
Designing and Building
Scalable Web Applications

Lecture 1 / 24.10.2022

Agenda

● Course structure and practicalities
● Learning objectives
● The Big Picture
● Defining scalability
● Brief recap of CS-C3170 Web Software Development
● Measuring web application performance
● First course project

Structure and Practicalities

Structure and Practicalities

● Weekly lectures on Mondays from 14:15 to 16:00 (online)

● Weekly readings
○ Typically two to three articles based on which you will create

multiple-choice questions (MCQs)
○ Answering and rating multiple choice questions by others

● Three projects (self-, peer-, and teacher-reviewed)

● Course platform (for creating and answering questions and for projects) at
https://fitech101.aalto.fi/designing-and-building-scalable-web-applications/
Note! When you register on the platform, use your @aalto.fi -email address

https://fitech101.aalto.fi/designing-and-building-scalable-web-applications/

Grading

● Weekly readings and multiple choice questions: up to 3600 points
○ 150 points per a good quality multiple choice question → up to 450 points per week
○ 10 points per answered multiple choice question → up to 150 points per week

● Three projects
○ Possibility to fail, pass, and complete with merits
○ Self-, peer-, and teacher-reviewed

● Grading:
○ Grade 5: At least 3000 points, completed all three projects, at least two of them with merits
○ Grade 4: At least 2700 points, completed all three projects, at least one of them with merits
○ Grade 3: At least 2400 points, completed all three projects, none with merits
○ Grade 2: At least 2100 points, completed two projects, at least one with merits
○ Grade 1: At least 1800 points, completed two projects

NB! Completing a project

includes also completing

project reviews.

Grading

● Weekly readings and multiple choice questions: up to 3600 points
○ 150 points per a good quality multiple choice question → up to 450 points per week
○ 10 points per answered multiple choice question → up to 150 points per week

● Three projects
○ Possibility to fail, pass, and complete with merits
○ Self-, peer-, and teacher-reviewed

● Grading:
○ Grade 5: At least 3000 points, completed all three projects, at least two of them with merits
○ Grade 4: At least 2700 points, completed all three projects, at least one of them with merits
○ Grade 3: At least 2400 points, completed all three projects, none with merits
○ Grade 2: At least 2100 points, completed two projects, at least one with merits
○ Grade 1: At least 1800 points, completed two projects

NB! Completing a project

includes also completing

project reviews.

Checked during final grading – points given by the platform can be removed at that point.

Week /
release

Lecture Readings and
MCQs due

Answering and
rating MCQs due

Projects due Project reviews due

(1) Mon 24.10. 14-16 Fri 28.10. 23:59 Mon 31.10. 23:59

(2) Mon 31.10. 14-16 Fri 4.11. 23:59 Mon 7.11. 23:59 Project 1:
Sun 6.11. 23:59

Project 1:
Wed 9.11. 23:59

(3) Mon 7.11. 14-16 Fri 11.11. 23:59 Mon 14.11. 23:59

(4) Mon 14.11. 14-16 Fri 18.11. 23:59 Mon 21.11. 23:59

(5) Mon 21.11. 14-16 Fri 25.11. 23:59 Mon 28.11. 23:59 Project 2:
Sun 27.11. 23:59

Project 2:
Wed 30.11. 23:59

(6) Mon 28.11. 14-16 Fri 2.12. 23:59 Mon 5.12. 23:59

(7) - Project 3:
Sun 11.12. 23:59

Project 3:
Wed 14.12. 23:59

Schedule

It is possible to return course work 14 days after the deadline
and still have the course work included in grading. For MCQs,
returning and answering them late reduces given points to the

half. For course projects, returning them late means that
receiving merits is not possible.

Multiple Choice Questions?

What is good quality in multiple choice questions?

● Requires reading the relevant content and thinking about the answers.

● Does not verbatim copy of the content.

● Already the question has meaning: “Which of the following options are true” (not good) vs. “What are
the characteristics of the Deno serve function?” (better)

● All answer options should be plausible: “The serve function starts a web server” (plausible, correct),
“The serve function defines what to do with incoming requests” (plausible, incorrect), “The serve
function returns a Response object for each Request” (plausible, incorrect), “It mimics a dinosaur”
(not plausible, incorrect).

● Asks, e.g., about knowledge, understanding, application, analysis, synthesis, and evaluation of
contents (getting to know where these come from, read about the Bloom’s taxonomy)

Learning and multiple choice questions?

● Self-explanation effect

● Generation effect

● Testing effect

Learning and multiple choice questions?

● Self-explanation effect

● Generation effect

● Testing effect

In general, learners who explain

content to themselves learn

better than those who do not

Learning and multiple choice questions?

● Self-explanation effect

● Generation effect

● Testing effect

In general, learners who explain

content to themselves learn

better than those who do not

Creating content, as opposed to
simply reading content, leads to

improved recall

Learning and multiple choice questions?

● Self-explanation effect

● Generation effect

● Testing effect

In general, learners who explain

content to themselves learn

better than those who do not

Creating content, as opposed to
simply reading content, leads to

improved recall

Being tested on previously studied

material improves recall

Learning and multiple choice questions?

● Self-explanation effect

● Generation effect

● Testing effect

In general, learners who explain

content to themselves learn

better than those who do not

Creating content, as opposed to
simply reading content, leads to

improved recall

Being tested on previously studied

material improves recall

Bonus: you’ll help future course participants learn.

Technicalities, you can use Markdown for questions, e.g.

Study the following `Dockerfile` configuration.

```
FROM denoland/deno:alpine-1.26.2
EXPOSE 7777
WORKDIR /app
COPY . .
RUN deno cache app.js
CMD [ "run", "--allow-net", "--watch", "app.js" ]
```

Which of the following options best describes the
functionality of the above configuration?

Learning objectives?

Learning objectives?

The course introduces learners to the principles of building
scalable web applications, focusing on recent advances in both
client- and server-side development as well as on platforms and
hosting solutions. Architectural patterns and their fit and need for
different types of web applications are also considered.

Learning objectives

● Understands the multiple dimensions of scalability and understands factors that
contribute to the scalability of web applications.

● Knows and applies architectural patterns and techniques for designing and building
scalable web applications.

● Understands the impact of the wide range of design decisions in building scalable web
applications.

● Knows scalability laws and reflects on them in the context of architectural decisions.

● Can evaluate the scalability of web applications at multiple abstraction levels.

● Has practical experience in designing, building, and deploying web applications that
scale.

The Big Picture

Scalability laws

Scalability expectations and needs

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

Sample readings (actual ones on platform)

Plenty of research on the course topic, see e.g.

● A scalable HTTP server: The NCSA prototype –
https://doi.org/10.1016/0169-7552(94)90129-5

● Scalability issues for high performance digital libraries on the World Wide Web –
https://doi.org/10.1109/ADL.1996.502524

● Enhancing the Web's infrastructure: From caching to replication –
https://doi.org/10.1109/4236.601083

● Cluster-Based Scalable Network Services – https://dl.acm.org/doi/10.1145/268998.266662
● Globally Distributed Content Delivery – https://doi.org/10.1109/MIC.2002.1036038

https://doi.org/10.1016/0169-7552(94)90129-5
https://doi.org/10.1109/ADL.1996.502524
https://doi.org/10.1109/4236.601083
https://dl.acm.org/doi/10.1145/268998.266662
https://doi.org/10.1109/MIC.2002.1036038

Sample readings (actual ones on platform)

Plenty of research on the course topic, see e.g.

● A scalable HTTP server: The NCSA prototype –
https://doi.org/10.1016/0169-7552(94)90129-5

● Scalability issues for high performance digital libraries on the World Wide Web –
https://doi.org/10.1109/ADL.1996.502524

● Enhancing the Web's infrastructure: From caching to replication –
https://doi.org/10.1109/4236.601083

● Cluster-Based Scalable Network Services – https://dl.acm.org/doi/10.1145/268998.266662
● Globally Distributed Content Delivery – https://doi.org/10.1109/MIC.2002.1036038

I intentionally only included
articles that are over 20
years old into this list.

https://doi.org/10.1016/0169-7552(94)90129-5
https://doi.org/10.1109/ADL.1996.502524
https://doi.org/10.1109/4236.601083
https://dl.acm.org/doi/10.1145/268998.266662
https://doi.org/10.1109/MIC.2002.1036038

Sample readings (actual ones on platform)

Plenty of research on the course topic, see e.g.

● A scalable HTTP server: The NCSA prototype –
https://doi.org/10.1016/0169-7552(94)90129-5

● Scalability issues for high performance digital libraries on the World Wide Web –
https://doi.org/10.1109/ADL.1996.502524

● Enhancing the Web's infrastructure: From caching to replication –
https://doi.org/10.1109/4236.601083

● Cluster-Based Scalable Network Services – https://dl.acm.org/doi/10.1145/268998.266662
● Globally Distributed Content Delivery – https://doi.org/10.1109/MIC.2002.1036038

But, there’s also

newer work!

I intentionally only included
articles that are over 20
years old into this list.

https://doi.org/10.1016/0169-7552(94)90129-5
https://doi.org/10.1109/ADL.1996.502524
https://doi.org/10.1109/4236.601083
https://dl.acm.org/doi/10.1145/268998.266662
https://doi.org/10.1109/MIC.2002.1036038

Sample readings (actual ones on platform)

Plenty of research on the course topic, see e.g.

● A scalable HTTP server: The NCSA prototype –
https://doi.org/10.1016/0169-7552(94)90129-5

● Scalability issues for high performance digital libraries on the World Wide Web –
https://doi.org/10.1109/ADL.1996.502524

● Enhancing the Web's infrastructure: From caching to replication –
https://doi.org/10.1109/4236.601083

● Cluster-Based Scalable Network Services – https://dl.acm.org/doi/10.1145/268998.266662
● Globally Distributed Content Delivery – https://doi.org/10.1109/MIC.2002.1036038
● The Google File System – https://dl.acm.org/doi/10.1145/945445.945450
● Dynamo: Amazon's highly available key-value store –

https://doi.org/10.1109/MIC.2002.1036038

But, there’s also

newer work!

I intentionally only included
articles that are over 20
years old into this list.

https://doi.org/10.1016/0169-7552(94)90129-5
https://doi.org/10.1109/ADL.1996.502524
https://doi.org/10.1109/4236.601083
https://dl.acm.org/doi/10.1145/268998.266662
https://doi.org/10.1109/MIC.2002.1036038
https://dl.acm.org/doi/10.1145/945445.945450
https://doi.org/10.1109/MIC.2002.1036038

Sample readings (actual ones on platform)

Plenty of research on the course topic, see e.g.

● A scalable HTTP server: The NCSA prototype –
https://doi.org/10.1016/0169-7552(94)90129-5

● Scalability issues for high performance digital libraries on the World Wide Web –
https://doi.org/10.1109/ADL.1996.502524

● Enhancing the Web's infrastructure: From caching to replication –
https://doi.org/10.1109/4236.601083

● Cluster-Based Scalable Network Services – https://dl.acm.org/doi/10.1145/268998.266662
● Globally Distributed Content Delivery – https://doi.org/10.1109/MIC.2002.1036038
● The Google File System – https://dl.acm.org/doi/10.1145/945445.945450
● Dynamo: Amazon's highly available key-value store –

https://doi.org/10.1109/MIC.2002.1036038

But, there’s also

newer work!

I intentionally only included
articles that are over 20
years old into this list.

Wait, these were also published over 15 years ago?

https://doi.org/10.1016/0169-7552(94)90129-5
https://doi.org/10.1109/ADL.1996.502524
https://doi.org/10.1109/4236.601083
https://dl.acm.org/doi/10.1145/268998.266662
https://doi.org/10.1109/MIC.2002.1036038
https://dl.acm.org/doi/10.1145/945445.945450
https://doi.org/10.1109/MIC.2002.1036038

Actively studied area?

● New solutions are found for old problems as
technologies evolve.

● New problems are identified as technologies
evolve.

● Lots of open problems – a good and timely
topic for BSc and MSc theses (also for PhD
work! :))

Actively studied area?

● New solutions are found for old problems as
technologies evolve.

● New problems are identified as technologies
evolve.

● Lots of open problems – a good and timely
topic for BSc and MSc theses (also for PhD
work! :)) See e.g. “What serverless

computing is and should become:

the next phase of cloud computing”

 http://dx.doi.org/10.1145/3406011

http://dx.doi.org/10.1145/3406011

Defining scalability

Defining scalability

(at least for now, other

definitions will follow later

on in the course)

Defining scalability

● “By scalability we mean that the proposed protocols for data delivery are cost-effective even when
there are a very large number (100’s, 1000’s, even tens of thousands) of destinations that the data
needs to be delivered to.” – Corona: A Communication Service for Scalable, Reliable Group
Collaboration Systems (1996)

● “We call a system scalable if the system response time for individual requests is kept as small as
theoretical possible when the number of simultaneous HTTP requests increases, while maintaining a
low request drop rate and achieving a high peak request rate.” – SWEB: Towards a Scalable World
Wide Web Server on MultiComputers (1996)

● “By scalability, we mean that when the load offered to the service increases, an incremental and
linear increase in hardware can maintain the same per-user level of service” – Cluster-Based
Scalable Network Services (1997)

Defining scalability

● “Scalability is a desirable attribute of a network, system, or process. The concept connotes the ability
of a system to accommodate an increasing number of elements or objects, to process growing
volumes of work gracefully, and/or to be susceptible to enlargement.” – Characteristics of Scalability
and Their Impact on Performance (2000)

● “Systems are often said to be scalable if they present mechanisms for adding capacity as load
increases.” – Characterizing the Scalability of a Large Web-Based Shopping System (2001)

● “Scalability means that Web service providers should be able to serve a fast-growing and unknown
number of customers with minimal performance degradation.” – Capacity Planning: An Essential
Tool for Managing Web Services (2002)

● “We consider a system to be scalable if there is a straightforward way to upgrade the system to
handle an increase in traffic while maintaining adequate performance.” – Capacity Planning: An
Essential Tool for Managing Web Services (2002)

● Early on: concerns related to meeting increasing demands.

Defining scalability

Defining scalability

● Vertical and horizontal scaling classically
used as examples of how to scale

Ve
rt

ic
al

 s
ca

lin
g

Horizontal scaling

Defining scalability

● Vertical and horizontal scaling classically
used as examples of how to scale

● Vertical scaling: scaling up – adding more
resources

Ve
rt

ic
al

 s
ca

lin
g

Horizontal scaling

Defining scalability

● Vertical and horizontal scaling classically
used as examples of how to scale

● Vertical scaling: scaling up – adding more
resources

● Horizontal scaling: scaling out – adding
more machines

Ve
rt

ic
al

 s
ca

lin
g

Horizontal scaling

+ +

● Early on: concerns related to meeting increasing demands.

Defining scalability

● Early on: concerns related to meeting increasing demands.

● After a while: adding concerns about adjusting to fluctuating demands.

Defining scalability

Defining scalability

● Vertical and horizontal scaling classically
used as examples of how to scale

● Vertical scaling: scaling up – adding more
resources

● Horizontal scaling: scaling out – adding
more machines

● Also, scaling down and in!

Ve
rt

ic
al

 s
ca

lin
g

Horizontal scaling

+ +

CS-C3170 Web Software
Development Recap

Materials at https://fitech101.aalto.fi/web-software-development/

https://fitech101.aalto.fi/web-software-development/

Web Software Development

Client-server Model

Web Software Development

import { serve } from "https://deno.land/std@0.140.0/http/server.ts" ;

const handleRequest = (request) => {

 return new Response("Hello world!");

};

serve(handleRequest, { port: 7777 });

“Hello world!” application written for Deno

Web Software Development

Client-server Model

N-tier architecture: Sample with 3 tiers

Web Software Development

import { serve } from "https://deno.land/std@0.140.0/http/server.ts" ;

import { executeQuery } from "./database/database.js" ;

const handleRequest = async (request) => {

 const res = await executeQuery("SELECT COUNT(*) FROM table");

 return new Response(`Rows: ${res.rows[0].count}`);

};

serve(handleRequest, { port: 7777 });

“Hello world!” application written for Deno

Web Software Development

Client-server Model

N-tier architecture: Sample with 3 tiers

N-tier architecture: Sample with 4 tiers

Web Software Development

Client-server Model

N-tier architecture: Sample with 3 tiers

N-tier architecture: Sample with 4 tiers

Did not really go here in CS-C3170

Measuring application performance

Measuring application performance

● Multiple performance metrics, including time to first byte, time to first paint,
time to first contentful paint, time to interactive, etc.

Measuring application performance

● Multiple performance metrics, including time to first byte, time to first paint,
time to first contentful paint, time to interactive, etc.

● For now, we’re mostly interested in simpler HTTP performance statistics:
○ the number of HTTP requests that a server can handle per second
○ average response times (e.g. median, 95th percentile, 99th percentile, 99.9th percentile)
○ percentage of requests leading to errors

Measuring application performance

● Multiple performance metrics, including time to first byte, time to first paint,
time to first contentful paint, time to interactive, etc.

● For now, we’re mostly interested in simpler HTTP performance statistics:
○ the number of HTTP requests that a server can handle per second
○ average response times (e.g. median, 95th percentile, 99th percentile, 99.9th percentile)
○ percentage of requests leading to errors

These, of course, under

some stress :)

HTTP performance testing tools

● Good number of tools that can be used for benchmarking, including
○ Autocannon – https://github.com/mcollina/autocannon
○ Benny – https://github.com/caderek/benny
○ Deno bench – https://deno.land/manual/tools/benchmarker
○ Gatling – https://gatling.io/
○ JMeter – https://jmeter.apache.org/
○ k6 – https://k6.io/
○ wrk – https://github.com/wg/wrk and wrk2 – https://github.com/giltene/wrk2

https://github.com/mcollina/autocannon
https://github.com/caderek/benny
https://deno.land/manual/tools/benchmarker
https://gatling.io/
https://jmeter.apache.org/
https://k6.io/
https://github.com/wg/wrk
https://github.com/giltene/wrk2

HTTP performance testing tools

● Good number of tools that can be used for benchmarking, including
○ Autocannon – https://github.com/mcollina/autocannon
○ Benny – https://github.com/caderek/benny
○ Deno bench – https://deno.land/manual/tools/benchmarker
○ Gatling – https://gatling.io/
○ JMeter – https://jmeter.apache.org/
○ k6 – https://k6.io/
○ wrk – https://github.com/wg/wrk and wrk2 – https://github.com/giltene/wrk2

More generic tools, but

can be used for http

benchmarking as well

https://github.com/mcollina/autocannon
https://github.com/caderek/benny
https://deno.land/manual/tools/benchmarker
https://gatling.io/
https://jmeter.apache.org/
https://k6.io/
https://github.com/wg/wrk
https://github.com/giltene/wrk2

Example: k6

Example: k6
import { serve } from "https://deno.land/std@0.140.0/http/server.ts" ;

const handleRequest = (request) => {

 return new Response("Hello world!");

};

serve(handleRequest, { port: 7777 });

Testing a simple Hello

world! application.

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

k6 run script.js

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

k6 run script.js

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

k6 run script.js

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

We made one

request

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

k6 run script.js

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

We made one

request

Based on that,
the server

could handle
616 requests
per second

https://k6.io/

Example: k6

● Using k6 (https://k6.io/), we write a
test script that is executed with k6

k6 run script.js

import http from "k6/http";

export default function () {

 http.get("http://localhost:7777");

}

“do a GET request to this address”

We made one

request

Based on that,
the server

could handle
616 requests
per second

https://k6.io/

Example: k6

● Providing options to k6

Example: k6

● Providing options to k6
import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

Example: k6

● Providing options to k6
import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

Example: k6

● Providing options to k6

k6 run script.js

import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

Example: k6

● Providing options to k6

k6 run script.js

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

Example: k6

● Providing options to k6

k6 run script.js

We made 114847
requests

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

Example: k6

● Providing options to k6

k6 run script.js Based on that, the server could handle 22963 requests per
second

We made 114847
requests

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

import http from "k6/http";

export const options = {

 duration: "5s",

 vus: 10,

};

export default function () {

 http.get("http://localhost:7777");

}

Example: k6

● Providing options to k6

k6 run script.js Based on that, the server could handle 22963 requests per
second

We made 114847
requests

Results can vary

between runs – do not

pick the best run :)..

“Continue doing GET requests to this address for 5 seconds with 10 concurrent users”

Versions, technologies, etc matter a bit

Versions, technologies, etc matter a bit
The previous results

with Deno 1.21.0 and

library version @1.40.0

Versions, technologies, etc matter a bit

Let’s try the same with Deno 1.26.2 and Deno’s flash Server (introduced in 1.25). Code:

Deno.serve((_) => new Response("Hello world!"), { port: 7777 });

The previous results

with Deno 1.21.0 and

library version @1.40.0

Versions, technologies, etc matter a bit

Let’s try the same with Deno 1.26.2 and Deno’s flash Server (introduced in 1.25). Code:

Deno.serve((_) => new Response("Hello world!"), { port: 7777 });

Run with: deno run --allow-net --unstable app.js
Same test: k6 run script.js

The previous results

with Deno 1.21.0 and

library version @1.40.0

Versions, technologies, etc matter a bit

Let’s try the same with Deno 1.26.2 and Deno’s flash Server (introduced in 1.25). Code:

Deno.serve((_) => new Response("Hello world!"), { port: 7777 });

Run with: deno run --allow-net --unstable app.js
Same test: k6 run script.js

The previous results

with Deno 1.21.0 and

library version @1.40.0

Now, 42679 requests per second

Versions, technologies, etc matter a bit

Let’s try the same with Deno 1.26.2 and Deno’s flash Server (introduced in 1.25). Code:

Deno.serve((_) => new Response("Hello world!"), { port: 7777 });

Run with: deno run --allow-net --unstable app.js
Same test: k6 run script.js

The previous results

with Deno 1.21.0 and

library version @1.40.0

Now, 42679 requests per second

Does “Hello world!”

performance really

matter?

First week readings

First week readings
First week readings contain a rehearsal of the

Web Software Development course (a

prerequisite for this course).

You’ll get to rehearse the materials and to

come up with questions on web development.

First course project

First course project: comparing implementations

● In the first course project, your task is to create
bit.ly-like implementations, compare their
performance, and write a report of the results.

First course project: comparing implementations

● In the first course project, your task is to create
bit.ly-like implementations, compare their
performance, and write a report of the results.

● Each implementation should feature:

○ A main page that has a form into which users can write
URLs that need to be shortened.

○ A database that stores the URLs and their shortened
versions – entering an URL into the form and submitting it
through the form stores the URL into the database and
returns a page that contains a shortened version of the
URL.

○ When a user accesses a shortened version of the URL,
the server returns a response that redirects the user to the
new URL.

First course project

● In the first course project, your task is to create
bit.ly-like implementations, compare their
performance, and write a report of the results.

● Each implementation should feature:

○ A main page that has a form into which users can write
URLs that need to be shortened.

○ A database that stores the URLs and their shortened
versions – entering an URL into the form and submitting it
through the form stores the URL into the database and
returns a page that contains a shortened version of the
URL.

○ When a user accesses a shortened version of the URL,
the server returns a response that redirects the user to the
new URL.

My URL shortener!

https://www.aalto.fi/en/department-of-computer-science

shorten!

Page at http://localhost:7777 shows:

http://localhost:7777/fjMlEk

First course project

● In the first course project, your task is to create
bit.ly-like implementations, compare their
performance, and write a report of the results.

● Each implementation should feature:

○ A main page that has a form into which users can write
URLs that need to be shortened.

○ A database that stores the URLs and their shortened
versions – entering an URL into the form and submitting it
through the form stores the URL into the database and
returns a page that contains a shortened version of the
URL.

○ When a user accesses a shortened version of the URL,
the server returns a response that redirects the user to the
new URL.

My URL shortener!

https://www.aalto.fi/en/department-of-computer-science

shorten!

https://www.aalto.fi/en/department-of-computer-
science is now at http://localhost:7777/fjMlEk

When clicking the button, a random string
is created to represent the shortened path.
The posted URL and the string are stored
to the database. Page shows the posted
URL and the shortened URL.

Page at http://localhost:7777 shows:

https://www.aalto.fi/en/department-of-computer-science
https://www.aalto.fi/en/department-of-computer-science
http://localhost:7777/fjMlEk
http://localhost:7777/fjMlEk

First course project

● In the first course project, your task is to create
bit.ly-like implementations, compare their
performance, and write a report of the results.

● Each implementation should feature:

○ A main page that has a form into which users can write
URLs that need to be shortened.

○ A database that stores the URLs and their shortened
versions – entering an URL into the form and submitting it
through the form stores the URL into the database and
returns a page that contains a shortened version of the
URL.

○ When a user accesses a shortened version of the URL,
the server returns a response that redirects the user to the
new URL.

My URL shortener!

https://www.aalto.fi/en/department-of-computer-science

shorten!

Now, accessing http://localhost:7777/fjMlEk
redirects the user to
https://www.aalto.fi/en/department-of-computer-science

https://www.aalto.fi/en/department-of-computer-
science is now at http://localhost:7777/fjMlEk

When clicking the button, a random string
is created to represent the shortened path.
The posted URL and the string are stored
to the database. Page shows the posted
URL and the shortened URL.

Page at http://localhost:7777 shows:

http://localhost:7777/fjMlEk
https://www.aalto.fi/en/department-of-computer-science
https://www.aalto.fi/en/department-of-computer-science
https://www.aalto.fi/en/department-of-computer-science
http://localhost:7777/fjMlEk
http://localhost:7777/fjMlEk

First course project - passing requirements

● Two implementations done using the same programming language but a different framework (e.g.
vanilla Deno vs. Oak, vanilla NodeJS vs Express, FastAPI vs Flask).

● Using a relational database (e.g. PostgreSQL).

● Performance tests for (1) the main page, (2) submitting the form to the database, and (3) asking for
redirection. In the tests, record the average requests per second and the median, 95th percentile,
and 99th percentile HTTP request duration. Run the tests with a sensible number of concurrent
users for at least 10 seconds.

● All implementations and performance test scripts returned in a format that allows running them easily
locally on Windows, Linux and Mac (i.e. a docker-compose configuration or similar for running the
applications; performance test scripts for performance tests).

● Summary report with comparison results.

First course project - passing requirements

● Two implementations done using the same programming language but a different framework (e.g.
vanilla Deno vs. Oak, vanilla NodeJS vs Express, FastAPI vs Flask).

● Using a relational database (e.g. PostgreSQL).

● Performance tests for (1) the main page, (2) submitting the form to the database, and (3) asking for
redirection. In the tests, record the average requests per second and the median, 95th percentile,
and 99th percentile HTTP request duration. Run the tests with a sensible number of concurrent
users for at least 10 seconds.

● All implementations and performance test scripts returned in a format that allows running them easily
locally on Windows, Linux and Mac (i.e. a docker-compose configuration or similar for running the
applications; performance test scripts for performance tests).

● Summary report with comparison results.
Similar to the Web Software Development course,

there is a project starter (Walking Skeleton) template

that can be used to start the project with.

First course project - passing requirements / report

● A markdown-formatted document (no binary content) with:

○ Brief guidelines for running the applications and the performance tests.

○ Results of 6 performance tests (2 implementations times 3 performance tests). In the results,
include the average requests per second and the median, 95th percentile, and 99th percentile
HTTP request duration.

○ A brief reflection (5-10 sentences) on the reasons for possible performance differences
between the pages and between the implementations.

First course project - passing with merits

● In addition to fulfilling the passing requirements:

○ A third implementation written in a different (non superset / subset) programming language (e.g.
typescript and javascript do not count as different languages, while Python and javascript do).

○ Additional functionality: the user can ask to be redirected to a random location (out of the
possibilities already in the database). This behavior is at the path /random of the application. That
is, accessing the path http://localhost:7777/random redirects the user to a randomly picked address.

○ Performance tests for the additional functionality.

○ The report now with results of 12 performance tests (3 implementations times 4 performance tests).
In the results, include the average requests per second and the median, 95th percentile, and 99th
percentile HTTP request duration.

○ Brief suggestions for improving the performance of the applications (5-10 sentences).

http://localhost:7777/random

