
ELEC-E8125 Reinforcement Learning
Model-based RL

Joni Pajarinen

25.10.2022

Learning goals

• Understand how optimal control relates to model-based
reinforcement learning

Motivation from two perspectives

• Reinforcement learning has limited sample efficiency
– Locally optimal control can control complex systems

• For example, whole body control of a humanoid robot
https://www.youtube.com/watch?v=vI-8xgJ6ct0

– Caveat: optimal control requires knowing the system dynamics

• Learned policies are task, that is, reward-function-
specific, learned knowledge cannot be reused

Can we somehow combine RL and optimal control?

https://www.youtube.com/watch?v=vI-8xgJ6ct0

Anatomy of reinforcement learning

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Anatomy of reinforcement learning:
Policy gradient

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)∇ θR(θ)

 (policy gradient)θ←θ+α∇ θR(θ)

Anatomy of reinforcement learning:
Value-function based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)Qϕ (s ,a)

 (policy gradient)
 (Q-learning)
θ←θ+α∇ θ R(θ)
arg maxaQϕ (s , a)

∇ θR(θ)

Anatomy of reinforcement learning:
Model-based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)
Estimate (model-based)p(st+1∣st , at)

 (policy gradient)
 (Q-learning)
Optimize (model-based)

θ←θ+α∇ θ R(θ)

πθ(a∣s)

Qϕ (s , a)

arg maxaQϕ (s , a)

∇ θR(θ)

Anatomy of reinforcement learning
Model-based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)
Estimate (model-based)p(st+1∣st , at)

 (policy gradient)
 (Q-learning)
Optimize (model-based)

θ←θ+α∇ θ R(θ)

πθ(a∣s)

Today this for known dynamics.

arg maxaQϕ (s , a)

Qϕ (s , a)

∇ θR(θ)

Solving optimal control problems

min∑ t
c (s t ,at)

cost
function

max∑t
r (st ,at)

Optimal control
optimization objective

Reinforcement learning
optimization objective

reward
function

c (s t , at)=−r (s t ,at)

Solving (deterministic, finite-horizon)
optimal control problems

mina1 ,… , aT∑t
c (st ,a t) s . t . s t+1=f (s t ,a t)

mina1 ,… , aT
c (s1 , a1)+c (f (s1 , a1) , a2)+…+c (f (f (…)) , aT)

How to solve these?

Can also be written as:

system dynamics
cost

function

Shooting vs collocation

Shooting methods: Optimize actions

Collocation methods: Optimize actions and states

(constrained optimization)

How to solve optimal control
with linear dynamics?

mina1 ,… , aT
c (s1 , a1)+c (f (s1 , a1) , a2)+…+c (f (f (…)) , aT)

min
a1 ,… ,a T , s1 ,… , sT

∑t
c (s t ,a t) s . t . s t+1= f (s t ,a t)

LQR (linear-quadratic regulator)
Problem definition (finite horizon)

f (st ,a t)=(At B t)(
st
a t)+ f t=F t(

st
a t)+ f t

c t (st ,a t)=
1
2 (
st
a t)

T

C t (
s t
a t)+(

s t
a t)

T

c t

Note: costs for different time steps may vary.
For example, different costs for final time step.

mina1 ,… , aT
c(s1 ,a1)+c(f (s1 ,a1) ,a2)+…+c(f (f (…)) ,aT)

C t=(
C s t , s t

C s t , a t

C at , s t
C at , at

) c t=(
cst
cat)

Note: We will follow notation
that clumps together state
and action, opposite to
traditional control literature,
because most recent RL
papers use that. We also
include the bias term from
the beginning.

Example system: 1-D particle motion

How to solve?

f (st ,a t)=Ft (
s t
a t)+ f t

c t (st ,a t)=
1
2 (
st
a t)

T

C t (
st
a t)+(

st
at)

T

c t

LQR partial derivation, final step

f (st ,a t)=Ft (
st
a t)+ f t

c t (st ,a t)=
1
2 (
st
a t)

T

C t (
st
a t)+(

s t
at)

T

c t

mina1 ,… , aT
c (s1 , a1)+c (f (s1 , a1) , a2)+…+c (f (f (…)) , aT)

Only cost depending on aT

Q(sT , aT)=const+
1
2 (
sT
aT)

T

CT (
sT
aT)+(

sT
aT)

T

cT

∇a t
Q (sT ,aT)=CaT , sT sT+C aT ,a T

a t+cat=0

aT=−CaT , aT
−1

(C at , st
s t+c at)

Action-value function:

C t=(
C s t , s t

C s t , a t

C at , s t
C at , at

) c t=(
cs t
cat)

aT=K T sT+kT
KT=−CaT , aT

−1 Ca t ,s t
kT=−CaT , aT

−1 cat

LQR partial derivation, final step

V (sT)=const+
1
2 (

sT
KT sT+kT)

T

CT (
sT

KT sT+kT)+(
sT

KT sT+kT)
T

cT

State-value function (by substitution):

aT=K T sT+kT KT=−CaT , aT
−1 C at , st

kT=−C aT ,aT
−1 cat

V (sT)=const+
1
2
sT
T VT sT+sT

T vT

State value function is quadratic in !sT

What about other time steps?

mina1 ,… , aT
c (s1 , a1)+c (f (s1 , a1) , a2)+…+c (f (f (…)) , aT)

LQR partial derivation, other steps

Q(s t , at)=const+
1
2 (
st
a t)

T

C t (
st
a t)+(

st
at)

T

c t+V (f (s t ,a t))

=const+
1
2 (
st
a t)

T

Q t(
st
a t)+(

st
a t)

T

qt

Qt=C t+F t
TV t+ 1F t

q t=c t+Ft
TV t+1 f t+F t

T v t+ 1

quadratic

V (sT)=const+
1
2
sT
T VT sT+sT

T vT

quadratic

Let’s optimize the action! (how?)

Note: We skip here the
derivation of V t ,v t

LQR partial derivation, other steps

Q(s t , at)=const+
1
2 (
st
a t)

T

C t (
st
a t)+(

st
at)

T

c t+V (f (s t ,a t))

=const+
1
2 (
st
a t)

T

Q t(
st
a t)+(

st
a t)

T

qt

Qt=C t+F t
TV t+ 1F t

q t=c t+Ft
TV t+1 f t+F t

T v t+ 1

∇a t
Q (s t ,a t)=Q at , st

s t+Q at ,a t
a t+q t

T
=0

a t=K t s t+k t K t=−Qat , at
−1 Q at , st

k t=−Qat , at
−1 qa t

quadratic

V (sT)=const+
1
2
sT
T VT sT+sT

T vT

quadratic

Again: Optimal controller is linear in !st

LQR algorithm

Qt=C t+F t
TV t +1F t

qt=c t+F t
TV t+ 1 f t+F t

T v t+ 1

K t=−Qa t , a t
−1 Qat , st

k t=−Q at , at

−1 qat
V t=Qs t , s t+Q s t , a t

K t+K t
TQat , s t

+K t
TQa t , at K t

v t=q st+Q s t , a t
kt+K t

T qat+K t
TQ at , a t

k t

Backward recursion:

For t = T down to 1

Forward recursion:

For t = 1 to T

a t=K t s t+k t
s t+1= f (st ,a t)

First: compute the gains. Then: apply the law to
 compute controls.

System uncertainty / stochastic
dynamics

• A linear system with Gaussian noise can be controlled
optimally using separation principle:
– Use optimal observer (Kalman filter) to observe state
– Control system using LQR with mean predicted state

• No change in algorithm!

f (s t ,a t)=Ft (
s t
a t)+ f t+w t w t∼N (0 ,Σt)

p(st+ 1∣s t , at)∼N (Ft (
s t
a t)+ f t ,Σ t)

Gaussian noise

But many systems are not linear?

Non-linear systems -
Iterative LQR
• Approximate a non-linear system as a linear-quadratic

f (st ,a t)=Ft (
st
a t)

c t (st ,a t)=
1
2 (
st
a t)

T

C t (
st
a t)+(

s t
at)

T

c t

f (st ,a t)≈ f (ŝ t , â t)+∇ st , at
f (ŝt , â t)(

st− ŝ t
a t− ât)

c t (st ,a t)≈c (ŝt , â t)+
1
2 (
s t− ŝt
a t−â t)

T

∇ st ,a t

2 c (ŝ t , â t)(
s t− ŝt
a t−â t)+∇ st , at

c (ŝ t , â t)(
st− ŝt
a t− â t)

Note: System dynamics known and differentiable!

Non-linear systems -
Iterative LQR

f̄ (δ st ,δa t)=F t (
δ st
δ a t) c̄ t (δ st ,δu t)=

1
2 (
δ s t
δ a t)

T

C t (
δ st
δ a t)+(

δ st
δ at)

T

c t

∇s t ,a t
f (ŝ t , â t)

∇s t ,a t
2 c (ŝt , ât) ∇s t ,a t

c (ŝt , ât)

Thus we have a LQR in δ s t ,δa t

f (st , a t)≈ f (ŝ t , â t)+∇s t , at
f (ŝt , â t)(

st− ŝt
a t− â t)

c t (st ,a t)=c (ŝt , â t)+
1
2 (
st− ŝt
a t−â t)

T

∇ st ,a t

2 c(ŝt , â t)(
st− ŝt
a t−â t)+∇ st , at

c (ŝt , â t)(
st− ŝ t
a t− â t)

Iterative LQR (iLQR) – Algorithm outline

Good source for details: Tassa, Erez, Todorov (2012).
Synthesis and Stabilization of Complex Behaviors
through Online Trajectory Optimization.

Repeat

 Run LQR backward pass with
 Run LQR forward pass with real dynamics and
 Update to results of forward pass
until convergence

Ft=∇ st , at
f (ŝt , â t)

C t=∇ st , at

2 c (ŝt , â t)

c t=∇ st , at
c (ŝt , â t)

δ s t ,δa t
a t=K t δ s t+k t+ â t

ŝ t , â t

Practical considerations:
● Usually receding horizon is used: At every time-step, state is

observed, iLQR is applied, and (only) first action is executed.
● On first iteration, gradients can be evaluated at starting point.

Planning by sampling –
Shooting methods
Shooting methods: optimize actions

How to solve? Random shooting:

- Simulate multiple trajectories using random policy (remember Monte
Carlo policy evaluation from lecture 3?)

- Execute action with lowest cost / highest return

- Repeat

V (s0)=mina0 ,…,aT −1
c (s0 ,a0)+…+c (f (f (…)) ,aT−1)

How to select policy? Uniformly
random policy?

Qπ(s0 ,a0)≈
1
N ∑i=0

N−1

∑
t=0

T−1

γ
t r t

V (s0)=maxa0 ,… ,aT−1
R(s0 ,a0)+…+R(f (f (…)) , aT−1)

The cross-entropy method (CEM)
general background
• Estimate value

• Can be used to estimate

• Using Monte Carlo estimation does not work

when is tiny
• CEM provides efficient estimation based on importance

sampling (details in [De Boer 2005])

• The approach can be used also in optimization:
– Select to yield high probability for

– Increase d to reach higher V(x) values
– Repeat

E u [H (x)]=∫ P (x |u)H (x)dx

π

P π(V (X)≥d)=Eπ [I {V (X)≥d }]

P π(V (X)≥d)

P π(V (X)≥d)

CEM for optimization

• Goal: maximize V(a)

• Choose sampling distribution. We choose a Gaussian

• While not converged:
– Sample N samples from current sampling distribution
– Evaluate objective function at each
– Fit parameters of the sampling distribution to

M (M < N) samples with the highest

– Repeat

πθ(a)=𝒩 (a |μ ,σ2)

πθ(a)ai

V (ai)
θ=(μ ,σ 2)

ai

ai V (ai)

How to use this in model-based RL?

• Goal: maximize
• Sampling distribution at each time step t:

• While not converged:
– Perform Monte Carlo evaluation (Lecture 3) over N trajectories using

sampling distribution and dynamics model

→ We get for trajectory i at time step t sample with value

– For each time step t fit parameters of

the sampling distribution to M (M < N) samples with the highest

– Repeat

πθ(t)(at)=𝒩 (at |μ(t) ,σ
2
(t))

V (s t
i
)

θ(t)=(μ(t) ,σ 2(t))

Are there other ways of using CEM in
model-based RL?

CEM in model-based RL

V (s0)

V (s t
i
)st

i

V (s t
i
)=∑

k=0

H

γ
k r t+k

i

Anatomy of reinforcement learning
Model-based

Adopted from Sergey Levin.

Fit a model to
estimate return

Update
policy

Run policy to
generate samples

Estimate (policy gradient)
Fit (Q-learning, actor-critic)
Estimate (model-based)

∇θ R

p(st+1∣st , at)

Qϕ (s ,a)

 (policy gradient)
 (Q-learning)
Optimize (model-based)

θ←θ+α∇ θ R(θ)
argmax aQϕ(s , a)

πθ(a∣s)

Next week: put these together.

Teaser: Basic iterative model-based RL

Input: base policy
Run base policy to collect data
Repeat
 Fit dynamics model to minimize
 Use model to plan (e.g. iLQR, CEM) actions
 Execute first planned action, observe resulting state
 Update dataset

π0
D←{(s ,a , s ')i }

f (s , a) ∑i
‖f (si ,a i)−s i '‖

2

s '
D←D∪{(s , a , s ')}

Viewpoint: Use learned model as “simulator” that allows exploring various
options to choose one that is (locally) optimal.

Summary

• Optimal control for linear systems with quadratic costs
can be determined with LQR

• Locally optimal control for nonlinear systems can be
performed using linearization of dynamics in iterative
LQR

• CEM allows for sample based planning with arbitrary
costs/reward and dynamics

• Model-based reinforcement learning aims especially to
increase data efficiency

Next: Model-based RL – again – but with
learned models
• What kind of dynamics model to use?

• How to optimize a general policy function?

• Reading: Sutton & Barto, ch. 8-8.2. No quiz for next
week’s lecture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

