CS-E4500 Advanced Course in Algorithms

Week 05 - Tutorial

We return to the satisfiability question. For the k-satisfiability (k-SAT) problem, the formula is restricted so that each clause has exactly k literals. Again, we assume that no clause contains both a literal and its negation, as these clauses are trivial. We prove that any k-SAT formula in which no variable appears in too many clauses has a satisfying assignment.

1. If no variable in a k-SAT formula appears in more than $T=2^{k} / 4 k$ clauses, then the formula has a satisfying assignment.

Solution. Consider the probability space defined by giving a random assignment to the variables. For $i=1, \ldots, m$, let E_{i} denote the event that the i th clause is not satisfied by the random assignment. Since each clause has k literals,

$$
\mathrm{P}\left(E_{i}\right)=2^{-k}
$$

The event E_{i} is mutually independent of all of the events related to clauses that do not share variables with clause i. Because each of the k variables in clause i can appear in no more than $T=2^{k} / 4 k$ clauses, the degree of the dependency graph is bounded by $d \leq k T \leq 2^{k-2}$. In this case,

$$
4 d p \leq 4 \cdot 2^{k-2} \cdot 2^{-k}=1
$$

so we can apply the Lovász Local Lemma to conclude that there exists an assignment where none of the E_{i} 's occur.
2. Show that if

$$
4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}} \leq 1
$$

then it is possible to 2-color the edges of K_{n} such that it has no monochromatic K_{k} as a subgraph.
Solution. Consider a random 2-coloring of the graph. Let E_{i} be the event that the i th copy of K_{k} is a monochromatic clique. Then we have

$$
\mathrm{P}\left(E_{i}\right)=2^{\left.-\left(\binom{k}{2}-1\right)\right)}=2^{1-\binom{k}{2}} .
$$

Two k-cliques are independent if the two cliques share at most one vertex. For any k-clique, there are at most $\binom{k}{2}\binom{n-2}{k-2}<\binom{k}{2}\binom{n}{k-2}$ other cliques sharing at least two vertices with it. Thus, if we construct the dependency graph for all E_{i} 's, the maximum degree can be bounded by

$$
d \leq\binom{ k}{2}\binom{n}{k-2}
$$

Hence, it holds that

$$
4 d p=4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2} \leq 1}
$$

and we can apply the Lovász Local Lemma to conclude that there exists a coloring where none of the E_{i} 's occur.

