CS-E4690 — Programming Parallel Supercomputers

Taxonomies and definitions

Maarit Korpi-Lagg

A”

Aalto University
School of Science

mailto:maarit.korpi-lagg@aalto.fi

Flynn’s taxonomy

SISD {] MISD

| |
KX

| |
g 52

] MIMD

Instruction level parallelism

«SISD” Low level operational model
[] of a modern CPU

SISD: Scalar vs. superscalar
processor

Pipelining: MISD-like setup

Aalto University
School of Science
| |

Data parallelism

SIMD []

Vectorization

SIMT

Task parallelism

Top level operational
] model of modern

supercomputer
application

MIMD

Adding concurrency

|
—©
O

SPMD

Aalto University
School of Science
| |

Modern hybrid architectures

Combining all Flynn’s taxonomies in
a way or another

How to build
applications for
such systems?

[1] A recent review of processor types used in HPC infras for those who are interested.

oAItU
Sch IfS

Memory access taxonomy

Sequential single
computer

Memory access taxonomy

An array of (sequential) computers

Full task parallelism, no communication
Coarse-grained Embarrassingly

HTC parallel

Aalto University
School of Science
| |

Memory access taxonomy

Multicore shared-memory chips

.

Memory access taxonomy

Distributed memory systems

Interconnect
network

r

Within node: multicore
shared-memory chip(s)

Fine-grained

Data parallelism

Aalto University
School of Science
| |

Between nodes:
Interconnect network
10

Interconnect

Infiniband protocol and connector technology; Ethernet protocol.

Important properties affecting the performance (global bandwidth
and latency)

 Topology (How are the links in between compute nodes
organized; who can connect to who, through whom)

- Connection type (How is the processing unit connected to the
network)

11

Topology

Physical networks + virtual mappings of the processes when designing a parallel program

« Degree: number of links from a node

* Diameter: maximum number of links between nodes over a path
with minimal distance (worst case routing distance)

« Average distance: number of links to a random node

« Bisection: minimum number of links that divide the network into two
equal halves (can estimate worst case bandwidth)

 Bisection bandwidth: Bisection x link bandwidth

Minimize diameter, maximize bisection
A? s

12

Topology: examples

F__—

Bus '

l
_—
O O O d Diameter: 3 (n-1)
Bisection: 1

Number of switches: n

Ring
Diameter: 3 (n/2)
Bisection: 2
Number of switches: n

Aalto University
School of Science
| |

13

Topology: examples 2D torue

sesf i
-9~
4%

St

Topology: examples K-Binary tree
“8+8” Hypercube K=3

N

To improve further, multilevel networks

Aalto University
School of Science
| |

15

Topology: examples

Butterfly

Diameter: 3 (In(n)-1)
Bisection: 8 (n/2)
Number of switches: 32
(n*(In(n)+1))

Cost: the more links and switches (large hop count), the
AD e more resources it takes to build and operate

16

Topology: modern HPC

Fat tree

Increase bandwidth at high
levels

Topology: modern HPC

Dragonfly

Fully connected graph

Minimizes diameter and
maximises bisection

7.

()]

0

1)

=

e

c

[¢})

=

e

L)

-

(@]

3

-

©

m
9]
3 5
o O
o o
R K

modern HPC

VA
/N

Topology

— 5x200 gbit links

‘ Spine switch

-Nodes 200r18

Mahti@CSC, image credit CSC

Aalto University
School of Science

A?

19

Interconnect

Summary of current HPC interconnects

* Topology (Dragonfly, fat tree, torus, all sorts of combinations at
multiple layers)

« Connection type (Currently most networks are multi-level,
switches can handle an order of hundred of ports)

- Latency (1-2microsecs)

- Bandwidth (Nowadays around 100Gbit/s-200Gbit/s achieved
through multiple lanes)

[1] A recent review of interconnect status for those who are interested.

20

Interconnect

How much (as a user) do you care about the interconnect
topology?

A

Thanks to libraries such as MPI, not much. Why? Should one?

Jobs are usually small in comparison to the scale of the system
(fit into a chunk or island).

On this local scale, the job schedulers do a good job.

Larger simulations challenge all this, and we are heading
towards exascale computing.

Hence, learning about topologies is not in vain!

Aalto University
School of Science

21

Latency vs. Message Size: With varying hops (8 x 8 x 16)

65536 oF . , ,]
I i
Bhatelé & Kalé 16384 | 8 hgg: wissudlibi s
(2009) IBM BG/P - 7 hops ---%---
using messages 4096 ~ 6 hops &
between - - 5 hops
equidistant pairs 5 1024 |- 4 hops
m~ - 3 hops - -e- -
o 256 - 2 hops = A
2 " 1 hop: ===
< 64 i
16 |
4 _u-l.xlrl/
1 | | |]]] |]

4 16 64 256 1K 4K 16K 64K 256K 1M
Al, Aalto University Message Size (Bytes)

School of Science

Performance models without interconnect:
RAM and PRAM

* |f there was only shared memory...

* Tpram = N¢+ Ny

N the number of instructions completed

N, the number of loads/stores from/to the memory

« Communication to other distant nodes is not an issue

 For sequential algorithms, still valid, but requires extensions
to take into account multi-level caches.

« PRAM an extension to multiple processors

Aalto University
School of Science
| |

23

Latency-bandwidth performance model (af, used

since the 1970’s)
Tip=a+n(B+vy);
a = Latency (start up cost of communication)
B = Time cost per unit message length sent (bandwidth cost)
y = Time consumed in actual computation
n = Message length
 Both receiver and sender block
No multiple messages allowed

 Does not allow for overlap (concurrency) in communication and
computation.

Aalto University
School of Science
| |

24

BSP model (valiant et al. 1990)

 Bulk synchronous applications that
perform supersteps

Comp

e Tgep = maxl 1(oul) + max!_, (gnh;) + 1

<>

p number of processors >< o

h number of messages, n their length

v !
g bandwidth throughput t
[barrier cost Comp
 Topology is not accounted for v
« Has many applications, including M Comm
MapReduce .
A- Sehoolof e Interested knowing more: Pace (2012)

25

LogP model (Culler et al. 1993)

« Asynchronous messages 9
Tioap =20+L+(n—1 o L
logP ()g PO ""!W:k\ """" I sen N
n is the data size ' ' 0
o is the overhead (processor)
L is the network latency Pl% ______ receive

g = o is the gap between two sends

or receives | oL

Aalto University
School of Science
| |
26

What is required in practise?

|deal situation: all communication is
overlapped with computations.

Not-wanted situation: communication is
not totally overlapped with computations.

Aalto University
School of Science
| |

Superstep

Superstep

\

™~

~~

omp

1 varer K

Comp

P

mm

1 vorier @

27

Asynchronous communication-compute performance
model for real applications (ACC) [3]

In reality, the “gap” does not only come from “preparations” to communicate, but from
actual computations taking quite some time. These can be overlapped with comms.

Let us denote latency of computations as ty,, when performing W

operations on data items, and that of communications as 7, when

communicating Q data items. « is the operational capability of the
hardware as data item updates per second, and g the rate at which
data items can be communicated. The latencies of computation and
communication are therefore, Ty, = W/m and 7y = Q/p respectively. Let us
further assume that there is a portion of computations that cannot be
overlapped (made concurrent) with the communication; let this fraction be
To. The total latency is determined by the non-concurrent parts of the code

T = max(Ty, Tg) + T

Aalto University
School of Science
| |

28

ACC model cntd

Trivial limit: Ty, dominates (rather a rare condition).
When t, is small, there are two interesting limits:

1) When there is a lot to compute, and little to communicate, Ty, > 7y, we are in the
compute-bound limit.

2) When there is a lot to communicate, and little to compute, 7y, < 74, we are in the
communication-bound limit (where all the other performance issues of
memory exchange/interconnect kick in).

Goal: always to stay in limit 1), never
run an application in limit 2).

Aalto University
School of Science
| |

29

Amdahl’s law

One way of determining speedup from parallelism:

Let f be the fraction of computations performed sequentially. The
fraction that can be done in parallel is (1 — f). The time that it
takes, for a fixed problem size, to execute all the computations
with P processing units is then

1-1)

Tp=f+

< %; limited by the sequential part

. Tq _ 1
The speedup is To — Fr(1_f)/P

Aalto University
School of Science
| |

30

Amdahl’s law B

YTV Y] £ =0.05

195
a I
_g L
8mf o) f=01
o
D | |
5i 1
: f=0.25
f =05
07 S R IS R S I R R ‘\“‘\\\‘\“\7
2 4 6 3 10 12 14 16

School of Science

A? Aalto University P in powers Of 2

Strong scaling

The problem size is kept fixed, the number of PUs is
increased, and the execution time is monitored.

Due to the serial part of the code, the ideal linear scaling
(when you double PUs, the computing time halves) saturates

to a level)1; after which increasing PUs does not make sense.

Follows from Amdahl’s law.

Strong scaling to large number of PUs is very challenging to
retain.

32

Gustafson’s law

Another viewpoint on speedup from parallelism:

If the workload is growing, the serial fraction of the program does

not limit speedup if the parallel part scales well. The speedup can
be written as the ratio of the workloads

W= f+@=pP.

33

Weak scaling

Follows from Gustafson’s law.

The problem size is not kept constant, but increased so that
each PU has a constant workload, and one monitors the
execution time.

Perfect scaling up to many more PUs is easier to maintain.

Usually both strong and weak scalings are required to be
shown when testing the parallel performance of a code.

34

Stencils

* Recurring update patterns (iterative stencil loops, ISL) of arrays
* Nearly everywhere, can be of any shape and complication

. =

2D von Neumann 2D Moore .

3D 55-point stencil
A? g::ool: fS

35

Stencils

* Order of stencil: how many neighbors in a certain cardinal

direction it needs for updating the central point. (Not useful for
asymmetric stencils)

* N-point stencil: N is the total number of points (ingluding itself)
it needs for updating the central point [; PU3

« Challenge parallelism:

Tasks are not independent, as
they need data from other PUs =~ “ru2 = =

to complete the update

2nd order 9
A Aalto University pOint stencil
| |

School of Science

ISL: Halo exchange

The points that need to be exchanged form the so called halo.

The size of the halo depends on the order and structure of the
stencil.

Red cells: edge
points that can be
updated when the

Example: 2nd order, 2D

von Neun]ann stencil, 5x_5 halo points are Green cells:

computational subdomain received Interior points
that can be
updated without

data exchange

Yellow cells: halo
points required
from neighbors

L]

Aalto University
School of Science
| |

37

ACC model [3]: example curve for high-order ISLs.

Communication

Running time

Compute
—
bound |

Number of processing elements

\4

Aalto University
School of Science
| |

ACC model [3]: example curve for high-order ISLs.

CPU
computing 4

Accelerated
code with
GPUS

Communication
bound

Running time

1o

Compute
—
bound !

Number of processing elements

\4

Aalto University
School of Science
| |

39

Core reading

[1] Tekin et al., “State-of-the-Art and Trends for Computing and Interconnect
Network Solutions for HPC and Al”, Prace publications.

[2] Zhang, Y., Chen, G., Sun, G., and Miao, Q. (2007). Models of parallel
computation: A survey and classification. Frontiers of Computer Science in China,
1:156-165.

[3] Pekkila, J. et al. ”Scalable communication for high-order stencil computations
using CUDA-aware MPI”, Parallel Computing. 111, 102904.
https://doi.org/10.1016/j.parco.2022.102904

Aalto University
School of Science
| |

40

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiUgaHG0tvzAhVxwIsKHZmGCuYQFnoECAQQAQ&url=https%3A%2F%2Fprace-ri.eu%2Fwp-content%2Fuploads%2FState-of-the-Art-and-Trends-for-Computing-and-Interconnect-Network-Solutions-for-HPC-and-AI-1.pdf&usg=AOvVaw3aGrWiXBNk0MHYwLk4stnh

Extra reading

Valiant, L. G. (1990). A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111.

« Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E., Santos, E.,
Subra- monian, R., and von Eicken, T. (1993). LogP: towards a realistic model of
parallel computation. Proceedings of the fourth ACM SIGPLAN symposium on
Principles and practice of parallel programming, 28(7):1-12.

« Bhatelé and Kalé (2009), Quantifying network contention on large parallel
machines, Parallel Processing Letters, 19(4),
https://doi.org/10.1142/S0129626409000419

 Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107-113.

« Pace, M. F.,, (2012), “BSP vs. MapReduce”, Procedia Computer Science, 9, 246-
255, doi:10.1016/j.procs.2012.04.026

Aalto University
School of Science
| |

41

https://doi.org/10.1142/S0129626409000419

