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This lecture

I Factor models and arbitrage pricing theory
I Seek to explain returns and correlations between assets
I The random return of an asset is explained by other

random variables which are common to all assets
I Reduces the number of parameter estimates that are

needed for mean-variance optimization
I Model parameter estimation
I von Neumann and Morgenstern expected utility theory

visited briefly



MS-E2114 Investment Science: Lecture 7: Factor models, parameter estimation, and utility
24 October 2022

4/57

Overview

Single factor model

Multifactor models

Arbitrage Pricing Theory (APT)

Parameter estimation

Utility theory and risk aversion



MS-E2114 Investment Science: Lecture 7: Factor models, parameter estimation, and utility
24 October 2022

5/57

Single factor model

I Explain asset returns with common random variables
I E.g. GDP (gross domestic product) or stock index

I Rate of return of asset i expressed as

ri = ai + bi f + ei ,

where
I ai and bi are constants
I f is the random explanatory variable (i.e., the factor)
I ei is the random error term
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Single factor model
I Single-factor model for rate of return of asset i

ri = ai + bi f + ei

I Assumptions:
I E[ei ] = 0 (not restrictive as ai can be chosen freely)
I ei is not correlated with f

⇒ E
[
(f − f̄ )(ei − ēi )

]
= E

[
(f − f̄ )ei

]
= 0

I Error terms of the assets are uncorrelated

⇒ E [(ei − ēi )(ej − ēj )] = E [eiej ] = 0, i 6= j

I Variances of error terms are known

⇒ E
[
e2

i
]

= σ2
ei
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Single factor model

I With these assumptions, the expected rate of return for
asset i is

r̄i = E[ri ] = ai + bi E[f ] + E[ei ]

⇒ r̄i = ai + bi f̄

I Variance of the return ri is

σ2
i = Var[ri ] = E

[
(ri − r̄i)

2
]

= E
[
(ai + bi f + ei − ai − bi f̄ )2

]
= E

[(
bi(f − f̄ ) + ei

)2
]

= E
[
b2

i (f − f̄ )2 + 2bi(f − f̄ )ei + e2
i

]
⇒ σ2

i = b2
i σ

2
f + σ2

ei
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Single factor model

I Based on stated assumptions, the covariance between
assets i and j is:

σij = Cov[ri , rj ] = E
[
(ri − r̄i)(rj − r̄j)

]
= E

[(
bi(f − f̄ ) + ei

) (
bj(f − f̄ ) + ej

)]
= E

[
bibj(f − f̄ )2 + (bjei + biej)(f − f̄ ) + eiej

]
⇒ σij = bibjσ

2
f , i 6= j
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Single factor model

I Thus it follows that

Cov[ri , f ] = E
[
(ri − r̄i)(f − f̄ )

]
= E

[(
bi(f − f̄ ) + ei

)
(f − f̄ )

]
⇒ Cov[ri , f ] = biσ

2
f

⇒ bi =
Cov[ri , f ]

σ2
f

I A total of 3n + 2 parameters to be estimated
I f̄ , σ2

f ,ai ,bi , and σ2
ei

, for i = 1,2, . . . ,n
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Estimating ai and bi
I Parameters ai and bi can be estimated from the time

series of ri and f
I Estimates differ depending on the selected time span
I Averaging and other statistical methods can be used to

improve accuracy
I Standard statistical estimators

ˆ̄ri =
1
n

n∑
k=1

r k
i

σ̂2
i =

1
n − 1

n∑
k=1

(
r k
i − ˆ̄ri

)2

Ĉov[ri , f ] =
1

n − 1

n∑
k=1

(
r k
i − ˆ̄ri

)(
f k − ˆ̄f

)
,

where superscript k denotes the k th sample
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Estimating ai and bi

I The model parameters can be calculated from the
standard estimates

bi =
Ĉov[ri , f ]

σ̂2
f

ai = ˆ̄ri − bi
ˆ̄f

I The variance of error terms become

σ2
i = b2

i σ
2
f + σ2

ei

⇒ σ̂2
ei

= σ̂2
i − b2

i σ̂
2
f
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Portfolios in the single factor model
I Form a portfolio of n assets

I Asset i has weight wi

I Returns of the assets follow the factor model

ri = ai + bi f + ei

I Return of the portfolio

r =
n∑

w=1

wi ri =
n∑

i=1

wiai +

(
n∑

i=1

wibi

)
f +

n∑
i=1

wiei = a + bf + e,

where

a =
n∑

i=1

wiai , b =
n∑

i=1

wibi , e =
n∑

i=1

wiei
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Portfolios in the single factor model
I For the error term of the portfolio return, we have

E[e] = E

[
n∑

i=1

wiei

]
=

n∑
i=1

wi E[ei ]

⇒ E[e] = 0

Cov[f ,e] = E

[
(f − f̄ )

n∑
i=1

wiei

]
=

n∑
i=1

wi E[(f − f̄ )ei ]

⇒ Cov[f ,e] = 0

Var[e] = E

( n∑
i=1

wiei

) n∑
j=1

wjej

 =
n∑

i=1

w2
i E[e2

i ]

⇒ Var[e] =
n∑

i=1

w2
i σ

2
ei
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Portfolios in the single factor model

I Assume that assets have equal weights and the variance
of error terms is σ2

ei
= s2. Then the variance of the error

term of the portfolio is

σ2
e = Var[e] =

n∑
i=1

w2
i σ

2
ei

=
n∑

i=1

1
n2 s2 =

1
n

s2,

and the variance of the portfolio return is

σ2 = Var[r ] = b2σ2
f + σ2

e,

where σ2
e → 0 as n→∞

I Variance related to the error terms ei can be diversified
I Variance related to terms bi f cannot be diversified
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Single factor model and CAPM
I Suppose you want to postulate a single-factor model

(factor = rM ) similar to the CAPM as follows:

ri − rf = αi + βi(rM − rf ) + ei

I Taking the expectation of this postulated factor model gives

r̄i − rf = αi + βi(r̄M − rf )

I Covariance of ri − rf with rM is

σiM = Cov[ri − rf , rM ] = Cov[αi + βi(rM − rf ) + ei , rM ] = βiσ
2
M

⇒ βi =
σiM

σ2
M

I This is in agreement with the CAPM
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Characteristic line

I Characteristic line is drawn by plotting ri , as given by
equation

ri − rf = αi + βi(rM − rf ),

as a function of its factor rM in the (rM − rf , ri − rf )-space
I ei is assumed to be at its expectation, 0
I Slope of the line is equal to βi
I Intercept of the line is equal to αi
I CAPM predicts that αi = 0
I Measurements of ri and its factor rM can be plotted in a

scatter diagram against this line
I Security market line is drawn in (βi , r̄i)-space
I Capital market line is drawn in (σ, r̄)-space
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Characteristic line
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Multifactor models

I The return can be explained with more than one factor
I With two factors

ri = ai + bi1fi + bi2f2 + ei ,

where ai is the intercept and bi1,bi2 are factor loadings
I Assumptions

I Expected error E[ei ] = 0
I Error terms are uncorrelated with factors and each other
I Factors can correlate with each other
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Multifactor models

I Expected return in the two factor model

r̄i = E[ri ] = ai + bi1 f̄ + bi2 f̄2

I Covariance

Cov[ri , rj ] = E
[ (

bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei
)(

bj1(f1 − f̄1) + bj2(f2 − f̄2) + ej
) ]

=

{
bi1bj1σ

2
f1

+ (bi1bj2 + bi2bj1)σf1,f2 + bi2bj2σ
2
f2
, i 6= j

b2
i1σ

2
f1

+ 2bi1bi2σf1,f2 + b2
i2σ

2
f2

+ σ2
ei
, i = j
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Estimating the parameters of factor models

I Loadings bi1,bi2 can be estimated from the covariance
matrix

Cov[ri , f1] = E
[(

bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei
)

(f1 − f̄1)
]

= bi1σ
2
f1 + bi2σf1,f2

Cov[ri , f2] = bi2σ
2
f2 + bi1σf1,f2

I Solve these equations for bi1 and bi2
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Estimating the parameters of factor models

I The use of multiple factors can be considered if a single
factor model has a large error term variance

I If the error term variance is nearly as high as the variance
of returns, the factor model does not explain much

I Too many factors leads to overfitting⇒ Poor predictions
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Selection of factors

I No unambiguous answer - depends on what the key
factors are believed to be

I External factors, such as
I Gross National Product (GNP)
I Consumer price indices
I Unemployment rate

I Factors extracted from the market, such as
I Market portfolio return
I Average return of companies in one industry
I Days since the last market peak

I Firm characteristics, such as
I Price-earnings ratio
I Dividend payout ratio
I Earnings forecast
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Selection of factors

I Fama-French discuss factors such as:
1. Market risk
2. Firm size
3. Book-to-market ratio

I Book-to-market ratio = Inverse of price (i.e., market
capitalization) / book value (P/B) ratio

I For details see Fama & French (1993): Common risk
factors in the returns on stocks and bonds. Journal of
Financial Economics 33 (optional reading, available at
https://doi.org/10.1016/0304-405X(93)90023-5)

https://doi.org/10.1016/0304-405X(93)90023-5
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Arbitrage Pricing Theory (APT)

I In APT, the parameters of a factor model are chosen to
exclude arbitrage opportunities

I Under the no-arbitrage principle, not all parameter
combinations are possible

I Key assumptions
I There is a large number of assets
I Instead of optimizing with respect to mean-variance (as in

CAPM), the investors just prefer higher returns to lower
returns

I S. Ross (1976): The Arbitrage Theory of Capital Asset
Pricing. Journal of Economic Theory 13, 341-360.
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APT: Example with two assets
I A single factor with two assets and no error term

ri = ai + bi f ,
rj = aj + bj f

I Invest in assets i (weight wi = w) and j (wj = 1− w) that
follow a single factor model

I Portfolio return

r = w(ai + bi f ) + (1− w)(aj + bj f )

= wai + (1− w)aj +
(
wbi + (1− w)bj

)
f

I Select the weight w so that the coefficient of factor f is 0

wbi + (1− w)bj = 0

⇒w =
bj

bj − bi
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APT: Example with two assets

I The portfolio with coefficient 0 for factor f is risk free (no
variance), hence its return must be rf = λ0

r =
bj

bj − bi
ai +

(
1−

bj

bj − bi

)
aj

=
bj

bj − bi
ai −

bi

bj − bi
aj = λ0

I In this setup, λ0 denotes the risk-free interest rate
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APT: Example with two assets
I Given a risk-free interest rate λ0, we find out that the factor

model parameters of assets i and j must be proportional to
each other to ensure absence of arbitrage:

r =
bj

bj − bi
ai −

bi

bj − bi
aj = λ0

⇒bjai − biaj = λ0(bj − bi)

⇒bj(ai − λ0) = bi(aj − λ0)

⇒ai − λ0

bi
=

aj − λ0

bj

I Otherwise, the factor model would offer arbitrage
opportunities

I E.g., different riskless asset combinations would imply
different risk-free interest rates
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APT: Example with two assets
I Thus, for every asset i , ratio (ai − λ0)/bi must be equal to

some constant c

⇒ ai − λ0

bi
= c

⇔ ai = λ0 + bic

I Thus

r̄i = ai + bi f̄ = λ0 + bic + bi f̄

= λ0 + bi(c + f̄ ) = λ0 + biλ1,

where λ1 = c + f̄ is the price of risk associated with factor
f , i.e. the factor price.

I This can be generalized to several factors
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Simple APT (no error terms)
Definition
(Simple APT) Suppose that there are n assets whose rates of
return are governed by m < n factors according to the equation

ri = ai +
m∑

j=1

bij fj

for all assets i = 1,2, . . . ,n. Then there are constants
λ0, λ1, . . . , λm such that expected rates of return are given by

r̄i = λ0 +
m∑

j=1

bijλj

for all assets i = 1,2, . . . ,n.
I λj = price of risk of factor j (i.e., factor price)
I bij = factor loading of factor j of asset i
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Factor model with error terms
I Suppose now that there is also an error term ei in the

factor model of return of asset i with m factors

ri = ai +
m∑

j=1

bij fj + ei

I Next, form a portfolio of n assets using weights wi

r =
n∑

w=1

wi ri =
n∑

i=1

wiai +
m∑

j=1

n∑
i=1

wibij fj +
n∑

i=1

wiei

= a +
m∑

j=1

bj fj + e

where

a =
n∑

i=1

wiai , bj =
n∑

i=1

wibij , e =
n∑

i=1

wiei
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Well-diversified portfolios

I Variance of the error term of the portfolio is

σ2
e =

n∑
i=1

w2
i σ

2
ei

I Assume that all asset error term variances σ2
ei

are
bounded, that is,

σ2
ei
≤ s2

for some s, and assume that all assets have similar
weights (i.e., we have wi ≤W/n for some W ≈ 1)

I This means that the portfolio is well-diversified
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Well-diversified portfolio
I With the assumptions of similar and bounded weights, we

have

σ2
e =

n∑
i=1

w2
i σ

2
ei
≤

n∑
i=1

W 2

n2 s2 =
1
n

W 2s2

⇒ lim
n→∞

σ2
e = 0

I Hence, a well-diversified portfolio with a large number of
assets has practically no non-diversifiable risk

I At limit, the rate of return of such a portfolio is fully
explained by the factor model (because the error terms
tend to go to zero, as n goes to infinity)

r = a +
m∑

j=1

bj fj ,
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General APT
I At limit, as the error terms have gone to zero, simple APT

states the expected rate of return of a well-diversified
portfolio with a very large number of individual assets is

r̄ = λ0 +
m∑

j=1

bjλj ,

I If the above holds for a well-diversified portfolio with a very
large n, then the same must also hold for an individual
asset i , since different well-diversified portfolios may differ
just by a small amount of the asset i . Thus, we have:

r̄i = λ0 +
m∑

j=1

bijλj ,

I This pricing equation is referred to as the General APT
I Note: The rigorous proofs are quite technical
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APT and CAPM

I In the CAPM, the returns are essentially explained by a
factor model

I Some insights can be gained if the assumptions of the
general APT hold
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APT and CAPM

I Let us assume that
1. the CAPM holds,
2. the general APT holds (the number of assets n is large and

market portfolio is well-diversified), and
3. the returns of individual assets are determined by the

following two factor model:

ri = ai + bi1f1 + bi2f2 + ei

I Covariance with the market portfolio is now

Cov[rM , ri ] = E
[
(rM − r̄M)

(
bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei

)]
= bi1 Cov[rM , f1] + bi2 Cov[rM , f2] + Cov[rM ,ei ]
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APT and CAPM

I Since the assumptions of APT hold, we have
Cov[rM ,ei ] ≈ 0 and thus

Cov[rM , ri ] = bi1 Cov[rM , f1] + bi2 Cov[rM , f2]

I Dividing by σ2
M gives the beta of an asset

βi = bi1
Cov[f1, rM ]

σ2
M

+ bi2
Cov[f2, rM ]

σ2
M

= bi1βf1 + bi2βf2

I The βi of asset i is the factor-loading-weighted sum of the
factors’ betas
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Parameter estimation
I Annual return ry formed from monthly returns r1, r2, . . . , r12

1 + ry = (1 + r1)(1 + r2) · · · (1 + r12)

I Assume that monthly returns are small:

1 + ry ≈ 1 + r1 + r2 + · · ·+ r12

⇒ ry = r1 + r2 + · · ·+ r12

I Monthly returns are equally distributed and uncorrelated

r̄y = 12r̄

σ2
y = E

( 12∑
i=1

(ri − r̄)

)2 = E

[
12∑

i=1

(ri − r̄)2

]
= 12σ2



MS-E2114 Investment Science: Lecture 7: Factor models, parameter estimation, and utility
24 October 2022

41/57

Parameter estimation
I If there are p periods in a year, then

r̄p = r̄y/p
σp = σy/

√
p

I When the number of periods p becomes larger, the ratio
between the standard deviation and expected return for
each period increases
⇒ Finding short term estimators becomes more difficult
I If the yearly parameters are E[ry ] = 12% and σy = 15%, the

monthly parameters p = 12 are E[rp] = 1% and
σp = 1/

√
12 · 15% = 4.33%

I The one month return is within the interval 1± 4.33% with a
68% probability, which is a rather wide confidence interval

I Thus, single period expected returns are hard to estimate
reliably even if the time series are long
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Parameter estimation
I Let there be a time series of n independent and identically

distributed observations, denoted by ri , where each
observation is drawn from a random variable with an
expected value r̄ and standard deviation σ

I Unbiased estimator of expected rate of return is

ˆ̄r =
1
n

n∑
i=1

ri

because expected value of the estimator is the true
expected rate of return r̄ :

E
[
ˆ̄r
]

=
1
n

n∑
i=1

E[ri ] =
1
n

n∑
i=1

r̄ = r̄
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Parameter estimation
I Variance of the unbiased estimator of the expected rate of

return is:

σ2
ˆ̄r = Var

[
ˆ̄r
]

= Var

[
1
n

n∑
i=1

ri

]
=

1
n2 Var

[
n∑

i=1

ri

]
Because the observations are independent, we have

Var
[
ˆ̄r
]

=
1
n2

n∑
i=1

Var [ri ] =
1
n2

n∑
i=1

σ2 =
n
n2σ

2 =
1
n
σ2

I Standard deviation of the unbiased estimator thus is:

σˆ̄r =
1√
n
σ
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Parameter estimation
I Standard deviation σˆ̄r of estimator ˆ̄r decreases slowly with

n, because
√

n is in its denominator
I Let monthly E[r ] = 1% and σ = 4.33% and consider a time

series of n = 12 months

σˆ̄r =
1√
12

4.33% = 1.25%

I Should we want to estimate the standard deviation which is
within 10% of the expected returns (0.1 · 1% = 0.10%),
then we would need a time series of 156 years and 3
months

σˆ̄r =
1√
n

4.33% = 0.10%

⇒ n =

(
4.33%

0.10%

)2

= 1875 = 12 · 156.25



MS-E2114 Investment Science: Lecture 7: Factor models, parameter estimation, and utility
24 October 2022

45/57

Overview

Single factor model

Multifactor models

Arbitrage Pricing Theory (APT)

Parameter estimation

Utility theory and risk aversion



MS-E2114 Investment Science: Lecture 7: Factor models, parameter estimation, and utility
24 October 2022

46/57

Investor’s risk preferences

I We have discussed the construction of efficient portfolios
I Mean-variance portfolio theory
I CAPM

I Which one out of the efficient portfolios should the investor
select?

I Specifically, portfolios can be characterized by their
expected return and risk (standard deviation), that is, by an
ordered pair (r , σ)

⇒ Which combination of these parameters should be
selected?
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Expected utility theory (EUT)
(von Neumann & Morgenstern 1947)

I In EUT, investors’ preferences under risk are consistent
with a utility function U : R→ R

I Wealth level x1 preferred to wealth level x2 if and only if

U(x1) > U(x2)

I Random variable A is preferred to random variable B if and
only if

E [U(A)] > E [U(B)]

I von Neumann-Morgenstern utility functions are unique up
to positive affine transformations
⇒ U(x) and V (x) represent the same preferences if and only

if

U(x) = aV (x) + b,

where a > 0 and b ∈ R
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Example on applying expected utility theory

I Investor invests in either
I A: Bank account for a profit of 6 ke, or
I B: Stock that yields a profit of

I 10 ke (probability 0.4)
I 5 ke (probability 0.4)
I 1 ke (probability 0.2)

I Investor’s utility function is U(x) =
√

x (unit of x is ke)

E [U(A)] = U(6) = 2.45
E [U(B)] = 0.4U(10) + 0.4U(5) + 0.2U(1) = 2.36

⇒ A is preferred to B, because
E [U(A)] = 2.45 > 2.36 = E [U(B)]

I Note that E[A] = 6 < 6.2 = E[B]
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Widely used utility functions
I Linear

U(x) = x

I Exponential (a > 0)

U(x) = −e−ax

I Logarithmic

U(x) = ln x

I Power (b ≤ 1,b 6= 0)

U(x) = bxb

I Quadratic

U(x) = x − bx2

(increasing for x < 1/(2b)
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Widely used utility functions
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Certainty equivalent

I The certainty equivalent of a random variable X is the
certain wealth c for which

E [U(c)] = E [U(X )]

⇔ U(c) = E [U(X )]

I E.g, for a 50% chance to win 100 e and 50% chance of
winning nothing, the certainty equivalent could be c = 40e

I If U has an inverse function U−1, certainty equivalent can
be calculated as

c = U−1 (E [U(X )])
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Risk aversion
I Investor is:

I Risk neutral if for all random variables X , his or her
certainty equivalent for X is E[X ]

I Risk averse if for all non-constant random variables X , his
or her certainty equivalent for X is less than E[X ]

I Risk seeking if for all non-constant random variables X ,
his or her certainty equivalent for X is more than E[X ]

I In EUT, investor with utility function U is:
I Risk neutral if U is linear
I Risk averse if U is strictly concave, i.e.,

U(λx + (1− λ)y) > λU(x) + (1− λ)U(y)

for all x 6= y and 0 < λ < 1
I Risk seeking if U is strictly convex, i.e.,

U(λx + (1− λ)y) < λU(x) + (1− λ)U(y)

for all x 6= y and 0 < λ < 1
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Risk aversion coefficient

I Arrow-Pratt risk aversion coefficient

a(x) = −U ′′(x)

U ′(x)

I Measures the degree of risk aversion (concavity) at point x
I Measures the relative rate of change of slope of U at x

I Let k(x) = U ′(x) be the slope of U at x
I Relative rate of change of k(x) is

dk(x)/dx
k(x)

=
U ′′(x)

U ′(x)
= −a(x)
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Risk aversion coefficient

I For the exponential utility function, risk aversion coefficient
is constant

U(x) = −e−bx ⇒ U ′(x) = be−bx ,U ′′(x) = −b2e−bx

⇒ a(x) = −−b2e−bx

be−bx = b

I For logarithmic utility function, risk aversion decreases with
wealth

U(x) = ln x

⇒ a(x) =
1
x
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Elicitation of utility functions

I The utility function may help the investor choose
investments that suit him or her

I Elicitation methods
I Ask for certainty equivalents to get the value of U for

different random variables
I Select the functional form of utility function, fix some

parameters to 1, proceed by carrying out more utility
assessments

I Questionnaires (Luenberger p. 238)
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Utility function and the mean-variance criterion
I Risk aversion is related to the mean-variance criterion
I Example: Assume quadratic utility

U(x) = ax − 1
2

bx2, where a > 0,b ≥ 0

I This is increasing for x ≤ a/b
I Assume that the initial wealth level is 0 (the result can be

extended for positive wealth levels)
I Because E[Y 2] = Var[Y ] + E[Y ]2, portfolio with random

wealth Y has

E [U(Y )] = E
[
aY − 1

2
bY 2

]
= aE[Y ]− 1

2
b E[Y 2]

= aE[Y ]− 1
2

b E[Y ]2 − 1
2

b Var[Y ]

⇒ Thus, for a quadratic utility functions, the optimal portfolio
can be chosen based on expected return and variance
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