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Instruction level parallelism

Low level operational model 
of a modern CPU

SISD: Scalar vs. superscalar 
processor

Pipelining: MISD-like setup
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Data parallelism
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Task parallelism
Top level operational 
model of modern 
supercomputer 
application

Adding concurrency
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Modern hybrid architectures

Combining all Flynn’s taxonomies in 
a way or another

How to build 
applications for 
such systems?

[1] A recent review of processor types used in HPC infras for those who are interested.
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Memory access taxonomy
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Memory access taxonomy
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Memory access taxonomy
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Memory access taxonomy
Distributed memory systems
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Data parallelism

HPC

Node

Within node: multicore 
shared-memory chip(s)

Between nodes: 
Interconnect network
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Interconnect
Infiniband protocol and connector technology; Ethernet protocol.
Important properties affecting the performance (global bandwidth 
and latency)
• Topology (How are the links in between compute nodes 

organized; who can connect to who, through whom)
• Connection type (How is the processing unit connected to the 

network)
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Topology

• Degree: number of links from a node
• Diameter: maximum number of links between nodes over a path 

with minimal distance (worst case routing distance)
• Average distance: number of links to a random node
• Bisection: minimum number of links that divide the network into two 

equal halves (can estimate worst case bandwidth)
• Bisection bandwidth: Bisection x link bandwidth

Physical networks + virtual mappings of the processes when designing a parallel program

Minimize diameter, maximize bisection
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Topology: examples

Diameter: 3 (n-1)
Bisection: 1
Number of switches: n

Diameter: 3 (n/2)
Bisection: 2
Number of switches: n

Bus

Ring

no
de
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Topology: examples
2D mesh

2D torus
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Topology: examples
“8+8” Hypercube

K-Binary tree

To improve further, multilevel networks

K=3
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Topology: examples

Butterfly

Diameter: 3 (ln(n)-1)
Bisection: 8 (n/2) 
Number of switches: 32 
(n*(ln(n)+1))

Cost: the more links and switches (large hop count), the 
more resources it takes to build and operate
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Topology: modern HPC
Fat tree

Increase bandwidth at high 
levels
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Topology: modern HPC
Dragonfly

Fully connected graph

Minimizes diameter and 
maximises bisection
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Topology: modern HPC
What would then this be?

Mahti@CSC, image credit CSC
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Interconnect
Summary of current HPC interconnects
• Topology (Dragonfly, fat tree, torus, all sorts of combinations at 

multiple layers)
• Connection type (Currently most networks are multi-level, 

switches can handle an order of hundred of ports)
• Latency (1-2microsecs)
• Bandwidth (Nowadays around 100Gbit/s-200Gbit/s achieved 

through multiple lanes)

[1] A recent review of interconnect status for those who are interested.
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Interconnect
How much (as a user) do you care about the interconnect 
topology?
• Thanks to libraries such as MPI, not much. Why? Should one?
• Jobs are usually small in comparison to the scale of the system 

(fit into a chunk or island).
• On this local scale, the job schedulers do a good job.
• Larger simulations challenge all this, and we are heading 

towards exascale computing.
• Hence, learning about topologies is not in vain!
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Bhatelé & Kalé 
(2009) IBM BG/P 
using messages 
between 
equidistant pairs 
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Performance models without interconnect: 
RAM and PRAM

• If there was only shared memory…
• 𝑻𝑹𝑨𝑴 = 𝑵𝑪 +𝑵𝑴

𝑵𝑪 the number of instructions completed
𝑵𝑴 the number of loads/stores from/to the memory
• Communication to other distant nodes is not an issue
• For sequential algorithms, still valid, but requires extensions 

to take into account multi-level caches.
• PRAM an extension to multiple processors
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Latency-bandwidth performance model (𝜶𝜷, used 
since the 1970’s)
𝑻𝑳𝑩 = 𝜶 + 𝒏(𝜷 + 𝜸);

𝜶 = Latency (start up cost of communication)
𝜷 = Time cost per unit message length sent (bandwidth cost)
𝜸 =  Time consumed in actual computation
𝒏 = Message length 

• Both receiver and sender block
• No multiple messages allowed
• Does not allow for overlap (concurrency) in communication and 

computation.
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BSP model (Valiant et al. 1990)
• Bulk synchronous applications that 

perform supersteps
• 𝑻𝑩𝑺𝑷 = 𝒎𝒂𝒙𝒊*𝟏

𝒑 𝝎𝒊 +𝒎𝒂𝒙𝒊*𝟏
𝒑 𝒈𝒏𝒉𝒊 + 𝒍

𝒑 number of processors
𝒉 number of messages, 𝒏 their length
𝒈 bandwidth throughput
𝒍 barrier cost
• Topology is not accounted for
• Has many applications, including 

MapReduce.

barrier

barrier

…

…

Comp

Comm

Comm

Comp

Interested knowing more: Pace (2012) 
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LogP model (Culler et al. 1993)

• Asynchronous messages
• 𝑻𝒍𝒐𝒈𝑷 = 𝟐𝒐 + 𝑳 + 𝒏 − 𝟏 𝒈

𝒏 is the data size
𝒐 is the overhead (processor)
𝑳 is the network latency 
𝒈 ≥ 𝒐 is the gap between two sends 

or receives
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What is required in practise?

27
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Ideal situation: all communication is 
overlapped with computations. 

Not-wanted situation: communication is 
not totally overlapped with computations. 

Superstep

Superstep



Asynchronous communication-compute performance 
model for real applications  (ACC) [3]

Let us denote latency of computations as 𝝉𝑾, when performing 𝑾
operations on data items, and that of communications as 𝝉𝑸, when 
communicating 𝑸 data items. 𝝅 is the operational capability of the 
hardware as data item updates per second, and 𝜷 the rate at which 
data items can be communicated. The latencies of computation and 
communication are therefore, 𝝉𝑾 = 𝑾/𝝅 and 𝝉𝑸 = 𝑸/𝜷 respectively. Let us 
further assume that there is a portion of computations that cannot be 
overlapped (made concurrent) with the communication; let this fraction be 
𝝉𝟎. The total latency is determined by the non-concurrent parts of the code

𝜏 = max(𝜏4, 𝜏5) + 𝜏6

In reality, the “gap” does not only come from “preparations” to communicate, but from
actual computations taking quite some time. These can be overlapped with comms.
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ACC model cntd
Trivial limit: 𝝉𝟎 dominates (rather a rare condition).
When 𝝉𝟎 is small, there are two interesting limits: 
1) When there is a lot to compute, and little to communicate, 𝝉𝑾 > 𝝉𝑸,we are in the 
compute-bound limit.

2) When there is a lot to communicate, and little to compute, 𝝉𝑾 < 𝝉𝑸, we are in the
communication-bound limit (where all the other performance issues of 
memory exchange/interconnect kick in).

Goal: always to stay in limit 1), never 
run an application in limit 2).
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Amdahl’s law
One way of determining speedup from parallelism:

Let 𝒇 be the fraction of computations performed sequentially. The 
fraction that can be done in parallel is (𝟏 − 𝒇). The time that it 
takes, for a fixed problem size, to execute all the computations 
with 𝑷 processing units is then

𝑻𝑷 = 𝒇 +
(𝟏 − 𝒇)
𝑷

The speedup is 𝑻𝟏
𝑻𝑷
= 𝟏

𝒇9(𝟏;𝒇)/𝑷
< 𝟏

𝒇
; limited by the sequential part
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Strong scaling
• The problem size is kept fixed, the number of PUs is 

increased, and the execution time is monitored.
• Due to the serial part of the code, the ideal linear scaling 

(when you double PUs, the computing time halves) saturates 
to a level 𝟏

𝒇
, after which increasing PUs does not make sense.

• Follows from Amdahl’s law.
• Strong scaling to large number of PUs is very challenging to 

retain.
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Gustafson’s law
Another viewpoint on speedup from parallelism:

If the workload is growing, the serial fraction of the program does 
not limit speedup if the parallel part scales well. The speedup can 
be written as the ratio of the workloads

𝑾𝑷
𝑾𝟏

= 𝒇 + 𝟏 − 𝒇 𝑷.
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Weak scaling
• Follows from Gustafson’s law.
• The problem size is not kept constant, but increased so that 

each PU has a constant workload, and one monitors the 
execution time.

• Perfect scaling up to many more PUs is easier to maintain.
• Usually both strong and weak scalings are required to be 

shown when testing the parallel performance of a code.
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Stencils
• Recurring update patterns (iterative stencil loops, ISL) of arrays
• Nearly everywhere, can be of any shape and complication

2D von Neumann 2D Moore
3D 55-point stencil 
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Stencils
• Order of stencil: how many neighbors in a certain cardinal

direction it needs for updating the central point. (Not useful for 
asymmetric stencils)

• N-point stencil: N is the total number of points (including itself) 
it needs for updating the central point

• Challenge parallelism:
PU1

PU2

PU3

PU4

Tasks are not independent, as 
they need data from other PUs 
to complete the update

2nd order 9 
point stencil
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ISL: Halo exchange

The points that need to be exchanged form the so called halo.
The size of the halo depends on the order and structure of the 
stencil. 

Example: 2nd order, 2D 
von Neumann stencil, 5x5 
computational subdomain 

Green cells: 
Interior points 
that can be 
updated without 
data exchangeYellow cells: halo

points required 
from neighbors

Red cells: edge 
points that can be 
updated when the 
halo points are 
received
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ACC model [3]: example curve for high-order ISLs.

2.1. Previous work
In previous work, we presented a library for accelerating

ISLs on GPUs, called Astaroth [16]. It provides an application
programming interface to the GPU resources and a domain-
specific language for writing stencil kernels. Astaroth was
inspired by an earlier proof-of-concept hydrodynamics solver
presented in [17, 18], which was originally created for the pur-
pose of exploring how to accelerate the computational methods
used by the Pencil Code [19]. Later, the library was extended
to support computations on multiple devices on a single node
using CUDA peer-to-peer memory transfers [20]. In this work,
we extend Astaroth to support computations on multiple nodes.

There are several libraries and frameworks designed for ac-
celerating stencil codes. The one, which is closest related to
Astaroth, is Physis [21], which has also been designed for ac-
celerating stencil computations on GPUs and performs source-
to-source translation from a DSL to CUDA and MPI. How-
ever, communication is carried out explicitly via host mem-
ory. Another library close to our work is LibGeoDecomp [22],
which is a mature, stencil-focused library supporting hierar-
chical geometric partitioning and load balancing on heteroge-
neous systems, including GPUs. Instead of a DSL, LibGeoDe-
comp provides C++ templates for describing the parameters
for stencil kernels. Of PDE-specific libraries similar to our
work, Fargo3D [23] is focused on accelerating MHD simula-
tions, supports multiple GPUs and performs communication us-
ing CUDA-aware MPI. Instead of handling the memory of each
GPU explicitly as in Astaroth, Fargo3D uses Unified Virtual
Addressing (UVA) to manage the resources on a node. Yet an-
other framework focused on advection-di↵usion type problems
is PyFR [24], which provides hierarchical and graph-based par-
titioning based on the Metis [25] and Scotch [26] software
packages. The Cactus Framework has adopted a more generic
approach, providing tools for large-scale parallelization of var-
ious types of tasks, including stencil computations [27, 28].

The main di↵erence of Astaroth to existing libraries is its
specialized focus on improving cache reuse in stencil computa-
tions, where the working set, that is, the data required to update
a small group of cells, is too large to fit into the caches of a
GPU. As such, Astaroth is especially suited for multiphysics
simulations, which use high-order stencils, double precision,
and require data from several coupled fields to update a cell.
For more details on the single-GPU optimization techniques
and code generation of Astaroth, we refer the reader to [16].

3. Methodology

3.1. Performance modeling
Performance models are useful for estimating theoretical

performance limits, which can be used to determine whether
further optimizations are needed or to calculate the expected
scaling profile without having to queue for compute resources.
In this section, we describe a simple performance model, which
we use to find the upper bound for scaling performance. While
the model has likely been introduced before, we are not aware
of an established name. In the following discussion, we use
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Figure 3: An example of the strong scaling profile produced with Eq. 4.

generic terminology and focus on ISL-specific definitions from
Section 3.2 onward. We use the term processing element to
refer to a generic computational unit that performs work in par-
allel, such as a node or a device. The terms host and device are
used to refer to the CPU and GPU, respectively. Finally, we
use the term communication to refer to data movement within
or between non-local memory systems.

As processing elements operate in parallel, the running time
is the maximum time it takes for an element to complete its
task. We denote the computational workload per processing el-
ement as W data items and the amount of communication as
Q data items. Furthermore, ⇡ is the operational capability of
the hardware as data item updates per second, and � the rate
at which data elements can be communicated. The time taken
by computation and communication is therefore ⌧W = W⇡�1

and ⌧Q = Q��1, respectively. In this work, we measure ⇡ em-
pirically by benchmarking the program on a single device and
calculate � based on the theoretical network bandwidth and the
size of a data item.

As computation and communication must be carried out in
parallel to achieve e�cient scaling, the running time of an ideal
implementation is max

�
⌧W , ⌧Q

�
. Taking inspiration from Am-

dahl’s law, we further include a term ⌧0 to capture the time taken
in the sequential portion of the program. We use the term se-
quential to refer to computations that cannot be carried out in
parallel with communication.

We can now model the running time as

max
�
⌧W , ⌧Q

�
+ ⌧0 . (4)

In this form, the model produces a scaling profile that is familiar
from multi-processor benchmarks, see Fig. 3. When the perfor-
mance of a kernel is limited by compute performance, it is said
to be compute bound. In this case, ⌧W > ⌧Q. The kernel is
communication bound when the opposite is true. Alternatively,
we can express the performance bounds in terms of operational
intensity I = W/Q, where the limiter is compute performance if
I > ⇡/� [29].

3.2. Domain decomposition
There are two major considerations for implementing a

communication scheme for distributed applications. Firstly, the
problem domain must be decomposed into P subdomains, and

3
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ACC model [3]: example curve for high-order ISLs.
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generic terminology and focus on ISL-specific definitions from
Section 3.2 onward. We use the term processing element to
refer to a generic computational unit that performs work in par-
allel, such as a node or a device. The terms host and device are
used to refer to the CPU and GPU, respectively. Finally, we
use the term communication to refer to data movement within
or between non-local memory systems.

As processing elements operate in parallel, the running time
is the maximum time it takes for an element to complete its
task. We denote the computational workload per processing el-
ement as W data items and the amount of communication as
Q data items. Furthermore, ⇡ is the operational capability of
the hardware as data item updates per second, and � the rate
at which data elements can be communicated. The time taken
by computation and communication is therefore ⌧W = W⇡�1

and ⌧Q = Q��1, respectively. In this work, we measure ⇡ em-
pirically by benchmarking the program on a single device and
calculate � based on the theoretical network bandwidth and the
size of a data item.

As computation and communication must be carried out in
parallel to achieve e�cient scaling, the running time of an ideal
implementation is max
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. Taking inspiration from Am-

dahl’s law, we further include a term ⌧0 to capture the time taken
in the sequential portion of the program. We use the term se-
quential to refer to computations that cannot be carried out in
parallel with communication.

We can now model the running time as

max
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⌧W , ⌧Q
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In this form, the model produces a scaling profile that is familiar
from multi-processor benchmarks, see Fig. 3. When the perfor-
mance of a kernel is limited by compute performance, it is said
to be compute bound. In this case, ⌧W > ⌧Q. The kernel is
communication bound when the opposite is true. Alternatively,
we can express the performance bounds in terms of operational
intensity I = W/Q, where the limiter is compute performance if
I > ⇡/� [29].
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There are two major considerations for implementing a

communication scheme for distributed applications. Firstly, the
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