

Quantum Mechanics PHYS-C0252 lecture starts 10:15

First lecture on 24.10.2022

Lecturers: Mikko Möttönen and Tapio Ala-Nissilä

Teaching assistants: Andras "Marci" Gunyho, Heikki Suominen (and Niko Savola)

QUANTUM TECHNOLOGY WILL CHANGE THE WORLD (FOR BETTER)

CHEMISTRY AND PHARMA

ENERGY

SUSTAINABILITY

FINTECH

CYBER SECURITY

INDUSTRY RAMPING UP

QUANTUM COMPUTING GLOBAL MARKET PROJECTIONS

https://www.statista.com/statistics/936010/quantum-computing-future-market-outlook-forecast/

ANNUAL REVENUE OF QUANTUM TECH INDUSTRY IN FINLAND (MILLIONS OF EUROS)

many scientific questions to be answered

finally job opportunities in quantum

what an amazing time to study quantum technology!

Quantum technology – OLD CURRICULUM

Year 1 Autumn

MS-A0111 Diff & int calculus 1

MS-A0011 Matrix algebra

CS-A1110 Programming 1

ELEC-C9420 Intro to quantum tech

Intro for BSc students

TU-A1300 Industrial eng manag

Language course Spring

MS-A0502 Probability & statistics

MS-A0211 Diff & int calculus -

MS-A0311 Diff & int calculus

CS-A1120 Programming 2

ELEC-C9430 Electromagnetism

PH-A0140 Quantum materials/StMa

Year 2

MS-C1350 Part diff eqs

CS-A1140 Data struct & algorith

PHYS-C0252 Quantum mechanics

Minor/elective

Minor/elective

Minor/elective

Spring

ENG-A1003 Numerical Methods

PHYS-C0256 Thermo & stat mech

ELEC-C9440 Quantum info

PHYS-C0254 Quantum circuits

Aalto course

Minor/elective

Year 3

PHYS-C0258 Quantum labs

Major optional

Minor/elective

Minor/elective

Minor/elective

Minor/elective

Spring

BSc thesis

Major optional

Machine Learning

Minor/elective

Minor/elective

Aalto University 7

Intended Learning Outcomes (ILOs)

- 1. Is familiar with the mathematical structure and postulates of quantum mechanics
- 2. Can differentiate between the terms quantum-mechanical state and wavefunction
- 3. Can solve the eigenstates and eigenvalues of the **Schrödinger equation** in simple situations and knows how to generalize the computation to situations where analytical solution is challenging.
- 4. Can **integrate the quantum evolution** and the expectation values of physical quantities for simple systems.
- 5. Can apply **creation and annihilation operators** to solve the eigenstates of a one-dimensional harmonic oscillator.
- 6. Can apply the quantum formalism to model a qubit and a register of several qubits.
- 7. Can predict **measurement** probabilities from a given quantum state.
- 8. Can apply **perturbation theory** to compute eigensolutions in a situation where analytical solutions is challenging.

PEAK AT SYLLABUS

https://mycourses.aalto.fi/course/view.php?id=33562

(

Course content, rough

- Hilbert space and Dirac notation
- Operators, eigenvalues and eigenfunctions
- Properties of (Hermitian) operators
- Postulates of quantum mechanics (inc. superposition & meas)
- · Expectation values and variance
- Continuous-variable bases: coordinate representation, momentum basis
- Quantization of a physical system
- Schrödinger equation and temporal evolution
- Qubit (two-level system)
- Two-system and entanglement
- Commutator and conserved quantities

- Solving 1D harmonic oscillator using creation and annihilation operators
- Excited states of a 1D harmonic oscillator
- Free particles and plane waves
- Particle in a box
- Particles in different potential wells: infinite and finite wells in 1D
- Scattering and tunneling through barriers
- Bloch's theorem
- Bosons and fermions
- Perturbation theory (non-degenerate)
- Time-dependent perturbation theory
- Time dependence of operators: different pictures
- Adiabatic theorem
- Rabi oscillations

Particalities

- All in person
 - Future lectures and exercises organized in person (M240&U3/Y308)
 - We aim **not** to have Zoom streaming. Old recording to be in MyCo.
 - Exams are organized in person
- Excercises
 - Deadline for returning solutions every Wednesday night (problems based on the lectures of the previous week)
 - Exception for last excercise where DL is already on Friday of the publishing week
 - Problem sets for excercises published by previous Monday
 - Bonus 6 points (one full problem) to the next exam

Practicalities continue

- Zulip chat to ask for help: https://qmech2022.zulip.aalto.fi/. TAs will try to answer in a reasonable time frame.
- Additions?
- Questions?
- Grading scale last year

	points		Final garde
27	<	37	5
24	<	27	4
21	<	24	3
18	<	21	2
15	<	18	1

