Lecture 3

Convex optimization problems

- abstract form problem
- standard form problem
- convex optimization problem
- standard form with generalized inequalities
- mulitcriterion optimization
- rstriction and relaxation

Optimization problem (abstract form)

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in C \end{array}$

where $f : \mathbf{R}^n \to \mathbf{R}$, $C \subseteq \operatorname{\mathbf{dom}} f$

- x is optimization variable
- f is objective or cost function
- C is feasible set or constraint set
- point x is *feasible* if $x \in C$
- problem is *feasible* if $C \neq \emptyset$
- problem is *unconstrained* if $C = \mathbf{R}^n$
- optimal value is $f^* = \inf_{x \in C} f(x)$ (can be $-\infty$) convention: $f^* = +\infty$ if infeasible
- optimal point: $x \in C$ s.t. $f(x) = f^{\star}$
- can maximize f by minimizing -f

called 'abstract' since we don't say how C is described

Example:

minimize
$$x_1 + x_2$$

subject to $x_1 \ge 0, x_2 \ge 0, x_1x_2 \ge 1$

- \bullet feasible set C is half-hyperboloid
- optimal value is $f^{\star} = 2$
- \bullet only optimal point is $x^{\star}=(1,1)$

Optimization problem (standard form)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \ i=1,\ldots,m \\ & g_i(x)=0, \ i=1,\ldots,p \end{array}$$

where $f_i, g_i : \mathbf{R}^n \to \mathbf{R}$

- feasible set is $C = \{x | f_i(x) \le 0, g_i(x) = 0\}$
- f_i are inequality constraint functions
- g_i are equality constraint functions
- constraint *i* is *active* at $x \in C$ if $f_i(x) = 0$
- point x is called *strictly feasible* if

 $f_i(x) < 0, \ i = 1, \dots, m, \quad g_i(x) = 0, \ i = 1, \dots, p$

i.e., all (inequality) constraints are inactive

- problem is strictly feasible if there is a strictly feasible point
- can also have strict inequality constraints

Example:

minimize
$$x_1 + x_2$$

subject to $x_1 \ge 0, x_2 \ge 0, x_1x_2 \ge 1$

to put in standard form take $f_0(x) = x_1 + x_2$,

$$f_1(x) = -x_1, \quad f_2(x) = -x_2, \quad f_3(x) = 1 - x_1 x_2$$

note

- third constraint implies first two cannot be active
- first constraint is redundant: second and third imply it

can also put in standard form with $f_0(x) = x_1 + x_2$,

$$f_1(x) = \max\{ 0, -x_1, -x_2, 1-x_1x_2 \}$$

- feasible set exactly the same
- one constraint function intead of three
- this standard form problem is not strictly feasible

suppose objective $f_0 = 0$, so

$$f^{\star} = \begin{cases} 0 & \text{if } C \neq \emptyset \\ +\infty & \text{if } C = \emptyset \end{cases}$$

thus, problem is really to

- either find $x \in C$,
- or determine that $C = \emptyset$

i.e., solve the inequality / equality system

 $f_i(x) \le 0, \ i = 1, \dots, m, \quad g_i(x) = 0, \ i = 1, \dots, p$

or determine that it is inconsistent

abstract form problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

is *convex* if C and f are convex (set, fct)

- problem is *quasiconvex* if C is convex and f is quasiconvex
- \bullet maximizing concave f over convex C is convex optimization problem

standard form problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \ i = 1, \dots, m \\ & g_i(x) = 0, \ i = 1, \dots, p \end{array}$$

is *convex* if f_0, \ldots, f_m convex, g_1, \ldots, g_p affine

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $Ax = b$

where $A \in \mathbf{R}^{p \times n}$

Example. problem above,

minimize
$$x_1 + x_2$$

subject to $-x_1 \leq 0$,
 $-x_2 \leq 0$,
 $1 - x_1 x_2 \leq 0$

has convex objective and feasible set, hence is convex problem in abstract form

it is **not** a standard form cvx opt problem since

$$f_3(x) = 1 - x_1 x_2$$

is not convex (it is quasiconvex)

problem is easily cast as std form cvx opt problem, e.g.,

minimize
$$x_1 + x_2$$

subject to $-x_1 \leq 0$,
 $-x_2 \leq 0$,
 $1 - \sqrt{x_1 x_2} \leq 0$
 $(1 - \sqrt{x_1 x_2} \text{ is convex on } \mathbf{R}^2_+)$

many other ways, e.g., replace third constraint with $-\log x_1 - \log x_2 \le 0$

Example. f_i all affine yields *linear program*

minimize
$$c_0^T x + d_0$$

subject to $c_i^T x + d_i \le 0, \ i = 1, \dots, m$
 $Ax = b$

which is a convex optimization problem

Example. minimum norm approximation with limits on variables

minimize
$$\|Ax - b\|$$

subject to $l_i \leq x_i \leq u_i, i = 1, \dots, n$

is convex

Example. minimum entropy with lin. equal. constraints

minimize
$$\sum_{i} x_i \log x_i$$

subject to $x_i \ge 0, i = 1, \dots, n$
 $\sum_{i} x_i = 1$
 $Ax = b$

is convex

(more on these later)

Local and global optimality

$$x \in C$$
 is *locally optimal* if it satisfies
 $y \in C, \ \|y - x\| \le R \implies f(y) \ge f(x)$
for some $R > 0$

c.f. (globally) optimal, which means $x \in C$, $y \in C \implies f(y) \ge f(x)$

for cvx opt problems, any local solution is also global

proof:

- \bullet suppose x is locally optimal, but $y \in C$, f(y) < f(x)
- take small step from x towards y, *i.e.*, $z = \lambda y + (1 \lambda)x$ with $\lambda > 0$ small
- z is near x, with f(z) < f(x); contradicts local optimality

suppose f is differentiable in cvx problem

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in C \end{array}$

then $x \in C$ is optimal iff

$$y \in C \implies \nabla f(x)^T (y - x) \ge 0$$

• hence $x \in C$, $\nabla f(x) = 0$ implies x optimal

• for unconstrained problems, x is optimal iff $\nabla f(x) = 0$

interpretations:

- \bullet means $-\nabla f(x)$ defines supporting hyperplane for C at x
- \bullet if you move from x towards any feasible $y,\ f$ does not decrease

write standard form problem as

minimize
$$t$$

subject to $f_0(x) - t \leq 0$,
 $f_i(x) \leq 0, i = 1, \dots, m$
 $g_i(x) = 0, i = 1, \dots, p$

- variables are (x, t)
- m + 1 inequality constraints
- objective is *linear*: $t = e_{n+1}^T(x, t)$
- if original problem is cvx, so is epigraph form

linear objective is 'universal' for convex optimization

Std form with generalized inequalities

convex optimization problem in *standard form with generalized inequalities*:

minimize
$$f_0(x)$$

subject to $f_i \preceq_{K_i} 0, i = 1, \dots, L$
 $Ax = b$

where:

- \leq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex

Example. semidefinite programming

minimize $c^T x$ subject to $A_0 + x_1 A_1 + \dots + x_n A_n \preceq 0$

where $A_i = A_i \in \mathbf{R}^{p \times p}$

- one generalized inequality constraint (L = 1)
- K_1 is PSD cone; \preceq is matrix inequality
- f_1 is affine, hence matrix convex

analytical form

functions can have analytical form, e.g.,

$$f(x) = x^T P x + 2q^T x + r$$

f is specified by giving the problem *data*, *coefficients*, *or parameters*, e.g.

$$P = P^T \in \mathbf{R}^{n \times n}, \quad q \in \mathbf{R}^n, \quad r \in \mathbf{R}$$

oracle form

functions can be given by *oracle* or *subroutine* that, given x, computes f(x) (and maybe $\nabla f(x)$, $\nabla^2 f(x)$, ...)

- oracle model can be useful even if f has analytic form, e.g., linear but sparse
- how f given affects choice of algorithm, storage required to specify problem, etc.

'Slight' modification of convex problem can be very hard

• convex maximization, concave minimization, e.g.

maximize ||x||subject to $Ax \preceq b$

• nonlinear equality constraints, *e.g.*

minimize $c^T x$ subject to $x^T P_i x + q_i^T x + r_i = 0, i = 1, ..., K$

• minimizing over non-convex sets, *e.g.*, integer constraints

find xsuch that $Ax \leq b, x_i \in \{0, 1\}$

Multicriterion optimization

Vector objective

$$F(x) = (f_1(x), \ldots, f_N(x))$$

 $f_1, \ldots, f_N : \mathbf{R}^n \to \mathbf{R}$ (can include constraint $C \subseteq \mathbf{R}^n \ldots$)

 f_i called *objective functions*: roughly speaking, want all f_i small

Family of *specifications* indexed by $t \in \mathbf{R}^N$:

 $F(x) \preceq t$

i.e., $f_i(x) \leq t_i$, i = 1, ..., N.

Achievable specification: t s.t. $F(x) \preceq t$ feasible

Achievable specifications

set of achievable objectives:

$$\mathcal{A} = \{ t \in \mathbf{R}^N \mid \exists x \text{ s.t. } F(x) \preceq t \}$$

if f_i are convex then \mathcal{A} is convex

 \mathcal{A} is projection of vector function epigraph $\mathbf{epi}(F) = \{(x, t) \in \mathbf{R}^n \times \mathbf{R}^N | F(x) \leq t\}$ on *t*-space.

boundary of \mathcal{A} is called (optimal) *tradeoff surface*

x dominates (is better than) \tilde{x} if $F(x) \leq F(\tilde{x})$ and $F(x) \neq F(\tilde{x})$ i.e., x is no worse than \tilde{x} in any objective, and better in at least one

 x_0 is *Pareto optimal* if no x dominates it

roughly, x_0 Pareto optimal means $F(x_0)$ is on tradeoff surface

 x_0 Pareto optimal $\Rightarrow F(x_0) \in \partial \mathcal{A}$

(converse not quite true)

Pareto problem: find Pareto-optimal *x*

Real (but more vague) engineering problem: search/explore/characterize tradeoff surface, *e.g.*:

- 'can reduce f_5 below 0.1, but only at huge cost in f_4 and f_2 '
- 'can pretty much minimize f_3 independently of other objectives'
- ' f_1 and f_2 tradeoff strongly for $f_1 \leq 1$, $f_2 \leq 2$ '

multicriterion problem with f_1,\ldots,f_N

weighted sum of objectives: choose weights $w_i > 0$, solve

minimize
$$\sum_i w_i f_i(x)$$

which is the same as

minimize $w^T t$ subject to $t \in \mathcal{A}$

- solution x_0 is Pareto optimal
- for many cvx problems, all Pareto optimal points can be found this way, as weights vary over \mathbf{R}^N_+

halfspace of specifications $\{t \mid w^T t < w^T F(x)\}$ are unachievable (*i.e.*, supports \mathcal{A} at x)

Restriction and relaxation

original problem, with optimal value f^* : minimize f(x)

subject to $x \in C$

new problem, with optimal value \tilde{f}^{\star} : minimize f(x)subject to $x \in \tilde{C}$

new problem is

- relaxation (of original) if C̃ ⊇ C
 (in which case f̃^{*} ≤ f^{*})
- restriction if $\tilde{C} \subseteq C$ (in which case $\tilde{f}^* \geq f^*$)

Example. f is convex, C is nonconvex; $\tilde{C} = \mathbf{Co}C$ relaxation is convex problem that gives lower bound for original, nonconvex problem