\

2

|0〉 + e
ii

sin

\

2

|1〉 , (5.28)

where i is the azimuthal angle and \ is the polar angle.
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Note that since a global phase of the state e
iU
does not affect any

measurement outcome, i.e.,

〈k | ˆ�|k 〉 = 〈k | ˆ�e
−iU

e
iU |k 〉 = 〈k |e−iU ˆ�e

iU |k 〉 = 〈eiUk | ˆ�e
iU |k 〉 ,

(5.29)

we can always choose 20 ∈ R in |k 〉 = 20 |0〉 + 21 |1〉.

Thus, for each state there are unique \ ∈ [0, c) and i ∈ [0, 2c)
which correspond to a point on a unit sphere as shown in Fig. 5.2.

Exercise

Show that
ˆ* (C) are rotations of the Bloch vectors.
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Last lecture from Mikko.

6.1 Intended learning outcomes
I Apply tensor product to construct a quantum register of #

qubits

I Identify the constituents of a quantum algorithm

I Apply the commutator to identify conserved quantities

6.2 Tunable Hamiltonian for quantum gates

Let span {|0〉 , |1〉} = H2 and assume that control over the Hamilto-

nian s.t.
ˆ� = Y0®0(C) · ˆ®f , where ®0 ∈ R3, ‖ ®0‖ = 1, and Y0 ∈ R has units

of energy.

Thus any unitary evolution
1

1: An unitary operation on a qubit is

referred to as a single-qubit gate

ˆ* = ˆ� cos\ + i
®1 · ˆ®f sin\ can be

implemented, for example, by a control sequence

®0(C) =


0, C < 0

−®1, 0 ≤ C ≤ \ℏ/Y0
0, \ℏ/Y0 < C

. (6.1)

There are many other ways of course. Note that there is also a way

to use

ˆ� = − Y
2

f̂z (6.2)

and apply a field ®�ex(C) = Ω
2
f̂x sin (lC + q), where l = Y

ℏ
. That will

result in so-called Rabi oscillations to be discussed later.

6.3 Single-qubit gates: examples

I The NOT gate corresponds to f̂x = |0〉〈1| + |1〉〈0| =̂
[
0 1

1 0

]
.

I Hadamardgate corresponds to
ˆ�g = 1√

2

(f̂x + f̂z) =̂ 1√
2

[
1 1

1 −1

]
.

I Phase flip corresponds to f̂z = |0〉〈0| − |1〉〈1| =̂
[
1 0

0 −1

]
.
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Exercise

Find 0̂(C) implementing:

ˆ�gf̂x ˆ�g = f̂z

ˆ�
†
g
= ˆ�g = ˆ�−1

g
.

6.4 Qubit measurement

Let |k 〉 ∈ H2 be a qubit state. Thus we may write |k 〉 = 20 |0〉 +
21 |1〉, where 20, 21 ∈ C s.t. |20 |2 + |21 |2 = 1. Thus the measurement

probabilities are given by

%0 = |〈0|k 〉|2 = |20 |2 (6.3)

%1 = |〈1|k 〉|2 = |21 |2 = 1 − |20 |2 (6.4)

After applying a quantum gate
ˆ* on |k 〉 the probabilities are given

by

%0 =
��〈0| ˆ* |k 〉��2 = 〈k | ˆ* † |0〉〈0| ˆ* |k 〉 =

��〈˜0|k 〉��2 , (6.5)

where | ˜0〉 = ˆ* † |0〉. Similarly for %1 =
��〈1| ˆ* |k 〉��2 =

��〈˜1|k 〉��2.
6.5 2-qubit system

On the tensor product

The tensor product (or Kronecker

product) is a bilinear composition

of the twovector spaces (withmin-

imal constraints).

The Hilbert spaceH4 = H (1)
2
⊗ H (2)

2
of a system composed of two

qubits is 4-dimensional. The symbol ⊗ denotes the tensor product

of Hilbert spaces or vectors. Single-qubit operators are of the form

ˆ�1 ⊗ ˆ� and ˆ� ⊗ ˆ�2, where
ˆ�1 ∈ L(H (1)

2
) and ˆ�2 ∈ L(H (2)

2
).

Let
ˆ�⊗ ˆ� = ˆ� ∈ L(H4) and ˆ�⊗ ˆ� = ˆ� ∈ L(H4). From the properties

of the tensor product, it follows that

ˆ� ˆ� =
(

ˆ� ⊗ ˆ�
) (

ˆ� ⊗ ˆ�
)
=

(
ˆ� ˆ�

)
⊗

(
ˆ� ˆ�

)
. (6.6)

Definition 6.5.1 We construct the basis for the two-qubit Hilbert
spaceH4 as

|00〉 B |0〉 ⊗ |0〉 (6.7)

|01〉 B |0〉 ⊗ |1〉 (6.8)

|10〉 B |1〉 ⊗ |0〉 (6.9)

|11〉 B |1〉 ⊗ |1〉 , (6.10)
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where {|0〉 , |1〉} is an orthonormal basis for H (1)
2

and H (2)
2

, respec-
tively.

Thus for |k 〉 ∈ H4, we may write

|k 〉 =
3∑
:=0

2: |:〉 (6.11)

= 20 |00〉 + 21 |01〉 + 22 |10〉 + 23 |11〉
= 20 |0〉 + 21 |1〉 + 22 |2〉 + 23 |3〉

where |:〉 B |:1:2〉, where :1:2 is a binary representation of : .

Additionally, for
ˆ� = ˆ� ⊗ ˆ� ∈ L(H4), we have

ˆ� |k 〉 = ˆ�

3∑
:=0

2: |:〉 =
3∑
:=0

2: ˆ� |:〉 (6.12)

=

3∑
:=0

2: ˆ� ⊗ ˆ� |:〉︸︷︷︸
∈H4

=

3∑
:=0

2: ˆ� |:1〉︸︷︷︸
∈H (1)

2

⊗ ˆ� |:2〉︸︷︷︸
∈H (2)

2

.

6.6 Examples of two-qubit gates

Controlled NOT (CNOT) gate where qubit 1 is the control qubit

and qubit 2 is the target qubit corresponds to

ˆ�
(1,2)
NOT

= |0〉〈0| ⊗ ˆ� + |1〉〈1| ⊗ f̂x (6.13)

=̂


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

[
� 0

0 fx

]
.

Exercise

I Construct the above matrix representations

I Express CNOT that has qubit 1 as the target qubit

6.7 =-qubit system

For a systemwith = qubits, we usually define # B 2
= = dim {H2

= },
and we have the following properties:
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I H2
= = H (1)

2
⊗ H (2)

2
⊗ · · · ⊗ H (=)

2

I |k 〉 = ∑
2
=−1

:=0
2: |:〉 = 20 |00 · · · 0

= zeroes

〉 + 21 | 0 · · · 01

=−1 zeroes

〉 + · · · , where

again |:〉 means |:1:2 . . . :=〉, where :1:2 . . . := is : written in

binary

I ˆ� ⊗ · · · ⊗ ˆ�

<−1

⊗ ˆ�⊗ ˆ� ⊗ · · · ⊗ ˆ�

=−<
is a single-qubit operator for qubit<.

6.8 Quantum algorithms for = qubits

In general, a quantum algorithm is a procedure consisting of the

following steps:

1. Initialize qubits to |0〉.2 2: Not necessarily all qubits

2. Apply a desired =-qubit gate U.
3

3: Can be constructed from single

and two-qubit gates
3. Measure qubits.

4

4: Not necessarily all qubits
4. Use measurement data and go to 1, unless algorithm fin-

ished.
5

5: In the simplest case one goes only

once through 1.→ 4. and initializes

and measures all qubits in 1. and 3.,

respectively.

Exercise

Deustch algorithm

6.9 Entanglement for two qubits

Definition 6.9.1 A quantum state of two qubits is defined to be
entangled iff it cannot be represented as a product of two single-qubit
states.

Thus ∀ |k 〉 ∈ H4 that are not entangled ∃ |k1〉 ∈ H (1)
2

and |k2〉 ∈
H (2)

2
s.t.

|k 〉 = |k1〉 ⊗ |k2〉 (6.14)

Examples of so-called maximally entangled states are Bell states

|Φ±〉 = 1

√
2

( |00〉 ± |11〉) (6.15)

|Ψ±〉 = 1

√
2

( |01〉 ± |10〉) (6.16)

6.10 Commuting operators

Let
ˆ�, ˆ� ∈ L(H) be Hermitian operators with [ ˆ�, ˆ�] = 0. In this

case, it can be shown that there exists a complete eigenbasis of
ˆ�

that is also an eigenbasis of
ˆ�.
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Especially if [ ˆ�, ˆ� (C)] = 0, ∀C , the eigenvalues of ˆ� are referred to

as conserved quantities since we have

ˆ� |k (C)〉 = ˆ� ˆ* (C) |k (0)〉 = ˆ* (C) ˆ� |k (0)〉 (6.17)

= _ ˆ* (C) |k (0)〉 = _ |k (C)〉 ,

where we have assumed that
ˆ� |k (0)〉 = _ |k (0)〉, i.e., we start from

an eigenstate of
ˆ�.
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Lecture 7 7

This lecture presents a more detailed treatment of the quantum

harmonic oscillator introduced in Lecture 4. In particular, we

discuss the nature of the actual real-space wave functions and

their physical meaning. It is useful to contrast a QHO to a qubit –

QHO has an infinite number of states, separated by the same level

spacing of ℏl , while a qubit has only two states. Thus, a qubit is in

some sense the most "anharmonic" quantum system possible. You

can think of making a qubit from a QHO by pushing all the levels

beyond the first excited state so high in energy that they cannot be

occupied in practice.

7.1 Intended learning outcomes
I Deepen knowledge on harmonic oscillators and their appli-

cations

I Learn how to apply andmanipulate the raising and lowering

operators with number states

I Understand the nature of the eigenfunctions in real space

7.2 Classical Harmonic Oscillators

Harmonic oscillators appear in many applications in classical and

quantum physics (photons, lattice vibrations i.e. phonons, etc.).

They have turned out to be most important for describing open

quantum systems interacting with a large environment (called the

"heat bath"), which is often modeled by a set of quantum harmonic

oscillators (QHOs).

For mutually interacting atoms in a classical solid lattice we can

write the general (classical) Hamiltonian as

� =

#∑
8=1

®?2

8

2<
++ (®A1, ®A2, · · · , ®A# ), (7.1)

where ®?8 and ®A8 are the momentum and position of atom 8, respec-

tively, < is the mass of a atom (same for all atoms), and + is a

potential function describing the interaction between the atoms.

For small displacements ®D8 = ®A8 − ®'8 around the fixed equilibrium

positions ®'8 , the interaction potential can be expanded in Taylor
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Atoms at rest

Longitudinal
vibrations

Transverse
vibrations

Ri

ri

ui

Figure 7.1: Atoms vibrating around

the equilibrium lattice positions ®'8 in
a 1D lattice.

series as

+ ≈ +0

∑
8, 9

m+ 9

mG8︸︷︷︸
=0

DG8 9 +
1

2

∑
8, 9 :,;

m2+ :;

mG8mG 9
DG8:DG 9; , (7.2)

which is called theHarmonic Approximation. Note that the first term

on the l.h.s. of the equation is force that has to vanish in equilibrium

(mechanical balance). The classical pendulum of Section 3.6 is an

example of this expansion (cf. Eq. (3.16)). By diagonalizing (in

normal coordinates) the classical harmonic Hamiltonian can be

written as

� (@1, · · · , @# , ?1, · · · , ?# ) =
3#∑
8=1

?2

8

2<
+ 1

2

<l2@2

8 , (7.3)

for identical but distinguishable particles in 3D space.

The equations of motion can be obtained from the standard Hamil-

ton equations as

¤?8 = −
m�

m@8
; (7.4)

¤@8 =
m�

m?8
. (7.5)

The equations of motion are linear and can be easily solved (1D

homework problem).

7.3 Quantum Harmonic Oscillators

Consider a single 1D Quantum Harmonic Oscillator (QHO) whose

Hamiltonian is given by (see Section 4.2)

ˆ� =
?̂2

2<
+ 1

2

<l2@̂2, (7.6)
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which we have obtained by simple quantization from the classical

Hamiltonian as G −→ @̂, ? −→ ?̂ where

[@̂, ?̂] = iℏ. (7.7)

Next it is useful to define dimensionless operators as

ˆ& B

√
<l

ℏ
@̂; (7.8)

ˆ% B

√
1

<ℏl
?̂, (7.9)

which now satisfy [ ˆ&, ˆ%] = i. This gives us the Hamiltonian

ˆ� =
1

2

ℏl

(
ˆ%2 + ˆ&2

)
. (7.10)

The next trick is to introduce two new operators that are Hermitian

conjugates as

0̂ =
ˆ& + i

ˆ%
√

2

; (7.11)

0̂† =
ˆ& − i

ˆ%
√

2

, (7.12)

that now satisfy

[0̂, 0̂†] = 1. (7.13)

The 1D QHO Hamiltonian can now be written as

ˆ� =
1

2

ℏl

(
0̂0̂† + 0̂†0̂

)
(7.14)

= ℏl

(
0̂0̂† − 1

2

)
= ℏl

(
0̂†0̂ + 1

2

)
. (7.15)

Note that no matter how you write this, it has to be Hermitian

(make sure you understand why). The importance of this form is

that it allows us to obtain a fully algebraic solution for the QHO

without having to explicitly solve for the Schrödinger equation. In

this section we will next generalize and extend the treatment in

Section 4 of the lecture notes.

The formal (eigen)solution is given by

ℏl

(
0̂†0̂ + 1

2

)
|=〉 = ℏl (= + 1

2

) |=〉 , (7.16)

where = is the eigenvalue of the operator 0̂†0̂ corresponding to
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eigenstate |=〉 of the following number operator:

ˆ# B 0̂†0̂. (7.17)

The number operator satisfies (homework)

[ ˆ#, 0̂] = −0̂, [ ˆ#, 0̂†] = 0̂†. (7.18)

Let us assume that
ˆ# has a complete set of orthogonal eigenvectors,

i.e., ˆ# |=〉 = = |=〉 (why does this have to be true?). Then it follows

that

ˆ#0̂ |=〉 = 0̂
(

ˆ# − 1

)
|=〉 = (= − 1) 0̂ |=〉 . (7.19)

Similarly

ˆ#0̂† |=〉 = 0̂†
(

ˆ# + 1

)
|=〉 = (= + 1) 0̂† |=〉 . (7.20)

It was shown in Chapter 4 that the eigenvalues must be non-

negative and the spectrum is bounded from below by the ground

state for which = = 0.

The two equations above imply that 0̂ |=〉 ∝ |= − 1〉 and 0̂† |=〉 ∝
|=+1〉. The corresponding proportionality coefficient for the raising

operator can be computed from the squared norm of 0̂† |=〉 as

(〈= | 0̂)
(
0̂† |=〉

)
= 〈= |

(
ˆ# + 1

)
|=〉 = (= + 1) 〈= |=〉, (7.21)

and thus the amplitude is

√
= + 1, which gives

0̂† |=〉 =
√
= + 1 |= + 1〉 . (7.22)

Similarly, we can compute that

0̂ |=〉 =
√
= |= − 1〉 . (7.23)

Thus any eigenstate |=〉 can be written as (prove, e.g., by induc-

tion)

|=〉 = (=!)−
1

2

(
0̂†

)=
|0〉 . (7.24)

Another important result is that the elements of the matrix repre-

sentation of 0̂† and 0̂ have a simple form:

〈=′ |0̂† |=〉 =
√
= + 1X=′,=+1; (7.25)

〈=′ |0̂ |=〉 =
√
= X=′,=−1, (7.26)

where X8, 9 is the Kronecker delta according to Eq. (2.1). Finally, we
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can read off the eigenvalues of the Hamiltonian trivially as

ˆ� |=〉 B �= |=〉 = ℏl

(
= + 1

2

)
|=〉 . (7.27)

in accordance with the results of Section 4.2.

7.4 Quantum harmonic oscillator in the
position basis

The algebraic solution discussed above is mathematically very

elegant and convenient: it is simple to manipulate and has a simple

solution. However, it is somewhat difficult to grasp how it is

physically related to the harmonic oscillator. Here we introduce

another way of solving for the eigenfunctions and -values of the

QHO, based on writing the Schrödinger equation in its natural

coordinate basis. We define the wave function as k (G) B 〈G |k 〉.
This is a coordinate representation by using the basis set {|G〉}
of the position operator Ĝ . Consequently, the time-independent

Schrödinger (energy-eigenvalue) equation
ˆ�k = �k for a single

QHO becomes

− ℏ2

2<

d
2

dG2

k (G) + <l
2

2

G2k (G) = �k (G) . (7.28)

To simplify the equation, it is useful to define

@ =

√
<l

ℏ
G, _ =

2�

ℏl
, k (G) = D

(√
<l/ℏG

)
= D (@), (7.29)

which gives (check)

d
2D

d@2

+ (_ − @)2D = 0. (7.30)

This is an inhomogeneous but linear differential equation which

can be solved in multiple ways. The easiest is to write D (@) as

D (@) = � (@)e−@2/2, (7.31)

where the functions (polynomials) � (@) satisfy the differential

equation

� ′′ − 2@� ′ + (_ − 1)� = 0. (7.32)

The solutions of Eq. (7.32) are polynomial Hermite functions of

order = that can be explicitly constructed by assuming that the

Hermite functions have a (polynomial) power lawexpansion,which

is then inserted in Eq. (7.32). Matching terms with equal powers in
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Figure 7.3: Probability (density) of

finding a particle in a quadratic po-

tential well at any given point.

the expansion inserted in Eq. (7.32) requires that _ = 2= + 1 with =

being an integer, which gives

�= = ℏl

(
= + 1

2

)
. (7.33)

The Hermite polynomials can be generated through

�= (~) = (−1)=e
~2 d

=

d~=
e
−~2

. (7.34)

The complete, normalized eigenfunctions of the QHO are given

by

k= (G) =
(

U
√
c2

==!

)
�= (UG)e−U

2G2/2, (7.35)

whereU =
√
<l/ℏ. The eigenfunctions are shown in Fig. 7.2. Fig. 7.3

further demonstrates the potential energy and the probability

density for finding the particle at a given point. In the figures,

b = @ = UG .

Figure 7.2: Eigenfunctions of the

QHO, from Eq. (7.35).

The importance of theHermite functions is that they forma complete,
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orthogonal set of polynomial eigenfunctions in the Hilbert space, where

the weighted inner product is defined by∫ ∞

−∞
�= (b)�: (b)e−b

2

db = 0, for = ≠ :. (7.36)

The actual (true) inner product between the full wave functions

that form a complete orthonormal set is given by (cf. Lecture 1)

(k=,k: ) ≡
∫ ∞

−∞
dGk ∗= (G)k: (G) = X=: (7.37)

where in its full form

k= (G) = 2
−=

2 (=!)−
1

2

(<l
ℏc

) 1

4

exp

(
−<lG

2

2ℏ

)
�=

(√
<l

ℏ
G

)
. (7.38)
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This lecture deals with a quantum particle (wave) in various

external potentials, including cases where the particle is either

trapped or it can propagate and scatter in real space. Such systems

are naturally treated in position basis by explicitly solving for

the corresponding Schrödinger equation with proper boundary

conditions. We start by revisiting the case of a free particle and

highlighting the choice of different basis (position or momentum

here), and then discuss the influence of external potentials. Of

particular interest are the differences between pointlike classical

particles and quantum ones (waves) in external potentials.

8.1 Intended learning outcomes
I Explain details of plane waves (particles propagating in free

space) in different representations

I Understand the superposition principle for time dependence

of the states

I Learn to solve the Schrödinger equation in simple potential

landscapes and understand their influence on the eigenstates,

including scattering

8.2 Free Particles and Plane Waves

Consider a free particle that does not experience any external

potential (forces) in space. In such a case we can use the symbolic

state representation as long as we are not interested in the details of

the particle position or momentum. We first (re)define the position

and momentum (right) eigenvectors as

Ĝ |G〉 = G |G〉; ?̂ |?〉 = ? |?〉 , (8.1)

and correspondingly the left eigenvectors

〈G |Ĝ = 〈G |G ; 〈? |?̂† = 〈? |?. (8.2)

The left and right eigenvectors are orthonormal:

〈G ′ |G〉 = X (G ′ − G); 〈? ′ |?〉 = X (? ′ − ?), (8.3)
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and they form complete orthonormal sets that can be inserted

between any states when necessary:∫
dG |G〉〈G | = 1;

∫
d? |?〉〈? | = 1. (8.4)

Now we can define the momentum operator in the position basis as
(not derived here)

〈G ′ |?̂ |G〉 = −iℏX (G ′ − G) d
dG
. (8.5)

The importance of this formula is that this is exactly where the

mathematical form of the momentum operator ?̂ comes from in the

(energy-eigenvalue) SE when it’s written in the position basis.

Furthermore, we can define the position operator in the momentum
basis as

〈? ′ |Ĝ |?〉 = −iℏX (? ′ − ?) d
d?
. (8.6)

Now we can solve for the momentum eigenstate in the position basis
k? (G) = 〈G |?〉 from the DE

〈G |?̂ |?〉 = −iℏ
d

dG
〈G |?〉 = ? 〈G |?〉. (8.7)

This equation comes about from the fact that

〈G |?̂ |?〉 =
∫

dG ′〈G |?̂ |G ′〉〈G ′ |?〉 =
∫

dG ′ − iℏX (G − G ′) d

dG ′
〈G ′ |?〉

(8.8)

= −iℏ
d

dG
〈G |?〉. (8.9)

Thus we have the differential equation

−iℏ
d

dG
〈G |?〉 = ? 〈G |?〉. (8.10)

The solution to this DE is called a (simple) plane wave

〈G |?〉 =
√

1

2cℏ
e

i?G/ℏ. (8.11)

The corresponding momentum eigenstate in the momentum basis is

k? (? ′) = 〈? ′ |?〉 = X (? − ? ′) . (8.12)

The normalized position eigenstate in the momentum basis can be



8 Lecture 8 48

obtained from

〈? |G〉 = 〈G |?〉† =
√

1

2cℏ
e
−i?G/ℏ, (8.13)

and the normalized position eigenstate in the position basis is (of

course)

kG (G) = 〈G ′ |G〉 = X (G − G ′) . (8.14)

Note that these results can also be derived from the free-particle sta-

tionary Schrödinger equation. For a free particle, the Hamiltonian

operator is
ˆ� = ?̂2/(2<) (which is the same as the Hamiltonian

of the quantum harmonic oscillator with zero potential). In the

position basis, the stationary Schrödinger equation then reads

ˆ� |k 〉 = � |k 〉 ; (8.15)

⇒ − ℏ2

2<

d
2k (G)
dG2

= �k (G) . (8.16)

The above position-basis results are the solution of this differential

equation.

Time Dependence of Plane Waves

Let us next look at the time dependence of the plane waves

in the position basis. The time-dependent Schrödinger equation

iℏmCΨ = ˆ�Ψ for a free particle is

iℏ
mΨ(G, C)
mC

= − ℏ2

2<

d
2Ψ(G, C)
dG2

. (8.17)

We look for separable solutions of the form

Ψ(G, C) = 5 (C)k (G) . (8.18)

This gives

iℏ

5 (C)
m 5 (C)
mC

= − 1

k (G)
ℏ2

2<

d
2k (G)
dG2

. (8.19)

Both sides must be constant (why?) and thus

5 (C) = e
−i�C/ℏ, (8.20)

where we have already adopted the notation � for the constant

because it has to have units of energy (to make the argument in the

exponential function dimensionless). Using the plane wave from

Eq. (8.11), the time evolution of a plane wave in the position basis
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is thus given by

Ψ(G, C) = e
−i�C/ℏ〈G |?〉 =

√
1

2cℏ
e
−i�C/ℏ

e
i?G/ℏ, (8.21)

where the energydispersion relation forplanewaves is� = ?2/(2<).
These are called stationary states because

mC |Ψ(G, C) |2 = 0. (8.22)

For a general state that is a superposition of plane waves with

coefficients 2� for each wave with energy � at time C = 0,

Ψ(G, 0) =
∑
�

2�e
i?G/ℏ, (8.23)

the general solution of the time-dependent wave equation is sim-

ply

Ψ(G, C) =
∑
�

2�e
−i�C/ℏ

e
i?G/ℏ. (8.24)

An important generalization of this is that if we use the complete-

ness of the energy eigenfunctionsk� (G) to expand in terms of them,

then in general it holds that for a state

Ψ(G, 0) =
∑
�

2�k� (G) (8.25)

the time dependence is given by

Ψ(G, C) =
∑
�

2�e
−i�C/ℏk� (G) . (8.26)

Equivalently, for a continuous energy spectrum, where the coeffi-

cients 2� are now a continuous function 2 (�) of energy,

Ψ(G, 0) =
∫

2 (�)k� (G)d�, (8.27)

the time evolution is given by

Ψ(G, C) =
∫

2 (�)k� (G)e−i�C/ℏ
d�. (8.28)

These results are equivalent to Eq. (5.7) expressed in the position

basis.

Particle in a Periodic Box

There is a mathematical subtlety associated with plane waves

because they live in an infinite domain and are not normalizable
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V(x)

a x

Figure 8.1: Infinite potential well.

(why is this the case?). A simple solution to this is to consider a

free particle that traverses a box of finite (linear) size !, but no

external+ (G) (periodic boundary conditions) s.t.k? (G) = k? (G +!).
The solution is that of a free particle, but now the momentum is

quantized and can be written in terms of the wave number := as

?= = ℏ:= =
2ℏc=

!
, = ∈ Z. (8.29)

The completeness relations now read as∫ !

0

dG |G〉〈G | = 1;

∞∑
==−∞

|?〉〈? | = 1. (8.30)

The wavevector eigenstate in the position basis is then simply

k: (G) = 〈G |:〉 = 〈: |G〉† =
1

√
!

e
i:G . (8.31)

8.3 Particles in External Potentials

Infinite Potential Well

The simplest case is that of a particle confined between two infinite

walls as in Fig. 8.1, where

+ (G) =
{

0, if 0 ≤ G ≤ 0;

∞, otherwise.
(8.32)

Since there is no potential in the well, the solution of the energy-

eigenvalue (static) SE there is that of a free particle:

k ′′(G) = −:2k (G); : =

√
2<�

ℏ
. (8.33)

This is a classical harmonic oscillator, whose solutions are simple

sine and cosine waves

k (G) = � sin:G + � cos:G. (8.34)

Because the potential is infinite outside of the well, the wave func-

tion must be zero there. Symmetry requires thatk (0) = k (0) and
thus � = 0, and because the function must be zero at boundaries

k (G) = � sin:G ; :0 = 0,±c,±2c, · · · , (8.35)
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(a)

(b)

(c)

Figure 8.2: Wave function Eq. (8.38)

for the modes (a) = = 1, (b) = = 2. (c)

= = 3.

i.e., := = =c/0 for = ∈ Z which means that the energy is quantized

as

�= =
ℏ2:2

=

2<
. (8.36)

Normalization of the wave function gives

� =

√
2

0
, (8.37)

resulting in

k (G) =
√

2

0
sin

=cG

0
, = ∈ Z. (8.38)

Eq. (8.38) is plotted for the first three values of = in Fig. 8.2.

The stationary states of the time-dependent SE can be obtained

from the superposition principle in the energy basis:

Ψ= (G, C) =
√

2

0
sin

=cG

0
e
−i�=C/ℏ. (8.39)

Then the most general solution to the time-dependent SE can be

written as

Ψ(G, C) =
∞∑
==0

2=

√
2

0
sin

=cG

0
e
−i�=C/ℏ, (8.40)

where the expansion coefficients, 2=, depend on the initial state

Ψ(G, 0).

Square-Well Potential

Another simple but less trivial example is that of a particle in a

square-well potential (Fig. 8.3):

+ (G) =


∞, if −∞ ≤ G ≤ 0;

−+0, if 0 ≤ G ≤ 0,
0, if 0 ≤ G ≤ ∞.

(8.41)

It turns out that there are now two types of solutions: bound states

whose energy is below zero level of the potential and unbound
(free) states.

First we note that for G < 0,k (G) = 0 as in the previous subsection

because the potential is infinitely strong on the l.h.s. For bound
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Figure 8.3: Square-well potential.

states, 0 < G < 0,

k ′′(G) = −:2

0
k (G); � =

ℏ2:2

0

2<
−+0, (8.42)

whose (continuous) solution is k (G) = � sin:0G . This is formally

the same as in the infinite-well case, but now the momentum (wave

vector) is modified by the potential.

In the third region, G > 0, the free- particle solution applies (but

with negative energy):

k ′′(G) = :2k (G); :2 = −2<�

ℏ2

. (8.43)

Now the general solution is k (G) = �e
−:G + �e

:G
, where � = 0

(why?).

The continuity ofk (0) andk ′(0) requires that

:0 cot:00 = −:2. (8.44)

Because both variables depend on the energy, they have to satisfy

:2 + :2

0
=

2+0<

ℏ2

. (8.45)

For solutions (bound states) to exist, these two equations have to

match, see Fig. 8.4.

For the unbound states, the wave function is again zero for G < 0.

For 0 < G < 0, the bound state equation turns into

k ′′(G) = −:2

0
k (G); � =

ℏ2:2

0

2<
−+0, (8.46)
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Figure 8.4: Allowed parameters for

bound states.

with the solutionk (G) = � sin:0G . In the last region, 0 < G < ∞,

k ′′(G) = −:2kG ; � =
ℏ2:2

0

2<
, (8.47)

and we need to include the phase shift

k (G) = � sin (:G + X) . (8.48)

The continuity condition at 0 now gives

:0 cot:00 = : cot:0 + X. (8.49)

Unlike for the bound states, there is a smooth eigenfunction for

any energy value as

k (G) =


0, if −∞ < G < 0;

� sin:0G, if 0 < G < 0;

� sin (:G + X) , if 0 < G < ∞.
(8.50)

By defining

�0 = −�
2i

and � = −�e
−2iX

2i

(8.51)
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we can write the solutions in the form

k (G) =


�0e

−i:0G −

wave traveling back and forth inside the well︷    ︸︸    ︷
�0e

+i:0G , if 0 < G < 0;

�e
−i:G︸ ︷︷ ︸

incoming wave

− �e
2iX︸︷︷︸

outgoing wave with phase difference 2X

e
+i:G , if 0 < G < ∞.

(8.52)

See Fig. 8.5 with an example of a typical eigenfunction correspond-

ing to an unbound state, with a phase shift and amplitude change

due to the external potential.

Figure 8.5: Example eigenfunction of

the unbound state. The position is in

units of 0.



Lecture 9 9

This lecture deepens the physical phenomena associated with

quantumparticlemotion in external potentials. A quantumparticle

feels the influence of an external potential in a fundamentally

different way from that of a classical particle. In particular, it can

scatter back from a finite potential barrier such that only part of the

wave propagates across it. The second important quantumproperty

is that of tunneling – a quantum wave has a finite probability to

penetrate through a finite barrier and reappear beyond it. This

is classically forbidden, but theoretically possible although the

probability becomes infinitesimally small for macroscopic objects

and high barriers (as compared to the particle’s energy).

9.1 Intended learning outcomes
I Understand the basic ideas of quantum scattering and tun-

neling

I Understand Bloch’s theorem

9.2 Finite Potential Step - Scattering and
Tunneling

The first nontrivial case is that of a finite potential barrier, see

Fig. 9.1, where the QM particle can penetrate in and scatter from:

+ (G) =


0, if −∞ < G < 0;

+�, if 0 < G < 0;

0, if 0 < G < +∞.
(9.1)

Figure 9.1: Finite potential barrier.
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To obtain the full time-dependent solution of this problem, we

would need to write the wave function in the form of Eq. (8.28).

However, for now we consider the static (energy-based) solutions

of the SE as in Lecture 8 and focus on the properties of the waves

traveling in this potential.

First, to the left of the barrier

k ′′� (G) = −:2k� (G); � =
ℏ2:2

2<
, (9.2)

and the wave solution is

k� (G) = ��ei:G +�'e
−i:G , (9.3)

where the intensity of the incident wave is |�� |2 and that of the

reflectedwave |�' |2. The incident and reflected directions are deter-

mined by the sign of : . Note that here in the 1D case you don’t see

the signs, but in general the argument is
®: · ®A which is positive for

forward and negative for backward propagation.

When the energy of the incoming particle is larger than that of the

barrier (classical crossing), we have

k ′′� (G) = −:2

�k� (G); � =
ℏ2:2

�

2<
++�, (9.4)

whose general solution is

k� (G) = �e
i:�G +�′e−i:�G . (9.5)

For � < +� , the region is classically forbidden (reflection), but the

SE gives

k ′′� (G) = V2k� (G); � =
ℏ2V2

2<
++�, (9.6)

and the general solution becomes a decaying exponential

k� (G) = �e
−VG + �′eVG . (9.7)

Finally, on the r.h.s. of the barrier (equals l.h.s.)

k� (G) = �) e
i:G

; : =

√
2�<

ℏ
. (9.8)

Instead of trying to solve for all the different coefficients, the

physically interesting quantities here are the ratios of the reflected

and transmitted intensities

' =
|�' |2
|�� |2

and ) =
|�) |2
|�� |2

. (9.9)
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These are called reflection and transmission probabilities, forwhich

we have

' +) = 1. (9.10)

We focus here on a particle whose energy is below the barrier:

k� (G) =


��e
+i:G +�'e

−i:G , if −∞ < G < 0;

�e
−VG + �′e+VG , if 0 < G < 0;

�) e
+i:G , if 0 < G < +∞.

(9.11)

Continuity at G = 0 and 0 gives

�� +�' = � + �′ and i:�� − i:�' = −V� + V�′; (9.12)

�e
−V0 + �′e+V0 = �) e

i:0
and − V�e

−V0 + V�′e+V0 = i:�) e
i:0,

(9.13)

from which we can get the amplitudes as a function of �

2i:�� = − (V − i:) � + (V + i:) �′; (9.14)

�) e
i:0 =

2V

V − i:
�e
−V0

and �′ = �e
−2V0 V + i:

V − i:
. (9.15)

In the limit of a wide barrier where e
−2V0 � 1 we can approximate

that �′ � �, i.e., 2i:�� ≈ − (V − i:) �, which gives

�) e
i:0 ≈ −4i:Ve

−V0

(V − i:)2
�� , (9.16)

and

) ≈ 16:2V2(
V2 + :2

)
2

e
−2V0 . (9.17)

Using the definitions

: =

√
2<�

ℏ
and V =

√
2< (+� − �)

ℏ
, (9.18)

this can be written as

) ≈ 16� (+� − �)
+ 2

�

e
−2V0 . (9.19)

This is an important result in quantum mechanics, called the

(quantum-mechanical) tunneling probability. Its main message is

that the tunneling probability (rate) below the barrier energy

decays proportional to the exponential of the square root of the

mass times the energy difference between the barrier and the

system energy. This conclusion actually holds more generally and
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−αδ(x)
x

~α

Figure 9.2: An approximation of the

delta-function potential well with

depth U .

can be applied to many different cases with more complicated

barriers.

9.3 Delta-Function Potential Well

The last case we consider here is that of a (non-analytic) delta-

function potential well at G = 0, i.e., the following potential func-

tion:

+ (G) = −UX (G), (9.20)

where X (G) is the Dirac delta function

X (G) =
{

0, if G ≠ 0;

∞, if G = 0,
with

∫ ∞

∞
X (G)dG = 1, (9.21)

(as previously discussed in Section 3.4), and the scale factor U > 0

is the “strength” or “depth” of the potential well:∫ ∞

−∞
+ (G)dG = −U. (9.22)

This is sketched in Fig. 9.2, although note that it is difficult to draw

a picture that meaningfully distinguishes −X (G) and −UX (G).

With this potential function, the energy-eigenvalue SE in the posi-

tion basis reads

− ℏ2

2<
k ′′(G) − UX (G)k (G) = �k (G) . (9.23)

The delta-function potential well supports both bound (� < 0) and

scattering (� > 0) states. First, consider bound states with G < 0,

where the SE is

k ′′(G) = ^2k (G); ^ =

√
−2<�

ℏ
. (9.24)

This has the decaying solution

k (G) = �e
−^G + �e

^G = �e
^G , (9.25)

where � = 0 to ensure that limG→−∞k (G) = 0.

Correspondingly, in the other half of the plane for positive G , the

solution is

k (G) = �e
−^G . (9.26)

From the previous examples we have learned that the wave func-

tions should satisfy the following conditions:
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1. k is always continuous

2.
dk

dG
is continuous except at points where the potential is

infinite

The first boundary condition is easily satisfied with � = �, see

Fig. 9.3

k (G) =
{
�e

^G , if G ≤ 0;

�e
−^G , if G ≥ 0.

(9.27)

Figure 9.3:Bound statewave function

for � < 0

The contradiction here is that the delta-function potential does not

enter the result. To examine this, we must look at the derivative at

G = 0:

− ℏ2

2<

∫ n

−n

d
2k

dG2

dG +
∫ n

−n
+ (G)k (G)dG = �

∫ n

−n
k (G)dG . (9.28)

L.h.s. term gives the jump in the derivative as

Δ

(
dk

dG

)
=

2<

ℏ2

lim

n→0

∫ n

−n
+ (G)k (G)dG, (9.29)

and due to the delta function

Δ

(
dk

dG

)
= −2<U

ℏ2

k (0). (9.30)

Here

dk

dG
=

{
−�^e

−^G , for G > 0, so
dk

dG

��
+ = −�^;

+�^e
+^G , for G < 0, so

dk

dG

��
− = +�^,

(9.31)

and thus

� = −ℏ
2^2

2<
= −<U

2

2ℏ2

. (9.32)

Normalization gives∫ ∞

−∞
|k (G) |2 dG = 2|� |2

∫ ∞

0

e
−2^G

dG =
|� |2
^

= 1. (9.33)
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Figure 9.4: Directions for the given

waves.

Thus themain result is that the delta-function potential can support

one and only one bound state which is given by

k (G) =
√
<U

ℏ
e
−<U |G |/ℏ2

and � = −<U
2

2ℏ2

. (9.34)

For the scattering states � > 0

k ′′(G) = −:2k (G); : =

√
2<�

ℏ
, (9.35)

and the general solution for G < 0 is

k (G) = �e
i:G + �e

−i:G , (9.36)

and for G > 0

k (G) = �e
i:G +�e

−i:G . (9.37)

Continuity requires that � +� = � + � and

dk

dG
=

{
i:

(
�e

i:G −�e
−i:G

)
, for G > 0, so

dk

dG

��
+ = i: (� −�) ;

i:
(
�e

i:G − �e
−i:G

)
, for G < 0, so

dk

dG

��
− = i: (� − �) ,

(9.38)

which gives the jump

Δk ′
��
G=0

= i: (� −� −� + �) = −2<U

ℏ2

k (0). (9.39)

Because the plane waves are not normalizable in free space, these
equations don’t have unique solutions. We have to assume a wave

coming from a given direction, e.g. from left to right, see Fig. 9.4.

Assuming� = 0 gives � and � as a function of �

� =
iV

1 − iV
� � =

1

1 − iV
� (9.40)

V B
<U

ℏ2:
. (9.41)

These can now be used to refine the corresponding reflection and

transmission coefficients ' +) = 1

' B
|� |2
|�|2

=
V2

1 + V2

) B
|� |2
|�|2

=
1

1 + V2

. (9.42)

9.4 Scattering Matrix

The results based on specific potentials can be generalized to

incoming and outgoing waves for any potential shape which can
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be divided into zero and non-zero regions (see Fig. 9.5).

Figure 9.5:Anexamplepotentialwith

zero and non-zero regions.

For the scattering sites � > 0

k ′′(G) = −:2k (G), where : =

√
2<�

ℏ
, (9.43)

and the general solutions for+ = 0 are as before shown in Eqs. (9.36)

and (9.37). The general solution in between (Region II in Fig. 9.5)

has to be of the form (why?)

k (G) = �5 (G) + �6(G), (9.44)

where 5 (G) and 6(G) are any two linearly independent particular
solutions of the (static) SE for the given+ (G).

There are four boundary conditions that can be used to give � and

� in terms of � and� :

� = (11� + (12� ; (9.45)

� = (21� + (22�, (9.46)

It is suggestive to build up a 2 × 2 matrix.

S =

[
(11 (12

(21 (22

]
, (9.47)

which is the scattering (S) matrix, for which[
�

�

]
= S

[
�

�

]
. (9.48)

For scattering from the left,� = 0:

'; =
|� |2
|�|2

��
�=0

= |(11 |2; ); =
|� |2
|�|2

��
�=0

= |(21 |2, (9.49)
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and from the right, � = 0:

'A =
|� |2
|� |2

��
�=0

= |(22 |2; )A =
|� |2
|� |2

��
�=0

= |(22 |2. (9.50)

The existence of possible bound states is in diverging components

of the S-matrix (maybe homework).

9.5 Bloch’s theorem

An important special case is that of a periodic potential+ (G + 0) =
+ (G), see Fig. 9.6.

Figure 9.6: Example of a periodic po-

tential.

Theorem 9.5.1 (Bloch’s theorem) Any wave function that is a solu-
tion of the SE in a periodic potential must be of the form.

k (G) = e
i:GD (G)

where D (G) must satisfy D (G + 0) = D (G) and the wave vector is
quantized as : = 2c=

!
for = = 0,±1, · · · ,±#

2
with ! = #0.

Bloch’s theorem plays a central role in the theory of periodic crys-

talline materials, where for example the electronic states (electron

wave functions) and phonon eigenstates (crystal vibrational eigen-

functions) must satisfy it. This leads to the concepts of electronic

band structure (and phonon/vibrational bands) that exist in the

Brillouin zone in :-space.
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This lecture deals with the fundamental statistical properties of

quantum particles. In the traditional classification there are two

types of particles, namely bosons and fermions. They differ by

how their corresponding quantum states can be occupied, or

more precisely what the symmetries of the corresponding wave

functions are corresponding to many such particles. Another way

of separating between bosons and fermions is by their spin, which

is embodied in the spin-statistics theorem below. In 2D there also

exist third type of quantum particles called anyons, but they will

not be discussed here.

10.1 Intended learning outcomes
I Understand the difference between bosons and fermions

I Understand how in general to construct many-particle boson

and fermion states

I Understand creation and annihilation operators for bosons

and fermions

10.2 Bosons and Fermions

To make quantum statistics relevant, we need to consider more

than just an isolated single particle. Consider first a two-particle

wave function for identical particles Ψ(G1, G2, C). The probability

for finding particle 1 at dG1 and particle 2 at dG2 is given by

|Ψ(G1, G2, C) |2 dG1dG2. (10.1)

If the particles are identical, they can be interchanged and thus

|Ψ(G1, G2, C) |2 = |Ψ(G2, G1, C) |2 , (10.2)

which means that

Ψ(G1, G2, C) = Ψ(G2, G1, C)eiX , (10.3)

where the phase factor e
iX = ±1. If we have a Fock space of identical

single-particle wave functions, the symmetric and antisymmetric



10 Lecture 10 64

(entangled) wave functions can be represented as

Ψ( (G) ∝ k= (G1)k ′= (G2) +k= (G2)k ′= (G1); (10.4)

Ψ� (G) ∝ k= (G1)k ′= (G2) −k= (G2)k ′= (G1) . (10.5)

Qualitatively, particles with antisymmetric (entangled) wave func-

tion avoid each other. We will next explicitly demonstrate this in

the case of a 1D QHO.

Consider two particles in two different single-particle states in a 1D

QHO, first one with = and the other one with =′. The energy is

� = �= + �=′ = (= + =′ + 1)ℏl. (10.6)

For two distinguishable particles, ? and @, the total wave function

can be of unentangled form:

Ψ (�)
1
(G? , G@, C) = k= (G?)k=′ (G@)e−i(�=+�=′ )C/ℏ

; (10.7)

Ψ (�)
2
(G? , G@, C) = k= (G@)k=′ (G?)e−i(�=+�=′ )C/ℏ, (10.8)

or a linear combination as

Ψ (�) (G? , G@, C) = 21Ψ
(�)
1
(G? , G@, C) + 22Ψ

(�)
2
(G? , G@, C) . (10.9)

This latter wave function (WF) is entangled because it associates

both particles with both single-particle states.

For two identical particles there are two possible WFs as

Ψ (() (G? , G@, C) =
1

√
2

[
k= (G?)k=′ (G@) +k= (G@)k=′ (G?)

]
e
−i(�=+�=′ )C/ℏ

;

(10.10)

Ψ (�) (G? , G@, C) =
1

√
2

[
k= (G?)k=′ (G@) −k= (G@)k=′ (G?)

]
e
−i(�=+�=′ )C/ℏ.

(10.11)

Next, set particles to have identical positions G? = G@ = G0. The

unentangled WF for distinguishable particles is

Ψ (�)
1,2
(G0, G0, C) = k= (G0)k=′ (G0)e−i(�=+�=′ )C/ℏ

(10.12)

For two identical particles the symmetrical unentangled WF is

Ψ (()
1,2
(G0, G0, C) =

√
2k= (G0)k=′ (G0)e−i(�=+�=′ )C/ℏ

(10.13)

and the antisymmetrical one

Ψ (�) (G0, G0, C) = 0 (10.14)

The physical reason for these differences is constructive or destructive
interference of the WFs.
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The physical differences become even more clear if we consider

two identical or distinguishable (�) particles occupying 1D QHO

states with = = 0 and =′ = 1, using reduced coordinates

G = G? − G@ and - =
G? + G@

2

. (10.15)

The correspondingWFs can be easily constructed (homework) and

the probability density functions (PDF) are plotted in Fig. 10.1 for

the symmetrical (S) and antisymmetrical (A) WFs of two identical

particles and (unentangled) distinguishable particles (D)

Figure 10.1: Probability density func-

tions for the 1D QHO in the sym-

metrical (S), antisymmetrical (A), and

unentangled (D) cases.

Next we will just state the fundamental spin-statistics theorem.

Proving it requires relativistic quantum field theory and will be

presented in advanced quantum mechanics courses.

Theorem 10.2.1 (Spin-statistics theorem) There are two fundamen-
tal classes of particles: fermions with half-integer spin and bosons with
integer spin

I Fermions: quarks and composite particles made of them, and

leptons such as the electron and neutrinos

I Bosons: Often force-mediating particles (photons, gluons, W

and Z bosons, Higgs boson etc.), and composite particles

(mesons)

Before discussing the symmetry of the wave functions, we should

also note that there is a very simple rule for fermions: they cannot

have identical wave functions, i.e., they cannot have the exactly

same set of quantum numbers. For example, if there are two

electrons in the same energy eigenstate they must have opposite
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spin quantum numbers B = ± 1

2
. Bosons, on the other hand, have

no such limitation which leads to the interesting phenomenon of

Bose condensation in many physical systems with bosons.

10.3 Symmetrized Eigenstates for Bosons

For bosons the total wave function must be symmetric under

the interchange of any degrees of freedom (coordinates) and any

number of them can have the same quantum numbers.

Let us define a permutation operator %8 9 by

%8 9 |:1, :2, · · · , :8 , : 9 , · · · , :# 〉 = |:1, :2, · · · , : 9 , :8 , · · · , :# 〉. (10.16)

Sum over all the permutations includes all possible combinations

of the k’s∑
%

% |:1, :2, · · · , :# 〉 B
∑

all # ! permutations of momenta in |:1, :2, · · · , :# 〉.

(10.17)

For example,∑
%

% |:1, :2, :3〉 = {|:1, :2, :3〉 + |:2, :1, :3〉 + |:1, :3, :2〉 (10.18)

+ |:3, :2, :1〉 + |:3, :1, :2〉 + |:2, :3, :1〉}.

Since there can be any number of particleswith the same: , wemust

count all possible combinations of different ways of organizing the

ket:

=8 = number of particles with momentum :8 ; (10.19)

# =

#∑
8=1

=8 = total number of particles. (10.20)

Thus there are exactly

# !∏#
U=1

=U !

different kets in

∑
% % |:1, :2, · · · , :# 〉.

Using orthonormality of the basis functions

〈:0, :1, · · · , :; |: ′0, : ′1, · · · , :
′
;
〉 = X:0,:′0X:1 ,:′1 × · · · × X:; ,:′; , (10.21)

we can write the symmetrized, orthonormal # -body momentum

eigenstate as

|:1, :2, · · · , :# 〉 (() =
(

# !∏#
U=1

=U !

) ∑
%

% |:1, :2, · · · , :# 〉, (10.22)
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which also form a complete, orthonormal set, with the identity

operator

ˆ
I
(() =

1

# !

∑
:1,:2, · · · ,:#

(
#∏
U=1

=U !

)
|:1, :2, · · · , :# 〉 (() 〈:1, :2, · · · , :# | (() .

(10.23)

10.4 Symmetrized Eigenstates for Fermions

For fermions the total wave function must be antisymmetric under
the interchange of any degrees of freedom (coordinates) and none

of them can have the same quantum numbers.

Let us again define a permutation operator %8 9 as in Eq. (10.16).

Likewise, sum over all the permutations includes all possible

combinations of the wave vectors as in Eq. (10.17).

The antisymmetric momentum eigenstates can be written as

|:1, :2, · · · , :# 〉 (�) =
1

√
# !

∑
%

(−1)%% |:1, · · · , :# 〉, (10.24)

where % is the number of permutations (changes)

For example,∑
%

(−1)%% |:1, :2, :3〉 = {|:1, :2, :3〉 − |:2, :1, :3〉 − |:1, :3, :2〉

(10.25)

− |:3, :2, :1〉 + |:3, :1, :2〉 + |:2, :3, :1〉}.

An interesting special case is where we approximate the total

# -body wave function with products of single-particle wave func-

tions 〈A8 |: 9 〉, in which case the total antisymmetric fermion wave

function 〈A1, A2, · · · A# |:1, :2, · · · , :# 〉 (�) can be written as the Slater
determinant

〈A1, A2, · · · A# |:1, :2, · · · , :# 〉 (�) =
1

√
#

���������
〈A1 |:1〉 〈A1 |:2〉 · · · 〈A1 |:# 〉
〈A2 |:1〉 〈A2 |:2〉 · · · 〈A2 |:# 〉
...

...
. . .

...

〈A# |:1〉 〈A# |:2〉 · · · 〈A# |:# 〉

��������� ,
(10.26)

which naturally gives zero for any pair of equal quantum num-

bers. Note that in general this is an approximation of the real

fermionic many-body wave function and it’s most commonly used

in electronic structure calculations.
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10.5 Annihilation and Creation Operators

Consider first the case of fermions (antisymmetric WFs). The

creation operator�
†
U is defined by the relations

�†U |0〉 = |U〉 B |qU 〉; (10.27)

�†U |V〉 = �†U�†V |0〉 = |UV〉 = −|VU〉; (10.28)

�†U |VW〉 = �†U�†V�
†
W |0〉 = |UVW〉, (10.29)

etc.

The Pauli exclusion principle requires that

�†U |U · · ·〉 = 0. (10.30)

The adjoint operator �U B
(
�
†
U

)†
defines the annihilation opera-

tor

�U |U〉 = |0〉; (10.31)

�U |0〉 = 0. (10.32)

It is easy to show (homework) that these fermionic operators obey

an anticommutation relation{
�U ,�

†
V

}
B �U�

†
V
+�†

V
�U = XUV I, (10.33)

and the number operator is given by

# =
∑
U

�†U�U . (10.34)

Similarly, for the case of bosons (symmetric WFs) the creation

operator 0
†
U is defined by the relations

0†U |0〉 = |qU 〉 = |0, 0, · · · , =U = 1, 0, · · ·〉; (10.35)

0†U |=1, =2, · · · , =U , · · ·〉 ∝ |=1, =2, · · · , =U + 1, · · ·〉, (10.36)

and the annihilation operator 0U B
(
0
†
U

)†
0U |qU 〉 = |0〉; (10.37)

0U |=1, =2, · · · , =U , · · ·〉 ∝ |=1, =2, · · · , =U − 1, · · ·〉 (=U > 0); (10.38)

0U |=1, =2, · · · , =U = 0, · · ·〉 = 0. (10.39)
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The number operator is given by

# =
∑
U

0†U0U , (10.40)

and

0U |=1, =2, · · · , =U , · · ·〉 = (=U )
1

2 |=1, =2, · · · , =U − 1, · · ·〉; (10.41)

0†U |=1, =2, · · · , =U , · · ·〉 = (=U + 1)
1

2 |=1, =2, · · · , =U + 1, · · ·〉. (10.42)

(10.43)

These were proven for the QHO already. The bosonic operators

obey a commutation relation[
0U , 0

†
V

]
B 0U0

†
V
− 0†

V
0U = XUV I. (10.44)



Lecture 11 11

In quantum (and even classical) mechanics there are very few

systems that can be exactly analytically solved. If one can justify

that the system under study can be approximated by considering

a simple (solvable) case which has been only slightly perturbed, it

is possible to develop a systematic expansion in terms of the eigen-

functions of that solvable system. This is the basis of perturbation

theory, whose time-independent version is presented here.

11.1 Intended learning outcomes
I Learn how to form an orthonormal basis for any complete

set of eigenfunctions

I Understand the idea behind perturbation theory

The first step in developing perturbation theory is tomake sure that

there is a complete, orthonormal set of eigenfunctions available.

To this end, the Gram–Schmidt orthogonalization method may be

needed.

11.2 Perturbation Theory

Gram–Schmidt Orthogonalization

Assume that we have a complete set of linearly independent eigen-
vectors that span a vector space (or Hilbert space), but they are not

orthonormal.

Assume for simplicity that the set is given by

( = {|E1〉, |E2〉, · · · , |E=〉} , (11.1)

and we want to create a new orthogonal set

(⊥ = {|D1〉, |D2〉, · · · , |D=〉} , (11.2)

that spans the same space as ( . This is called the Gram-Schmidt

process.

Define a projection operator

ˆ%D (E) B
〈D |E〉
〈D |D〉 |D〉. (11.3)
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Figure 11.1: The first two steps of the

Gram–Schmidt process [1].

Figure 11.2: Small perturbation on

+ (G).

The GS process simply comprises repeated orthogonal projections,

subtracting the non-orthogonal parts and finally normalizing, see

Fig. 11.1 as well:

|D1〉 = |E1〉, |41〉 =
|D1〉
‖D1‖

; (11.4)

|D2〉 = |E2〉 − ˆ%D1
(E2), |42〉 =

|D2〉
‖D2‖

; (11.5)

|D3〉 = |E3〉 − ˆ%D1
(E3) − ˆ%D2

(E3), |43〉 =
|D3〉
‖D3‖

; (11.6)

|D4〉 = |E4〉 − ˆ%D1
(E4) − ˆ%D2

(E4) − ˆ%D3
(E4), |44〉 =

|D4〉
‖D4‖

. (11.7)

The final orthonormal basis set is simply thus

(#⊥ = {|41〉, |42〉, · · · , |4=〉}. (11.8)

Time-Independent Perturbation Theory

Assume that we have solved the SE for a given external potential

such that

ˆ� 0k 0

= = �0

=k
0

=, (11.9)

and the energy eigenfunctions form an orthonormal set

〈k 0

= |k 0

<〉 = X=<, (11.10)

which can be generated by the Gram–Schmidt process if need be.

If the new problem is exactly solvable, we have

ˆ�k= = �=k= . (11.11)

If however the perturbation is “small” (see Fig. 11.2), we could try

writing

ˆ� = ˆ� 0 + _ ˆ� ′, (11.12)

where now _ � 1, such that we can (formally) expand

k= = k 0

= + _k 1

= + _2k 2

= + · · · (11.13)

�= = �0

= + _�1

= + _2�2

= + · · · , (11.14)

where the superscripts denote the =th order corrections to the

unperturbed state denoted by 0. This expression is inserted into
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the modified SE to get

� 0k 0

= + _
(
� 0k 1

= + � ′k 0

=

)
+ _2

(
� 0k 2

= + � ′k 1

=

)
+ · · · (11.15)

= �0

=k
0

= + _
(
�0

=k
1

= + �1

=k
0

=

)
+ _2

(
�0

=k
2

= + �1

=k
1

= + �2

=k
0

=

)
+ · · · .

(11.16)

To lowest order this gives just the unmodified SE. To first order

� 0k 1

= + � ′k 0

= = �0

=k
1

= + �1

=k
0

=, (11.17)

and to second order

� 0k 2

= + � ′k 1

= = �0

=k
2

= + �1

=k
1

= + �2

=k
0

= . (11.18)

Taking the inner product of the first equation with k 0

= gives the

first-order correction as

�1

= = 〈k 0

= |� ′ |k 0

=〉. (11.19)

Rewriting the lowest order correction as(
� 0 − �0

=

)
k 1

= = −
(
� ′ − �1

=

)
k 0

=, (11.20)

and expanding the first-order correction in the original SE basis

gives ∑
<≠=

(
�0

< − �0

=

)
2
(=)
< k 0

< = −
(
� ′ − �1

=

)
k 0

= . (11.21)

Taking the inner product withk 0

;∑
<≠=

(
�0

< − �0

=

)
2
(=)
< 〈k 0

;
|k 0

<〉 = −〈k 0

;
|� ′ |k 0

=〉 + �1

= 〈k 0

;
|k 0

=〉, (11.22)

and orthogonality gives

2
(=)
< =

〈k 0

< |� ′ |k 0

=〉
�0

= − �0

<

, (11.23)

which gives the first-order correction to the original SE basis as

k 1

= =
∑
<≠=

〈k 0

< |� ′ |k 0

=〉
�0

= − �0

<

k 0

< . (11.24)

To get the second-order corrections, we use the second-order



11 Lecture 11 73

equation and operate with

〈k 0

= |� 0k 2

=〉 + 〈k 0

= |� ′k 1

=〉 = �0

= 〈k 0

= |k 2

=〉 + �1

= 〈k 0

= |k 1

=〉 + �2

= 〈k 0

= |k 0

=〉,
(11.25)

where

〈k 0

= |k 1

=〉 =
∑
<≠=

2
(=)
< 〈k 0

= |k 0

<〉 = 0, (11.26)

and thus

�2

= =
∑
<≠=

��〈k 0

< |� ′ |k 0

=〉
��2

�0

= − �0

<

. (11.27)

In degenerate case, a general expansion in terms of eigenvectors of

the original SE should be used.
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While the full time-dependent SE gives a complete solution to the

problem at hand, the formulation of quantum dynamics for states

and operators is not unique but can be done in different ways.

This does not of course change any of the underlying physics, but

is more of technical value. The different formulations are called

pictures and they are the main topic in this Lecture. First, the

adiabatic theorem will be briefly explained and at the end the

density matrix will be introduced.

12.1 Intended learning outcomes
I Understand the basis of the adiabatic theorem

I Understand the different dynamical pictures

I Become familiar with the important concept of a density

matrix (operator)

12.2 Time Dependence

Adiabatic Theorem

Assume that we have a system that “very slowly” evolves in time

s.t. the Hamiltonian
ˆ� 8 → ˆ� 5

as in Fig. 12.1.

Figure 12.1: Adiabatic process evolu-

tion.

Adiabatic processes carry the system from an initial eigenstate of

ˆ� 8 (C = C0) to that of the final Hamiltonian
ˆ� 5 (C = C5 ).

For example, if for the infinite well the wall distance is adiabatically

increased from 0 to 20 (see Fig. 12.2):

k 8 (G) =
√

2

0
sin

c

0
G → k 5 (G) =

√
1

0
sin

c

20
G.
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Figure 12.2: Increasing the infinite

well wall distance adiabatically.

For rapid (non-adiabatic) processes the final state is some combi-

nation of final eigenstates.

While usually in quantum mechanics an overall phase prefactor

e
i\
is not measurable, a time-dependent Hamiltonian may make it

possible to measure. Such a prefactor is called the Berry phase and
it is discussed in Appendix A.1.

12.3 Temporal Dependence of Operators

The formulation of quantum dynamics is not unique for the states and
operators. Consider the expectation value of some (Hermitian)

operator

〈 ˆ�(C)〉 = 〈k (C) | ˆ�|k (C)〉 = 〈 ˆ* (C)k (0) | ˆ�| ˆ* (C)k (0)〉 (12.1)

= 〈k (0) | ˆ* (C)† ˆ� ˆ* (C) |k (0)〉 (12.2)

=

(
k (0) | ˆ* †(C)

)
ˆ�

(
ˆ* (C) |k (0)〉

)
(12.3)

= 〈k (0) |
(

ˆ* †(C) ˆ� ˆ* (C)
)
|k (0)〉, (12.4)

where the time-evolution operator from the Schrödinger equation

propagates the wave function

Ψ= (G, C) = ˆ* (C)k= (G, C), (12.5)

and follows the equation of motion

iℏ
m ˆ* (C, C0)

mC
= ˆ� (C) ˆ* (C, C0) (12.6)

giving

ˆ* (C, C0) = e

− i

ℏ

∫ C

C0

dC ′ ˆ� (C ′)
. (12.7)

The formwhere the states evolve in time is the Schrödinger picture

〈 ˆ�(C)〉 =
(
〈k (0) | ˆ* †(C)

)
ˆ�

(
ˆ* (C) |k (0)

)
, (12.8)
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and where the operator(s) evolve in time but states stay the same

is the Heisenberg picture:

〈 ˆ�(C)〉 = 〈k (0) |
(

ˆ* †(C) ˆ� ˆ* (C)
)
|k (0)〉. (12.9)

Schrödinger Picture

The time evolution of the state is governed by

iℏ
m

mC
|k (C)〉S = ˆ� |k (C)〉S, (12.10)

or equivalently

|k (C)〉S = ˆ* (C, C0) |k (C0)〉S. (12.11)

For operators (expectation values)

iℏ
m

mC
〈k (C) | ˆ�|k (C)〉S = iℏ

(
〈k (C) | ˆ�| ¤k (C)〉S + 〈 ¤k (C) | ˆ�|k (C)〉S

)
(12.12)

= 〈k (C) | ˆ� ˆ� |k (C)〉S − 〈k (C) | ˆ� ˆ�|k (C)〉S (12.13)

= 〈[ ˆ�, ˆ� ]〉S. (12.14)

If the commutator is zero, the expectation value of
ˆ� is a constant

of motion.

Heisenberg Picture

In the Heisenberg picture (HP), the states do not evolve in time but

the operators (expectation values) do, and we can write

ˆ�H(C) = ˆ* †(C, C0) ˆ�S
ˆ* (C, C0), (12.15)

which agree at time C0. The wave functions are related by

|k (C)〉S = ˆ* (C, C0) |k 〉H. (12.16)

The operators depend on time now and their equation of motion

is given by

m ˆ�H

mC
=
m ˆ* † ˆ�S

ˆ*

mC
(12.17)

=
i

ℏ

(
ˆ* † ˆ� ˆ�S

ˆ* − ˆ* † ˆ�S
ˆ� ˆ*

)
(12.18)

=
i

ℏ

(
ˆ�H

ˆ�H − ˆ�H
ˆ�H

)
(12.19)

= − i

ℏ
[ ˆ�, ˆ� ]H. (12.20)
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Figure 12.3: Description of the corre-

lation picture. At any time g (or g
0
), a

correlating transformation Ej trans-

forms an uncorrelated state r
S
⊗ r

B

to a correlated state r
SB

= r
S
⊗ r

B
+ j ,

at the same instant of time, due to an

abstract correlation-dependent par-

ent operator given by �j . Using this

transformation, we obtain the tempo-

ral evolution of the uncorrelated sys-

tem with a universal Lindblad-like

generator Lj constructed from �
SB
,

the generator of the total system dy-

namics in the Schrödinger picture.

Note that for time-independent Hamiltonian

ˆ�H = ˆ* † ˆ� ˆ* = ˆ�. (12.21)

There is also an interaction (Dirac) picture, which is used when

the system Hamiltonian can be divided into two parts as (in

Schrödinger picture)

ˆ�S = ˆ� 0

S
+ ˆ� I

S
, (12.22)

where the first part is “easy” (usually solvable). Then a state vector

in the interaction picture is given by

|k (C)〉I = e
i

ˆ� 0

S
C/ℏ |k (C)〉S. (12.23)

An operator in the interaction picture is defined by

ˆ�I(C) = e
i

ˆ� 0

S
C/ℏ ˆ�Se

−i
ˆ� 0

S
C/ℏ. (12.24)

Recently a correlation picture (transformation) has been introduced

for open quantum systems [2], see Fig. 12.3.

12.4 Density Matrix

The formulation of QM for systems of many degrees of freedom

can also be done using the densitymatrix, which is a representation

of the density operator (in what picture?)

d̂ (C) = |k (C)〉〈k (C) | . (12.25)
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Consider a general wave function expanded in orthonormal basis

(e.g. energy basis)

|k (C)〉 =
∑
=

2= (C) |=〉 . (12.26)

The expectation value of an operator
ˆ� is

〈 ˆ�(C)〉 =
∑
=,<

2= (C)2∗< (C)〈< | ˆ�|=〉, (12.27)

and the elements of the density matrix can be obtained with the

help of the decomposition

d̂ (C) =
∑
=,<

2= (C)2∗< (C) |=〉〈< |. (12.28)

They are defined by

d=,< (C) B 2= (C)2∗< (C) . (12.29)

Trace operator

Tr is the trace operator. It is the

sum of the diagonal terms of a

given matrix.

This gives the important result that

〈 ˆ�〉 =
∑
=,<

2= (C)2∗< (C)〈< | ˆ�|=〉 (12.30)

=
∑
=,<

d=,< 〈< | ˆ�|=〉 (12.31)

=
∑
=,<

�<,=d=,< (C) (12.32)

= Tr

(
ˆ�d̂ (C)

)
. (12.33)

Properties of the density matrix (operator):

I It is Hermitian (obviously)

I It is normalized, Tr d̂ (C) = 1

I It is bound from below and above by mixed and pure states:

Tr d̂2(C) = 1 for pure states and Tr d̂2(C) < 1 for mixed states

I Formixed states, we canwrite in general (in a non-interacting

many-particle system)

|k8〉 =
∑
=

28= |=〉. (12.34)

I The density matrix elements are

d=,< = 〈= |d̂ |<〉 =
∑
8

〈= |k8〉〈k8 |<〉 (12.35)

=
∑
8

∑
=,<

28=
(
28<

)∗
. (12.36)

Here the density matrix elements represent the eigenstate coefficients
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averaged over the mixture. Diagonal elements give the probability of

occupying a quantum state |=〉, i.e., the populations. Off-diagonal

elements are complex (in general) and have time-dependent phase

factors that describe the evolution of coherent superpositions of the
eigenstates.

Temporal Evolution of The Density Matrix

Using the SE it is easy to show that (homework)

md̂ (C)
mC

= − i

ℏ
[ ˆ�, d̂], (12.37)

which is the famous Liouville-von Neumann equation. Its formal

solution is

d̂ (C) = ˆ* (C)d̂ (0) ˆ* †(C), (12.38)

where the time evolution operator is defined in Eq. (12.7).

The averageof anoperator canbe computedeither in the Schrödinger

picture (propagating the density matrix) or in the Heisenberg pic-

ture (propagating the operator):

〈 ˆ�(C)〉 = Tr

(
ˆ�d̂ (C)

)
(12.39)

= Tr

(
ˆ� ˆ* (C)d̂ (0) ˆ* †(C)

)
(12.40)

= Tr

(
ˆ* †(C) ˆ� ˆ* (C)d̂ (0)

)
(12.41)

= Tr

(
ˆ�(C)d̂ (0)

)
, (12.42)

where in Eq. (12.41), we have used the cyclic property of the trace:

Tr

(
ˆ� ˆ� ˆ�

)
= Tr

(
ˆ� ˆ� ˆ�

)
= Tr

(
ˆ� ˆ� ˆ�

)
.

For a time-independent Hamiltonian the dynamics of the density

matrix becomes simple as

d=,< (C) = 〈= |d̂ (C) |<〉 = 〈= | ˆ* (C) |k (0)〉〈k (0) | ˆ* †(C) |<〉, (12.43)

and thus for energy eigenfunctions

d=,< (C) = e
−i(�<−�=)C/ℏd=,< (0) . (12.44)

This means that the populations are time-independent but the coher-
ences oscillate in time with a frequency corresponding to the level

splitting.
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Density Matrix in the Interaction Picture

In the interaction picture (IP) we wrote, see Eq. (12.22):

ˆ�S = ˆ� 0

S
+ ˆ� I

S
, (12.45)

and the evolution of the state vector is given by

|k (C)〉I = e
−i

ˆ� 0

S
C/ℏ |k (C)〉S C ˆ*

†
0
(C) |k (C)〉S. (12.46)

This means that the density matrix in the IP can be written as

d̂I(C) = ˆ*
†
0
(C)dS ˆ*0(C) . (12.47)

In analogy to the Schrödinger picture case, the equation of motion

then becomes

md̂I(C)
mC

= − i

ℏ
[ ˆ�I(C), d̂I(C)], (12.48)

where
ˆ�I(C) = ˆ*

†
0
(C) ˆ�S

ˆ*0(C).
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Appendix A

The appendix contains some interesting extra topics that could not

be discussed during the course.

A.1 Geometric and Berry Phases

If the Hamiltonian is independent of time, a particle that starts in

the =th eigenstate

ˆ�k= (G) = �=k= (G) (A.1)

remains in that eigenstate and picks up a phase factor from the

Schrödinger equation

Ψ= (G, C) = k= (G)e
i�=C
ℏ . (A.2)

If the Hamiltonian is time dependent, we can formally write (but

usually not solve)

ˆ� (C)k= (G, C) = �= (C)k= (G, C) . (A.3)

According to the adiabatic theorem (see Section 12.2), the system

will remain at the =th eigenstate even with time dependence:

k= (G, C) = ˆ* (C)k= (G, C) (A.4)

To obtain the time-evolution operator for a time-dependent Hamilto-
nian, we have to solve for

iℏ
m ˆ* (C, C0)

mC
= ˆ� (C) ˆ* (C, C0) (A.5)

The formal solution of this equation for Hamiltonians commuting

at all times is (prove by expanding the exp function)

ˆ* (C, C0) = e

−i

∫ C
C
0

dC ′ ˆ� (C ′)/ℏ
(A.6)

Operating on the eigenstates gives simply that

Ψ= (G, C) = k= (G, C)e
−i

∫ C
C
0

dC ′�= (C ′)/ℏ
e

iW= (C )
(A.7)
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The term

\= (G, C) = −
∫ C

C0

dC ′
�= (C ′)

ℏ
(A.8)

Is known as the dynamic phase and the extra phase factor W= (C)
is the geometric phase. We can plug in the solution back to the

time-dependent SE to get

iℏ

[
mk=

mC
e

i\=
e

iW= − i

ℏ
�=k=e

i\=
e

iW= + i

dW=

dC
k=e

i\=
e

iW=

]
(A.9)

=
[

ˆ�k=
]

e
i\=

e
iW= = �=k=e

i\=
e

iW=
(A.10)

and thus

mk=

mC
+ ik=

dW=

dC
= 0. (A.11)

Taking the inner product withk=

dW=

dC
= i〈k= |

mk=

mC
〉. (A.12)

Let us assume that the time dependence in the Hamiltonian is

given by some (classical) function '(C):

mk=

mC
=
mk=

m'

d'

dC
→ dW=

dC
= i〈k= |

mk=

m'
〉d'
dC
. (A.13)

This can be integrated to give

W= (C) = i

∫ C

0

〈k= |
mk=

m'
〉d'
dC ′

dC ′ = i

∫ '5

'8

〈k= |
mk=

m'
〉d'. (A.14)

If there are # time-dependent parameters in the Hamiltonian:

mk=

mC
=
mk=

m'1

d'1

dC
+ mk=
m'2

d'2

dC
+ · · · + mk=

m'#

d'#

dC
(A.15)

= (∇'k=) ·
d ®'
dC
. (A.16)

This can be again integrated to give

W= (C) = i

∫ ®'5

®'8
〈k= |∇'k=〉 · d ®'. (A.17)

If the Hamiltonian is cyclic with period)

W= () ) = i

∮
〈k= |∇'k=〉 · d ®'. (A.18)

This is a line integral around a closed loop in the parameter space

and in general it is nonzero. W= (C) is called the Berry phase.
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The Berry phase only depends on the (adiabatic) path taken, not

on time! In contrast, the dynamic phase is time dependent, as

\= () ) = −
1

ℏ

∫ )

0

�= (C ′)dC ′ (A.19)

The Berry phase is real-valued and it is measurable [1]!
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