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Exercise

Consider the following constrained maximization problem:

max  xZxo
X1,%2

st 23+ x5 =3
1. What can you say about the existence of a solution? (Think about Weierstrass's
Theorem)

2. Solve this optimization problem
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Exercise

» The objective function is continuous. The constraint set is compact. If we restrict
the function's domain to the constraint set, we can apply Weierstrass's Theorem
and conclude that a solution to this maximization problem exists

» Since % =4x; and ng = 2xp, the only point where both partial derivatives are
equal to zero is (0,0). This point does not belong to the constraint set.

Therefore, the constraint qualification is satisfied

» The Lagrangian is

L(x1, X0, A) = x2x3 — A(2x2 + x2 — 3)
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Exercise

» Critical points of the Lagrangian are found by solving the following system:

L
a— =2x1x0 —4dx1 =0
oxq
oL
87)(2 = Xf — 2>\X2 =0
oL

» See p. 419 in the textbook on how to solve the system above
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Exercise

P It turns out that the Lagrangian has six critical points:

(0,4/3,0), (0,—v/3,0), (1,1,0.5)
(-1,-1,-05), (1,-1,-05), (—1,1,0.5)

> Now, we already know that a solution must exist. By the Proposition at p. 14 in
the slides from Lecture 12, we also know that the solution must be a critical point
of the Lagrangian. Therefore, we can find the solution just by evaluating the
objective function at each of the six critical points above
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Exercise

» We have:

» Hence both (1,1) and (—1,1) solve our constrained maximization problem
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Constrained Optimization

» The general formulation of a constrained optimization problem with n variables
and m < n equality constraints is to

> maximize or minimize the objective function f(x,.

%)
» subject to the constraints:

hl(X17 s ,X,,) =a
/’12(X17 . ,X,—,) = ar
hn(X1y .oy Xn) = am

» The constraint set is

C={xeR": h(x)=a1, h(x)=a...,hn(Xx) = am},

where x = (x1, ..., Xp)
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Constrained Optimization
» In the previous lecture, we introduced a constraint qualification condition. To
generalize it to n variables and m constraints, we need the Jacobian derivative
of the constraints. At any given point x, the Jacobian Dh(x) is the m x n matrix

R g

gm (x 2 (x
phi) = | 7 0B

Foi) o el

where h = (hy, ..., hp)

» \We say that a point x is a critical point of h if the rank of Dh(x) is strictly less
than m

» We say that h satisfies the nondegenerate constraint qualification (NDCQ) at
x if the rank of Dh(x) at x is m
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Constrained Optimization

Proposition (First order necessary condition)
Let f, hy, hy, ..., hy be Ct functions defined over R". Suppose that:

1. x* =(x{,...,x;) € Cis a local maximizer or a local minimizer of f on the
constraint set

C={xeR": hi(x) = a1, h(x)=a,...,hn(Xx) = am};
2. x* satisfies the NDCQ.

Then, there exists real numbers X3, ..., Am such that (x, ) == (x{,.... x5, A}, ..., A},)

bl o v
is a critical point of the following Lagrangian function:

m

L(x,A) = £(x) = > i (hi(x) — a)).

i=1
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Constrained Optimization

P> The proposition in the previous slide does not say that a solution exists. It says
that, if it exists, it must be a critical point of the Lagrangian

» The NDCQ requires that Dh(x*) has full rank m (recall that m < n)
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Constrained Optimization

» The proposition at p. 9 can be applied as follows:

1. Check the NDCQ by finding all the points (if any) in the constraint set C at which
the rank of the Jacobian Dh(x) is strictly less than m

2. Find the critical points of the Lagrangian function

3. If there are no points in C at which the NDCQ is violated, the critical points of the
Lagrangian are the only candidates for a solution to the original constrained
optimization problem

4. If there points in C at which the NDCQ is violated, then the candidates for a
solution to the original optimization problem are both i) the critical points of the
Lagrangian and ii) points in C at which the rank of Dh(x) is strictly less than m
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Constrained Optimization

» Example. Consider the following constrained maximization problem:

max x° + y2
X?.y

subject to x>+ xy+y*> =3

» By Weierstrass's Theorem, we know that a solution exists (why?)

» The Lagrangian is L(x,y,\) = x? 4+ y2 — A\(x®> + xy + y? — 3)
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Constrained Optimization

» Example (cont’d). The Jacobian derivative is:

Dh(x,y) = (2X +y 2y —I-X)

» The critical points of L are:
1 (—V3,v3,2)
2. (vV3,-V3,2)
3. (11,3
4. (-1,-1,3%)
> The NDCQ is violated at (0, 0), which does not belong to the constraint set C

> Thus we can conclude that (—v/3,v/3) and (v/3, —V/3) are global constrained
maximizers, whereas (1,1) and (—1, —1) are global constrained minimizers (why?)
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Constrained Optimization

Proposition (Sufficient condition for the existence of a solution)
Let f, hi, ho, ..., hy be C! functions defined on an open and convex set U C R”".
Suppose x* € U and (x*, ") is a stationary point of the Lagrangian function:

m

L(x,A) = F(x) = > i (hi(x) — ).

i=1

> If L is concave in x given A*—in particular, if f is concave and A} hj is convex for
all j=1,..., m—then x* is a solution to the constrained maximization problem

> If L is convex in x given A*—in particular, if f is convex and A hj is concave-then
X* Is a solution to the constrained minimization problem
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Constrained Optimization

» Example. Consider the following constrained minimization problem:
min  x? + y2 + 22
X7y7z
subjectto x+4+2y+z=1
2x—y—3z=4

» The Lagrangian is
Lx,y,z,A\) =x>+y? + 22 = M(x+2y+z—1) — Ma(2x — y — 3z — 4),

which is convex for any values of A\; and A,
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Constrained Optimization

» Example (cont’d). The Jacobian is

1 2 1
Dh(x,y,z) = <2 1 _3) ,

which has rank 2 for every (x, y, z)
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Constrained Optimization

» Example (cont’d). The critical points of L can be found by solving the following
system:

2x — A1 —2X =0
2y —=2X1+ X =0
2z— XA +3X =0
X+2y+z=1
2x —y—3z=4

» You can verify that the unique solution of the constrained minimization problem is
(x* ,y z *) = (%, %, —%) and the corresponding multipliers are \; = ?—2 and

A2 =
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Application: Willingness to Pay and Demand

» Consumer with utility u(x,y) = v(x) + y, where y is money and x is the amount
of consumption of a goods

» Budget px + y = w, where w is the consumer wealth and p is the price of the
good

» Lagrange function v(x) +y — A(px +y — w)
» First order conditions
Vi(x) = Ap=0
1-2=0
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Application: Consumer Surplus and Demand

» Inverse demand (from FOCs) is p = v/(x)

» Marginal willingness to pay for amount of good x: MWTP = v/(x), i.e., at price
p = MWTP the consumer would be willing to buy an extra unit with the price
price

» For a quasilinear utility (Iinearity in money) MWTP=inverse demand function

» Total willingness to pay is fo z)dz, when P(z) is the inverse demand function
(marginal WTP)

» The solution of p = v/(x) is the demand function x(p)

» Utility can be recovered from the inverse demand P(z), when assuming v(0) = 0:
because v(x) — v(0) = [ P(z)dz it holds that

u(x,w — px) = v(x) + [w — px] = /OX P(z)dz + [w — px]
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Application: Consumer Surplus and Demand

» Utility for a consumer i with utility u;j(x,y) = vj(x) — y from consumption of
xi(p) at price p is u;j(xi(p), wi — pxi(p)
> Aggregate consumer utility

> Luilxi(p), wi = pxi(p))] = Y _[vi(xi(p)) — pxi(p)] — W,

i i
where W is the total wealth and v;(x;(p)) — pxi(p) is the surplus of consumer i

> What does the aggregate consumer surplus

> [vixi(p)) — pxi(p)]
have to do with the are under the demand curve?
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Application: Production of Public Goods

» Consumers with utilities u;(G, y;), where y; is private consumption and G is
consumption of public good
» Planner’s problem with the socially optimal amount of public good production
> max > ui(G,y;) subject to budget constraint: > y; + ¢(G) = > w;, where w; is the
wealth of consumer i

» First order optimality conditions:

o0ui(G,y;)/0yi — A =0
> 0ui(G,y:)/9G — A'(G) =0

» Samuelson’s condition:

Z[aw(Gayi)/(?G]/[@u,'(G,yi)/@yf] = c'(G)
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Second Order Sufficient Optimality Conditions

» In unconstrained optimization problems, we used second order conditions to
classify critical points of the objective function as local minimizers or maximizers

» Second order conditions can be established also for constrained optimization. In
order to do that, we need to introduce bordered matrices
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Bordered Hessians
» Suppose we want to determine the definiteness of the following quadratic form:
Qx1,x2) = ax12 + 2bxixo + cx22

subject to the linear constraint Ax; + Bx, = 0, where A, B € R

» Assuming A # 0, we get x3 = —%xz from the linear constraint. Substituting the
latter expression in the objective function @, we obtain

A2 X

B aB2 — 2bAB + cA?
Q _ZX27X2 -

» Thus @ is positive definite on the constraint set Ax; + Bxp = 0 if and only if
aB? — 2bAB + cA? > 0, and negative definite if and only if aB2 —2bAB + cA%? < 0
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Bordered Hessians

» The expression aB% — 2bAB + cA? can be written as

0
aB%? —2bAB + cA® = —det | A
B

oL >

o o W
—~~
(=Y
o

where the matrix is obtained by bordering the 2 x 2 coefficient matrix of the

quadratic form on the top and left by the coefficients A and B of the linear
constraint

» Thus the definiteness of Q can be studied by looking at the determinant of the
bordered matrix in (1)
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Bordered Hessians

> More generally, suppose we want to study the definiteness of the quadratic form
Q(x) = xT Ax, where A is an n x n coefficient matrix, subject to the linear
constraint set:

0

Bii Bia -+ Bin x
Bml Bm2 T an :
X, 0
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Bordered Hessians

» The corresponding bordered matrix is

» In more compact form,

0 Bu
0 Bml
Bm1  a11
an din

(

0 B
BT A
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Bordered Hessians

» The definiteness of Q(x) when restricted to the linear constraint Bx = 0 can be
determined by checking the last n — m leading principal minors of H, starting with
the determinant of H itself.

1. If det(H) has the same sign as (—1)", and if the last n — m leading principal minors
alternate in sign, then Q(x) is negative definite on the constraint set Bx = 0, and
x = 0 is a strict global constrained maximizer

2. If det(H) and the last n — m leading principal minors all have the same sign as
(—1)™, then Q(x) is positive definite on the constraint set Bx =0, and x =0 is a
strict global constrained minimizer

3. If both conditions 1. and 2. are violated by some non-zero leading principal minor,
then Q(x) is indefinite on the constraint set Bx = 0, and x = 0 is neither a
constrained maximizer nor a minimizer
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Second Order Sufficient Optimality Conditions
Proposition (Second order sufficient condition)

Let f, hy, hy, ..., hy be C? functions defined over R". Consider the problem of
maximizing f on the constraint set

C={xeR":hi(x)=a1, h(x) =az,..., hm(x) = am} .

Suppose that:
> x*ec C

> (x*,A*) is a critical point of the Lagrangian L for the maximization problem
under consideration

» the Hessian of L with respect to x at (x*, A\*) is negative definite on the linear
constraint set Dh(x*)v = 0. That is,

v #0 and Dh(x*)v =0 = v (D2L(x*,A\*))v < 0.

Then, x* is a strict local constrained maximizer of f on C
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Second Order Sufficient Optimality Conditions
Proposition (Second order sufficient condition)
Let f, hy, hy, ..., hy be C? functions defined over R". Consider the problem of
minimizing f on the constraint set
C={xeR":hi(x)=a1, h(x) =az,..., hm(x) = am} .
Suppose that:
> x*ec C

> (x*,A*) is a critical point of the Lagrangian L for the minimization problem under
consideration

» the Hessian of L with respect to x at (x*, A\*) is positive definite on the linear
constraint set Dh(x*)v = 0. That is,

v #0 and Dh(x*)v =0 = v (D2L(x*,A\*))v > 0.

Then, x* is a strict local constrained minimizer of f on C
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Second Order Sufficient Optimality Conditions

» Example. Consider the following constrained maximization problem:

max x2y?7?

3
(vazz)€R+

subject to x>+ y?+22=3

» The Lagrangian is

L(X,y,Z,)\) :X2y222 _)\(X2+y2+z2 _3)
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Second Order Sufficient Optimality Conditions

» Example (cont’d). The first order conditions are:

% =2xy222 —2)x =0
Ox
L
6— =2x%yz> =20y =0
dy
% =2x%y%z - 20z =0
0z
oL 2 2 2 _
5 = (X +_y +z 3)—07

which solve for x =y =z=A=1

31/35



Second Order Sufficient Optimality Conditions

» Example (cont’d). The bordered Hessian is

0 2x 2y

2x  2y%z% —2)\ 4xyz?
2y 4xyz> 2x%22% — 2\
2z 4xy’z 4x°yz

H =

2z
4xy?z
4x%yz
2x°y% — 2\
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Second Order Sufficient Optimality Conditions

» Example (cont’d). At the critical point (x,y,z,\) = (1,1,1,1), the bordered

Hessian becomes:

NN O
~ O N

2 4

2
4
0
4

LN O]

0

» The definiteness of H depends on the signs of the last n — m = 3 — 1 leading

principal minors
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Constrained Optimization

» Example (cont’d). The last leading principal minor is the determinant of H
itself. The second to last leading principal minor is the submatrix Hs:

0
Hy= 12
2

S~ O

2
4
0

» We have that det(H) = —192 and det(H3) = 32. Consequently, H is negative
definite (on the constrained set)

» Thus we can conclude that (x,y,z) = (1,1,1) is a local constrained maximizer
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Exercise

Study the definiteness of the quadratic form
Q(x1, X2, X3, Xa) = X& — X3 4+ X5 + xZ + dxox3 — 2x1X4
on the following constraint set:

X2+ x3+x4 =0
x1 — 9% + x4 = 0.
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