Mathematics for Economists

Mitri Kitti
Aalto University
Constrained Optimization

Exercise

Consider the following constrained maximization problem:

$$
\begin{aligned}
\max _{x_{1}, x_{2}} & x_{1}^{2} x_{2} \\
\text { s. t. } & 2 x_{1}^{2}+x_{2}^{2}=3
\end{aligned}
$$

1. What can you say about the existence of a solution? (Think about Weierstrass's Theorem)
2. Solve this optimization problem

Exercise

- The objective function is continuous. The constraint set is compact. If we restrict the function's domain to the constraint set, we can apply Weierstrass's Theorem and conclude that a solution to this maximization problem exists
- Since $\frac{\partial h}{\partial x_{1}}=4 x_{1}$ and $\frac{\partial h}{\partial x_{2}}=2 x_{2}$, the only point where both partial derivatives are equal to zero is $(0,0)$. This point does not belong to the constraint set. Therefore, the constraint qualification is satisfied
- The Lagrangian is

$$
L\left(x_{1}, x_{2}, \lambda\right)=x_{1}^{2} x_{2}-\lambda\left(2 x_{1}^{2}+x_{2}^{2}-3\right)
$$

Exercise

- Critical points of the Lagrangian are found by solving the following system:

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=2 x_{1} x_{2}-4 \lambda x_{1}=0 \\
& \frac{\partial L}{\partial x_{2}}=x_{1}^{2}-2 \lambda x_{2}=0 \\
& \frac{\partial L}{\partial \lambda}=-\left(2 x_{1}^{2}+x_{2}^{2}-3\right)=0
\end{aligned}
$$

- See p. 419 in the textbook on how to solve the system above

Exercise

- It turns out that the Lagrangian has six critical points:

$$
\begin{array}{rll}
(0, \sqrt{3}, 0), & (0,-\sqrt{3}, 0), & (1,1,0.5) \\
(-1,-1,-0.5), & (1,-1,-0.5), & (-1,1,0.5)
\end{array}
$$

- Now, we already know that a solution must exist. By the Proposition at p. 14 in the slides from Lecture 12, we also know that the solution must be a critical point of the Lagrangian. Therefore, we can find the solution just by evaluating the objective function at each of the six critical points above

Exercise

- We have:

$$
\begin{aligned}
f(1,1)=f(-1,1) & =1 \\
f(1,-1)=f(-1,-1) & =-1 \\
f(0, \sqrt{3})=f(0,-\sqrt{3}) & =0
\end{aligned}
$$

- Hence both $(1,1)$ and $(-1,1)$ solve our constrained maximization problem

Constrained Optimization

- The general formulation of a constrained optimization problem with n variables and $m \leq n$ equality constraints is to
- maximize or minimize the objective function $f\left(x_{1}, \ldots, x_{n}\right)$
- subject to the constraints:

$$
\begin{aligned}
& h_{1}\left(x_{1}, \ldots, x_{n}\right)=a_{1} \\
& h_{2}\left(x_{1}, \ldots, x_{n}\right)=a_{2} \\
& \ldots \quad \ldots \quad \ldots \quad \ldots \\
& h_{m}\left(x_{1}, \ldots, x_{n}\right)=a_{m}
\end{aligned}
$$

- The constraint set is

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: h_{1}(\mathbf{x})=a_{1}, h_{2}(\mathbf{x})=a_{2}, \ldots, h_{m}(\mathbf{x})=a_{m}\right\}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$

Constrained Optimization

- In the previous lecture, we introduced a constraint qualification condition. To generalize it to n variables and m constraints, we need the Jacobian derivative of the constraints. At any given point \mathbf{x}, the Jacobian $D \mathbf{h}(\mathbf{x})$ is the $m \times n$ matrix

$$
D \mathbf{h}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial h_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial h_{1}}{\partial x_{n}}(\mathbf{x}) \\
\frac{\partial h_{2}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial h_{2}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{m}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial h_{m}}{\partial x_{n}}(\mathbf{x})
\end{array}\right)
$$

where $\mathbf{h}=\left(h_{1}, \ldots, h_{m}\right)$

- We say that a point \mathbf{x} is a critical point of \mathbf{h} if the rank of $\mathbf{D h}(\mathbf{x})$ is strictly less than m
- We say that \mathbf{h} satisfies the nondegenerate constraint qualification (NDCQ) at \mathbf{x} if the rank of $D \mathbf{h}(\mathbf{x})$ at \mathbf{x} is m

Constrained Optimization

Proposition (First order necessary condition)

Let $f, h_{1}, h_{2}, \ldots, h_{m}$ be C^{1} functions defined over \mathbb{R}^{n}. Suppose that:

1. $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in C$ is a local maximizer or a local minimizer of f on the constraint set

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: h_{1}(\mathbf{x})=a_{1}, h_{2}(\mathbf{x})=a_{2}, \ldots, h_{m}(\mathbf{x})=a_{m}\right\}
$$

2. \mathbf{x}^{*} satisfies the $N D C Q$.

Then, there exists real numbers $\lambda_{1}^{*}, \ldots, \lambda_{m}$ such that $(\mathbf{x}, \boldsymbol{\lambda}):=\left(x_{1}^{*}, \ldots, x_{n}^{*}, \lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)$ is a critical point of the following Lagrangian function:

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i}\left(h_{i}(\mathbf{x})-a_{i}\right)
$$

Constrained Optimization

- The proposition in the previous slide does not say that a solution exists. It says that, if it exists, it must be a critical point of the Lagrangian
- The NDCQ requires that $D \mathbf{h}\left(\mathbf{x}^{*}\right)$ has full rank m (recall that $m \leq n$)

Constrained Optimization

- The proposition at p. 9 can be applied as follows:

1. Check the NDCQ by finding all the points (if any) in the constraint set C at which the rank of the Jacobian $\operatorname{Dh}(\mathbf{x})$ is strictly less than m
2. Find the critical points of the Lagrangian function
3. If there are no points in C at which the NDCQ is violated, the critical points of the Lagrangian are the only candidates for a solution to the original constrained optimization problem
4. If there points in C at which the NDCQ is violated, then the candidates for a solution to the original optimization problem are both i) the critical points of the Lagrangian and ii) points in C at which the rank of $\mathbf{D h}(\mathbf{x})$ is strictly less than m

Constrained Optimization

- Example. Consider the following constrained maximization problem:

$$
\begin{aligned}
\max _{x, y} & x^{2}+y^{2} \\
\text { subject to } & x^{2}+x y+y^{2}=3
\end{aligned}
$$

- By Weierstrass's Theorem, we know that a solution exists (why?)
- The Lagrangian is $L(x, y, \lambda)=x^{2}+y^{2}-\lambda\left(x^{2}+x y+y^{2}-3\right)$

Constrained Optimization

- Example (cont'd). The Jacobian derivative is:

$$
D \mathbf{h}(x, y)=(2 x+y \quad 2 y+x)
$$

- The critical points of L are:

1. $(-\sqrt{3}, \sqrt{3}, 2)$
2. $(\sqrt{3},-\sqrt{3}, 2)$
3. $\left(1,1, \frac{2}{3}\right)$
4. $\left(-1,-1, \frac{2}{3}\right)$

- The NDCQ is violated at $(0,0)$, which does not belong to the constraint set C
- Thus we can conclude that $(-\sqrt{3}, \sqrt{3})$ and $(\sqrt{3},-\sqrt{3})$ are global constrained maximizers, whereas $(1,1)$ and $(-1,-1)$ are global constrained minimizers (why?)

Constrained Optimization

Proposition (Sufficient condition for the existence of a solution)
Let $f, h_{1}, h_{2}, \ldots, h_{m}$ be C^{1} functions defined on an open and convex set $U \subseteq \mathbb{R}^{n}$. Suppose $\mathbf{x}^{*} \in U$ and $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is a stationary point of the Lagrangian function:

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i}\left(h_{i}(\mathbf{x})-a_{i}\right) .
$$

- If L is concave in \mathbf{x} given λ^{*}-in particular, if f is concave and $\lambda_{j}^{*} h_{j}$ is convex for all $j=1, \ldots, m$-then \boldsymbol{x}^{*} is a solution to the constrained maximization problem
- If L is convex in \mathbf{x} given λ^{*}-in particular, if f is convex and $\lambda_{j}^{*} h_{j}$ is concave-then \boldsymbol{x}^{*} is a solution to the constrained minimization problem

Constrained Optimization

- Example. Consider the following constrained minimization problem:

$$
\begin{aligned}
\min _{x, y, z} & x^{2}+y^{2}+z^{2} \\
\text { subject to } & x+2 y+z=1 \\
& 2 x-y-3 z=4
\end{aligned}
$$

- The Lagrangian is

$$
L(x, y, z, \lambda)=x^{2}+y^{2}+z^{2}-\lambda_{1}(x+2 y+z-1)-\lambda_{2}(2 x-y-3 z-4)
$$

which is convex for any values of λ_{1} and λ_{2}

Constrained Optimization

- Example (cont'd). The Jacobian is

$$
D \mathbf{h}(x, y, z)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & -3
\end{array}\right),
$$

which has rank 2 for every (x, y, z)

Constrained Optimization

- Example (cont'd). The critical points of L can be found by solving the following system:

$$
\begin{array}{r}
2 x-\lambda_{1}-2 \lambda_{2}=0 \\
2 y-2 \lambda_{1}+\lambda_{2}=0 \\
2 z-\lambda_{1}+3 \lambda_{2}=0 \\
x+2 y+z=1 \\
2 x-y-3 z=4
\end{array}
$$

- You can verify that the unique solution of the constrained minimization problem is $\left(x^{*}, y^{*}, z^{*}\right)=\left(\frac{16}{15}, \frac{1}{3},-\frac{11}{15}\right)$, and the corresponding multipliers are $\lambda_{1}=\frac{52}{75}$ and $\lambda_{2}=\frac{54}{75}$

Application: Willingness to Pay and Demand

- Consumer with utility $u(x, y)=v(x)+y$, where y is money and x is the amount of consumption of a goods
- Budget $p x+y=w$, where w is the consumer wealth and p is the price of the good
- Lagrange function $v(x)+y-\lambda(p x+y-w)$
- First order conditions

$$
\begin{aligned}
v^{\prime}(x)-\lambda p & =0 \\
1-\lambda & =0
\end{aligned}
$$

Application: Consumer Surplus and Demand

- Inverse demand (from FOCs) is $p=v^{\prime}(x)$
- Marginal willingness to pay for amount of good $x: M W T P=v^{\prime}(x)$, i.e., at price $p=M W T P$ the consumer would be willing to buy an extra unit with the price price
- For a quasilinear utility (linearity in money) MWTP=inverse demand function
- Total willingness to pay is $\int_{0}^{x} P(z) d z$, when $P(z)$ is the inverse demand function (marginal WTP)
- The solution of $p=v^{\prime}(x)$ is the demand function $x(p)$
- Utility can be recovered from the inverse demand $P(z)$, when assuming $v(0)=0$: because $v(x)-v(0)=\int_{0}^{x} P(z) d z$ it holds that

$$
u(x, w-p x)=v(x)+[w-p x]=\int_{0}^{x} P(z) d z+[w-p x]
$$

Application: Consumer Surplus and Demand

- Utility for a consumer i with utility $u_{i}(x, y)=v_{i}(x)-y$ from consumption of $x_{i}(p)$ at price p is $u_{i}\left(x_{i}(p), w_{i}-p x_{i}(p)\right)$
- Aggregate consumer utility

$$
\sum_{i}\left[u_{i}\left(x_{i}(p), w_{i}-p x_{i}(p)\right)\right]=\sum_{i}\left[v_{i}\left(x_{i}(p)\right)-p x_{i}(p)\right]-W,
$$

where W is the total wealth and $v_{i}\left(x_{i}(p)\right)-p x_{i}(p)$ is the surplus of consumer i

- What does the aggregate consumer surplus

$$
\sum_{i}\left[v_{i}\left(x_{i}(p)\right)-p x_{i}(p)\right]
$$

have to do with the are under the demand curve?

Application: Production of Public Goods

- Consumers with utilities $u_{i}\left(G, y_{i}\right)$, where y_{i} is private consumption and G is consumption of public good
- Planner's problem with the socially optimal amount of public good production
- $\max \sum u_{i}\left(G, y_{i}\right)$ subject to budget constraint: $\sum y_{i}+c(G)=\sum w_{i}$, where w_{i} is the wealth of consumer i
- First order optimality conditions:

$$
\begin{aligned}
\partial u_{i}\left(G, y_{i}\right) / \partial y_{i}-\lambda & =0 \\
\sum_{i} \partial u_{i}\left(G, y_{i}\right) / \partial G-\lambda c^{\prime}(G) & =0
\end{aligned}
$$

- Samuelson's condition:

$$
\sum_{i}\left[\partial u_{i}\left(G, y_{i}\right) / \partial G\right] /\left[\partial u_{i}\left(G, y_{i}\right) / \partial y_{i}\right]=c^{\prime}(G)
$$

Second Order Sufficient Optimality Conditions

- In unconstrained optimization problems, we used second order conditions to classify critical points of the objective function as local minimizers or maximizers
- Second order conditions can be established also for constrained optimization. In order to do that, we need to introduce bordered matrices

Bordered Hessians

- Suppose we want to determine the definiteness of the following quadratic form:

$$
Q\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

subject to the linear constraint $A x_{1}+B x_{2}=0$, where $A, B \in \mathbb{R}$

- Assuming $A \neq 0$, we get $x_{1}=-\frac{B}{A} x_{2}$ from the linear constraint. Substituting the latter expression in the objective function Q, we obtain

$$
Q\left(-\frac{B}{A} x_{2}, x_{2}\right)=\frac{a B^{2}-2 b A B+c A^{2}}{A^{2}} x_{2}^{2}
$$

- Thus Q is positive definite on the constraint set $A x_{1}+B x_{2}=0$ if and only if $a B^{2}-2 b A B+c A^{2}>0$, and negative definite if and only if $a B^{2}-2 b A B+c A^{2}<0$

Bordered Hessians

- The expression $a B^{2}-2 b A B+c A^{2}$ can be written as

$$
a B^{2}-2 b A B+c A^{2}=-\operatorname{det}\left(\begin{array}{ccc}
0 & A & B \tag{1}\\
A & a & b \\
B & b & c
\end{array}\right)
$$

where the matrix is obtained by bordering the 2×2 coefficient matrix of the quadratic form on the top and left by the coefficients A and B of the linear constraint

- Thus the definiteness of Q can be studied by looking at the determinant of the bordered matrix in (1)

Bordered Hessians

- More generally, suppose we want to study the definiteness of the quadratic form $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, where A is an $n \times n$ coefficient matrix, subject to the linear constraint set:

$$
\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
B_{m 1} & B_{m 2} & \cdots & B_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Bordered Hessians

- The corresponding bordered matrix is

$$
H=\left(\begin{array}{cccccc}
0 & \cdots & 0 & B_{11} & \cdots & B_{1 n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & B_{m 1} & \cdots & B_{m n} \\
B_{11} & \cdots & B_{m 1} & a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
B_{1 n} & \cdots & B_{m n} & a_{1 n} & \cdots & a_{n n}
\end{array}\right)
$$

- In more compact form,

$$
H=\left(\begin{array}{cc}
\mathbf{0} & B \\
B^{T} & A
\end{array}\right)
$$

Bordered Hessians

- The definiteness of $Q(\boldsymbol{x})$ when restricted to the linear constraint $B \mathbf{x}=\mathbf{0}$ can be determined by checking the last $n-m$ leading principal minors of H, starting with the determinant of H itself.

1. If $\operatorname{det}(H)$ has the same sign as $(-1)^{n}$, and if the last $n-m$ leading principal minors alternate in sign, then $Q(\boldsymbol{x})$ is negative definite on the constraint set $B \mathbf{x}=\mathbf{0}$, and $\mathbf{x}=\mathbf{0}$ is a strict global constrained maximizer
2. If $\operatorname{det}(H)$ and the last $n-m$ leading principal minors all have the same sign as $(-1)^{m}$, then $Q(\mathbf{x})$ is positive definite on the constraint set $B \mathbf{x}=\mathbf{0}$, and $\mathbf{x}=\mathbf{0}$ is a strict global constrained minimizer
3. If both conditions 1. and 2. are violated by some non-zero leading principal minor, then $Q(\boldsymbol{x})$ is indefinite on the constraint set $B \mathbf{x}=\mathbf{0}$, and $\mathbf{x}=\mathbf{0}$ is neither a constrained maximizer nor a minimizer

Second Order Sufficient Optimality Conditions

Proposition (Second order sufficient condition)
Let $f, h_{1}, h_{2}, \ldots, h_{m}$ be C^{2} functions defined over \mathbb{R}^{n}. Consider the problem of maximizing f on the constraint set

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: h_{1}(\mathbf{x})=a_{1}, h_{2}(\mathbf{x})=a_{2}, \ldots, h_{m}(\mathbf{x})=a_{m}\right\}
$$

Suppose that:

- $x^{*} \in C$
- $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is a critical point of the Lagrangian L for the maximization problem under consideration
- the Hessian of L with respect to \mathbf{x} at $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is negative definite on the linear constraint set $D \mathbf{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{v}=0$. That is,

$$
\boldsymbol{v} \neq 0 \text { and } D \mathbf{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{v}=0 \Longrightarrow \boldsymbol{v}^{T}\left(D_{x}^{2} L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)\right) \boldsymbol{v}<0
$$

Then, \mathbf{x}^{*} is a strict local constrained maximizer of f on C

Second Order Sufficient Optimality Conditions

Proposition (Second order sufficient condition)
Let $f, h_{1}, h_{2}, \ldots, h_{m}$ be C^{2} functions defined over \mathbb{R}^{n}. Consider the problem of minimizing f on the constraint set

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: h_{1}(\mathbf{x})=a_{1}, h_{2}(\mathbf{x})=a_{2}, \ldots, h_{m}(\mathbf{x})=a_{m}\right\} .
$$

Suppose that:

- $x^{*} \in C$
- $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is a critical point of the Lagrangian L for the minimization problem under consideration
- the Hessian of L with respect to \mathbf{x} at $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is positive definite on the linear constraint set $D \mathbf{h}\left(\boldsymbol{x}^{*}\right) \mathbf{v}=0$. That is,

$$
\boldsymbol{v} \neq 0 \text { and } D \mathbf{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{v}=0 \Longrightarrow \boldsymbol{v}^{T}\left(D_{x}^{2} L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)\right) \boldsymbol{v}>0
$$

Then, \mathbf{x}^{*} is a strict local constrained minimizer of f on C

Second Order Sufficient Optimality Conditions

- Example. Consider the following constrained maximization problem:

$$
\begin{array}{ll}
\max _{(x, y, z) \in \mathbb{R}_{+}^{3}} & x^{2} y^{2} z^{2} \\
\text { subject to } & x^{2}+y^{2}+z^{2}=3
\end{array}
$$

- The Lagrangian is

$$
L(x, y, z, \lambda)=x^{2} y^{2} z^{2}-\lambda\left(x^{2}+y^{2}+z^{2}-3\right)
$$

Second Order Sufficient Optimality Conditions

- Example (cont'd). The first order conditions are:

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=2 x y^{2} z^{2}-2 \lambda x=0 \\
& \frac{\partial L}{\partial y}=2 x^{2} y z^{2}-2 \lambda y=0 \\
& \frac{\partial L}{\partial z}=2 x^{2} y^{2} z-2 \lambda z=0 \\
& \frac{\partial L}{\partial \lambda}=-\left(x^{2}+y^{2}+z^{2}-3\right)=0
\end{aligned}
$$

which solve for $x=y=z=\lambda=1$

Second Order Sufficient Optimality Conditions

- Example (cont'd). The bordered Hessian is

$$
H=\left(\begin{array}{cccc}
0 & 2 x & 2 y & 2 z \\
2 x & 2 y^{2} z^{2}-2 \lambda & 4 x y z^{2} & 4 x y^{2} z \\
2 y & 4 x y z^{2} & 2 x^{2} z^{2}-2 \lambda & 4 x^{2} y z \\
2 z & 4 x y^{2} z & 4 x^{2} y z & 2 x^{2} y^{2}-2 \lambda
\end{array}\right)
$$

Second Order Sufficient Optimality Conditions

- Example (cont'd). At the critical point $(x, y, z, \lambda)=(1,1,1,1)$, the bordered Hessian becomes:

$$
H=\left(\begin{array}{llll}
0 & 2 & 2 & 2 \\
2 & 0 & 4 & 4 \\
2 & 4 & 0 & 4 \\
2 & 4 & 4 & 0
\end{array}\right)
$$

- The definiteness of H depends on the signs of the last $n-m=3-1$ leading principal minors

Constrained Optimization

- Example (cont'd). The last leading principal minor is the determinant of H itself. The second to last leading principal minor is the submatrix H_{3} :

$$
H_{3}=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 4 \\
2 & 4 & 0
\end{array}\right)
$$

- We have that $\operatorname{det}(H)=-192$ and $\operatorname{det}\left(H_{3}\right)=32$. Consequently, H is negative definite (on the constrained set)
- Thus we can conclude that $(x, y, z)=(1,1,1)$ is a local constrained maximizer

Exercise

Study the definiteness of the quadratic form

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+4 x_{2} x_{3}-2 x_{1} x_{4}
$$

on the following constraint set:

$$
\begin{array}{r}
x_{2}+x_{3}+x_{4}=0 \\
x_{1}-9 x_{2}+x_{4}=0 .
\end{array}
$$

