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Exercise

Consider the following constrained maximization problem:

max
x1,x2

x21x2

s. t. 2x21 + x22 = 3

1. What can you say about the existence of a solution? (Think about Weierstrass’s
Theorem)

2. Solve this optimization problem
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Exercise

▶ The objective function is continuous. The constraint set is compact. If we restrict
the function’s domain to the constraint set, we can apply Weierstrass’s Theorem
and conclude that a solution to this maximization problem exists

▶ Since ∂h
∂x1

= 4x1 and ∂h
∂x2

= 2x2, the only point where both partial derivatives are
equal to zero is (0, 0). This point does not belong to the constraint set.
Therefore, the constraint qualification is satisfied

▶ The Lagrangian is

L(x1, x2, λ) = x21x2 − λ(2x21 + x22 − 3)
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Exercise

▶ Critical points of the Lagrangian are found by solving the following system:

∂L

∂x1
= 2x1x2 − 4λx1 = 0

∂L

∂x2
= x21 − 2λx2 = 0

∂L

∂λ
= −(2x21 + x22 − 3) = 0

▶ See p. 419 in the textbook on how to solve the system above
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Exercise

▶ It turns out that the Lagrangian has six critical points:

(0,
√
3, 0), (0,−

√
3, 0), (1, 1, 0.5)

(−1,−1,−0.5), (1,−1,−0.5), (−1, 1, 0.5)

▶ Now, we already know that a solution must exist. By the Proposition at p. 14 in
the slides from Lecture 12, we also know that the solution must be a critical point
of the Lagrangian. Therefore, we can find the solution just by evaluating the
objective function at each of the six critical points above
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Exercise

▶ We have:

f (1, 1) = f (−1, 1) = 1

f (1,−1) = f (−1,−1) = −1

f (0,
√
3) = f (0,−

√
3) = 0

▶ Hence both (1, 1) and (−1, 1) solve our constrained maximization problem
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Constrained Optimization

▶ The general formulation of a constrained optimization problem with n variables
and m ≤ n equality constraints is to
▶ maximize or minimize the objective function f (x1, . . . , xn)
▶ subject to the constraints:

h1(x1, . . . , xn) = a1

h2(x1, . . . , xn) = a2

. . . . . . . . . . . .

hm(x1, . . . , xn) = am

▶ The constraint set is

C = {x ∈ Rn : h1(x) = a1, h2(x) = a2, . . . , hm(x) = am} ,

where x = (x1, . . . , xn)
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Constrained Optimization
▶ In the previous lecture, we introduced a constraint qualification condition. To

generalize it to n variables and m constraints, we need the Jacobian derivative
of the constraints. At any given point x, the Jacobian Dh(x) is the m × n matrix

Dh(x) =


∂h1
∂x1

(x) · · · ∂h1
∂xn

(x)
∂h2
∂x1

(x) · · · ∂h2
∂xn

(x)
...

. . .
...

∂hm
∂x1

(x) · · · ∂hm
∂xn

(x)

 ,

where h = (h1, . . . , hm)

▶ We say that a point x is a critical point of h if the rank of Dh(x) is strictly less
than m

▶ We say that h satisfies the nondegenerate constraint qualification (NDCQ) at
x if the rank of Dh(x) at x is m
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Constrained Optimization

Proposition (First order necessary condition)

Let f , h1, h2, . . . , hm be C 1 functions defined over Rn. Suppose that:

1. x∗ = (x∗1 , . . . , x
∗
n ) ∈ C is a local maximizer or a local minimizer of f on the

constraint set

C = {x ∈ Rn : h1(x) = a1, h2(x) = a2, . . . , hm(x) = am} ;

2. x∗ satisfies the NDCQ.

Then, there exists real numbers λ∗
1, . . . , λm such that (x,λ) := (x∗1 , . . . , x

∗
n , λ

∗
1, . . . , λ

∗
m)

is a critical point of the following Lagrangian function:

L(x,λ) = f (x)−
m∑
i=1

λi (hi (x)− ai ) .
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Constrained Optimization

▶ The proposition in the previous slide does not say that a solution exists. It says
that, if it exists, it must be a critical point of the Lagrangian

▶ The NDCQ requires that Dh(x∗) has full rank m (recall that m ≤ n)
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Constrained Optimization

▶ The proposition at p. 9 can be applied as follows:

1. Check the NDCQ by finding all the points (if any) in the constraint set C at which
the rank of the Jacobian Dh(x) is strictly less than m

2. Find the critical points of the Lagrangian function

3. If there are no points in C at which the NDCQ is violated, the critical points of the
Lagrangian are the only candidates for a solution to the original constrained
optimization problem

4. If there points in C at which the NDCQ is violated, then the candidates for a
solution to the original optimization problem are both i) the critical points of the
Lagrangian and ii) points in C at which the rank of Dh(x) is strictly less than m
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Constrained Optimization

▶ Example. Consider the following constrained maximization problem:

max
x ,y

x2 + y2

subject to x2 + xy + y2 = 3

▶ By Weierstrass’s Theorem, we know that a solution exists (why?)

▶ The Lagrangian is L(x , y , λ) = x2 + y2 − λ(x2 + xy + y2 − 3)
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Constrained Optimization

▶ Example (cont’d). The Jacobian derivative is:

Dh(x , y) =
(
2x + y 2y + x

)
▶ The critical points of L are:

1.
(
−
√
3,
√
3, 2

)
2.

(√
3,−

√
3, 2

)
3.

(
1, 1, 2

3

)
4.

(
−1,−1, 2

3

)
▶ The NDCQ is violated at (0, 0), which does not belong to the constraint set C

▶ Thus we can conclude that
(
−
√
3,
√
3
)
and

(√
3,−

√
3
)
are global constrained

maximizers, whereas (1, 1) and (−1,−1) are global constrained minimizers (why?)
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Constrained Optimization

Proposition (Sufficient condition for the existence of a solution)

Let f , h1, h2, . . . , hm be C 1 functions defined on an open and convex set U ⊆ Rn.
Suppose x∗ ∈ U and (x∗,λ∗) is a stationary point of the Lagrangian function:

L(x,λ) = f (x)−
m∑
i=1

λi (hi (x)− ai ) .

▶ If L is concave in x given λ∗–in particular, if f is concave and λ∗
j hj is convex for

all j = 1, . . . ,m–then x∗ is a solution to the constrained maximization problem

▶ If L is convex in x given λ∗–in particular, if f is convex and λ∗
j hj is concave–then

x∗ is a solution to the constrained minimization problem
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Constrained Optimization

▶ Example. Consider the following constrained minimization problem:

min
x ,y ,z

x2 + y2 + z2

subject to x + 2y + z = 1

2x − y − 3z = 4

▶ The Lagrangian is

L(x , y , z , λ) = x2 + y2 + z2 − λ1(x + 2y + z − 1)− λ2(2x − y − 3z − 4),

which is convex for any values of λ1 and λ2
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Constrained Optimization

▶ Example (cont’d). The Jacobian is

Dh(x , y , z) =

(
1 2 1
2 −1 −3

)
,

which has rank 2 for every (x , y , z)
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Constrained Optimization

▶ Example (cont’d). The critical points of L can be found by solving the following
system:

2x − λ1 − 2λ2 = 0

2y − 2λ1 + λ2 = 0

2z − λ1 + 3λ2 = 0

x + 2y + z = 1

2x − y − 3z = 4

▶ You can verify that the unique solution of the constrained minimization problem is
(x∗, y∗, z∗) =

(
16
15 ,

1
3 ,−

11
15

)
, and the corresponding multipliers are λ1 =

52
75 and

λ2 =
54
75
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Application: Willingness to Pay and Demand

▶ Consumer with utility u(x , y) = v(x) + y , where y is money and x is the amount
of consumption of a goods

▶ Budget px + y = w , where w is the consumer wealth and p is the price of the
good

▶ Lagrange function v(x) + y − λ(px + y − w)

▶ First order conditions

v ′(x)− λp = 0

1− λ = 0
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Application: Consumer Surplus and Demand

▶ Inverse demand (from FOCs) is p = v ′(x)

▶ Marginal willingness to pay for amount of good x : MWTP = v ′(x), i.e., at price
p = MWTP the consumer would be willing to buy an extra unit with the price
price

▶ For a quasilinear utility (linearity in money) MWTP=inverse demand function

▶ Total willingness to pay is
∫ x
0 P(z)dz , when P(z) is the inverse demand function

(marginal WTP)

▶ The solution of p = v ′(x) is the demand function x(p)

▶ Utility can be recovered from the inverse demand P(z), when assuming v(0) = 0:
because v(x)− v(0) =

∫ x
0 P(z)dz it holds that

u(x ,w − px) = v(x) + [w − px ] =

∫ x

0
P(z)dz + [w − px ]
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Application: Consumer Surplus and Demand

▶ Utility for a consumer i with utility ui (x , y) = vi (x)− y from consumption of
xi (p) at price p is ui (xi (p),wi − pxi (p))

▶ Aggregate consumer utility∑
i

[ui (xi (p),wi − pxi (p))] =
∑
i

[vi (xi (p))− pxi (p)]−W ,

where W is the total wealth and vi (xi (p))− pxi (p) is the surplus of consumer i

▶ What does the aggregate consumer surplus∑
i

[vi (xi (p))− pxi (p)]

have to do with the are under the demand curve?
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Application: Production of Public Goods

▶ Consumers with utilities ui (G , yi ), where yi is private consumption and G is
consumption of public good

▶ Planner’s problem with the socially optimal amount of public good production
▶ max

∑
ui (G , yi ) subject to budget constraint:

∑
yi + c(G ) =

∑
wi , where wi is the

wealth of consumer i

▶ First order optimality conditions:

∂ui (G , yi )/∂yi − λ = 0∑
i

∂ui (G , yi )/∂G − λc ′(G ) = 0

▶ Samuelson’s condition:∑
i

[∂ui (G , yi )/∂G ]/[∂ui (G , yi )/∂yi ] = c ′(G )
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Second Order Sufficient Optimality Conditions

▶ In unconstrained optimization problems, we used second order conditions to
classify critical points of the objective function as local minimizers or maximizers

▶ Second order conditions can be established also for constrained optimization. In
order to do that, we need to introduce bordered matrices
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Bordered Hessians

▶ Suppose we want to determine the definiteness of the following quadratic form:

Q(x1, x2) = ax21 + 2bx1x2 + cx22

subject to the linear constraint Ax1 + Bx2 = 0, where A,B ∈ R

▶ Assuming A ̸= 0, we get x1 = −B
A x2 from the linear constraint. Substituting the

latter expression in the objective function Q, we obtain

Q

(
−B

A
x2, x2

)
=

aB2 − 2bAB + cA2

A2
x22

▶ Thus Q is positive definite on the constraint set Ax1 + Bx2 = 0 if and only if
aB2− 2bAB + cA2 > 0, and negative definite if and only if aB2− 2bAB + cA2 < 0
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Bordered Hessians

▶ The expression aB2 − 2bAB + cA2 can be written as

aB2 − 2bAB + cA2 = −det

0 A B
A a b
B b c

 , (1)

where the matrix is obtained by bordering the 2× 2 coefficient matrix of the
quadratic form on the top and left by the coefficients A and B of the linear
constraint

▶ Thus the definiteness of Q can be studied by looking at the determinant of the
bordered matrix in (1)

24 / 35



Bordered Hessians

▶ More generally, suppose we want to study the definiteness of the quadratic form
Q(x) = xTAx , where A is an n × n coefficient matrix, subject to the linear
constraint set: B11 B12 · · · B1n

...
...

. . .
...

Bm1 Bm2 · · · Bmn



x1
x2
...
xn

 =


0
0
...
0
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Bordered Hessians

▶ The corresponding bordered matrix is

H =



0 . . . 0 B11 · · · B1n
...

. . .
...

...
. . .

...
0 . . . 0 Bm1 · · · Bmn

B11 · · · Bm1 a11 · · · a1n
...

. . .
...

...
. . .

...
B1n · · · Bmn a1n · · · ann



▶ In more compact form,

H =

(
0 B
BT A

)
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Bordered Hessians

▶ The definiteness of Q(x) when restricted to the linear constraint Bx = 0 can be
determined by checking the last n−m leading principal minors of H, starting with
the determinant of H itself.

1. If det(H) has the same sign as (−1)n, and if the last n −m leading principal minors
alternate in sign, then Q(x) is negative definite on the constraint set Bx = 0, and
x = 0 is a strict global constrained maximizer

2. If det(H) and the last n −m leading principal minors all have the same sign as
(−1)m, then Q(x) is positive definite on the constraint set Bx = 0, and x = 0 is a
strict global constrained minimizer

3. If both conditions 1. and 2. are violated by some non-zero leading principal minor,
then Q(x) is indefinite on the constraint set Bx = 0, and x = 0 is neither a
constrained maximizer nor a minimizer
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Second Order Sufficient Optimality Conditions

Proposition (Second order sufficient condition)

Let f , h1, h2, . . . , hm be C 2 functions defined over Rn. Consider the problem of
maximizing f on the constraint set

C = {x ∈ Rn : h1(x) = a1, h2(x) = a2, . . . , hm(x) = am} .

Suppose that:

▶ x∗ ∈ C

▶ (x∗,λ∗) is a critical point of the Lagrangian L for the maximization problem
under consideration

▶ the Hessian of L with respect to x at (x∗,λ∗) is negative definite on the linear
constraint set Dh(x∗)v = 0. That is,

v ̸= 0 and Dh(x∗)v = 0 =⇒ vT (D2
xL(x

∗,λ∗))v < 0.

Then, x∗ is a strict local constrained maximizer of f on C
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Second Order Sufficient Optimality Conditions

Proposition (Second order sufficient condition)

Let f , h1, h2, . . . , hm be C 2 functions defined over Rn. Consider the problem of
minimizing f on the constraint set

C = {x ∈ Rn : h1(x) = a1, h2(x) = a2, . . . , hm(x) = am} .

Suppose that:

▶ x∗ ∈ C

▶ (x∗,λ∗) is a critical point of the Lagrangian L for the minimization problem under
consideration

▶ the Hessian of L with respect to x at (x∗,λ∗) is positive definite on the linear
constraint set Dh(x∗)v = 0. That is,

v ̸= 0 and Dh(x∗)v = 0 =⇒ vT (D2
xL(x

∗,λ∗))v > 0.

Then, x∗ is a strict local constrained minimizer of f on C
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Second Order Sufficient Optimality Conditions

▶ Example. Consider the following constrained maximization problem:

max
(x ,y ,z)∈R3

+

x2y2z2

subject to x2 + y2 + z2 = 3

▶ The Lagrangian is

L(x , y , z , λ) = x2y2z2 − λ
(
x2 + y2 + z2 − 3

)
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Second Order Sufficient Optimality Conditions

▶ Example (cont’d). The first order conditions are:

∂L

∂x
= 2xy2z2 − 2λx = 0

∂L

∂y
= 2x2yz2 − 2λy = 0

∂L

∂z
= 2x2y2z − 2λz = 0

∂L

∂λ
= −(x2 + y2 + z2 − 3) = 0,

which solve for x = y = z = λ = 1
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Second Order Sufficient Optimality Conditions

▶ Example (cont’d). The bordered Hessian is

H =


0 2x 2y 2z
2x 2y2z2 − 2λ 4xyz2 4xy2z
2y 4xyz2 2x2z2 − 2λ 4x2yz
2z 4xy2z 4x2yz 2x2y2 − 2λ
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Second Order Sufficient Optimality Conditions

▶ Example (cont’d). At the critical point (x , y , z , λ) = (1, 1, 1, 1), the bordered
Hessian becomes:

H =


0 2 2 2
2 0 4 4
2 4 0 4
2 4 4 0


▶ The definiteness of H depends on the signs of the last n −m = 3− 1 leading

principal minors
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Constrained Optimization

▶ Example (cont’d). The last leading principal minor is the determinant of H
itself. The second to last leading principal minor is the submatrix H3:

H3 =

0 2 2
2 0 4
2 4 0



▶ We have that det(H) = −192 and det(H3) = 32. Consequently, H is negative
definite (on the constrained set)

▶ Thus we can conclude that (x , y , z) = (1, 1, 1) is a local constrained maximizer
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Exercise

Study the definiteness of the quadratic form

Q(x1, x2, x3, x4) = x21 − x22 + x23 + x24 + 4x2x3 − 2x1x4

on the following constraint set:

x2 + x3 + x4 = 0

x1 − 9x2 + x4 = 0.
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