Lecture 3

Convex optimization problems

- abstract form problem
- standard form problem
- convex optimization problem
- standard form with generalized inequalities
- mulitcriterion optimization
- rstriction and relaxation

Optimization problem (abstract form)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, C \subseteq \operatorname{dom} f$

- x is optimization variable
- f is objective or cost function
- C is feasible set or constraint set
- point x is feasible if $x \in C$
- problem is feasible if $C \neq \emptyset$
- problem is unconstrained if $C=\mathbf{R}^{n}$
- optimal value is $f^{\star}=\inf _{x \in C} f(x)$ (can be $-\infty$)
convention: $f^{\star}=+\infty$ if infeasible
- optimal point: $x \in C$ s.t. $f(x)=f^{\star}$
- can maximize f by minimizing $-f$
called 'abstract' since we don't say how C is described

Example:

minimize $x_{1}+x_{2}$
subject to $x_{1} \geq 0, x_{2} \geq 0, x_{1} x_{2} \geq 1$

- feasible set C is half-hyperboloid
- optimal value is $f^{\star}=2$
- only optimal point is $x^{\star}=(1,1)$

Optimization problem (standard form)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& g_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

where $f_{i}, g_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$

- feasible set is $C=\left\{x \mid f_{i}(x) \leq 0, g_{i}(x)=0\right\}$
- f_{i} are inequality constraint functions
- g_{i} are equality constraint functions
- constraint i is active at $x \in C$ if $f_{i}(x)=0$
- point x is called strictly feasible if

$$
f_{i}(x)<0, i=1, \ldots, m, \quad g_{i}(x)=0, i=1, \ldots, p
$$

i.e., all (inequality) constraints are inactive

- problem is strictly feasible if there is a strictly feasible point
- can also have strict inequality constraints

Example:

minimize $x_{1}+x_{2}$
subject to $x_{1} \geq 0, x_{2} \geq 0, x_{1} x_{2} \geq 1$
to put in standard form take $f_{0}(x)=x_{1}+x_{2}$,

$$
f_{1}(x)=-x_{1}, \quad f_{2}(x)=-x_{2}, \quad f_{3}(x)=1-x_{1} x_{2}
$$

note

- third constraint implies first two cannot be active
- first constraint is redundant: second and third imply it
can also put in standard form with $f_{0}(x)=x_{1}+x_{2}$,

$$
f_{1}(x)=\max \left\{0,-x_{1},-x_{2}, 1-x_{1} x_{2}\right\}
$$

- feasible set exactly the same
- one constraint function intead of three
- this standard form problem is not strictly feasible

Feasibility problem

suppose objective $f_{0}=0$, so

$$
f^{\star}= \begin{cases}0 & \text { if } C \neq \emptyset \\ +\infty & \text { if } C=\emptyset\end{cases}
$$

thus, problem is really to

- either find $x \in C$,
- or determine that $C=\emptyset$
i.e., solve the inequality / equality system

$$
f_{i}(x) \leq 0, i=1, \ldots, m, \quad g_{i}(x)=0, i=1, \ldots, p
$$

or determine that it is inconsistent

Convex optimization problem

abstract form problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

is convex if C and f are convex (set, fct)

- problem is quasiconvex if C is convex and f is quasiconvex
- maximizing concave f over convex C is convex optimization problem
standard form problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& g_{i}(x)=0, i=1, \ldots, p
\end{array}
$$

is convex if f_{0}, \ldots, f_{m} convex, g_{1}, \ldots, g_{p} affine often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

where $A \in \mathbf{R}^{p \times n}$

Example. problem above,

$$
\begin{aligned}
& \text { minimize } x_{1}+x_{2} \\
& \text { subject to }-x_{1} \leq 0 \text {, } \\
& -x_{2} \leq 0, \\
& 1-x_{1} x_{2} \leq 0
\end{aligned}
$$

has convex objective and feasible set, hence is convex problem in abstract form
it is not a standard form cvx opt problem since

$$
f_{3}(x)=1-x_{1} x_{2}
$$

is not convex (it is quasiconvex)
problem is easily cast as std form cvx opt problem, e.g.,
minimize $x_{1}+x_{2}$
subject to $-x_{1} \leq 0$, $-x_{2} \leq 0$,
$1-\sqrt{x_{1} x_{2}} \leq 0$
($1-\sqrt{x_{1} x_{2}}$ is convex on \mathbf{R}_{+}^{2})
many other ways, e.g., replace third constraint with

$$
-\log x_{1}-\log x_{2} \leq 0
$$

Example. f_{i} all affine yields linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c_{0}^{T} x+d_{0} \\
\text { subject to } & c_{i}^{T} x+d_{i} \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

which is a convex optimization problem

Example. minimum norm approximation with limits on variables

$$
\begin{aligned}
& \operatorname{minimize}\|A x-b\| \\
& \text { subject to } l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, n
\end{aligned}
$$

is convex

Example. minimum entropy with lin. equal. constraints

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i} x_{i} \log x_{i} \\
\text { subject to } & x_{i} \geq 0, i=1, \ldots, n \\
& \sum_{i} x_{i}=1 \\
& A x=b
\end{array}
$$

is convex
(more on these later)

Local and global optimality

$x \in C$ is locally optimal if it satisfies

$$
y \in C,\|y-x\| \leq R \Longrightarrow f(y) \geq f(x)
$$

for some $R>0$
c.f. (globally) optimal, which means $x \in C$,

$$
y \in C \Longrightarrow f(y) \geq f(x)
$$

for cvx opt problems, any local solution is also global

proof:

- suppose x is locally optimal, but $y \in C, f(y)<f(x)$
- take small step from x towards y, i.e., $z=\lambda y+(1-\lambda) x$ with $\lambda>0$ small
- z is near x, with $f(z)<f(x)$; contradicts local optimality

An optimality criterion

suppose f is differentiable in cvx problem
minimize $f(x)$
subject to $x \in C$
then $x \in C$ is optimal iff

$$
y \in C \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0
$$

- hence $x \in C, \nabla f(x)=0$ implies x optimal
- for unconstrained problems, x is optimal iff $\nabla f(x)=0$

interpretations:
- means $-\nabla f(x)$ defines supporting hyperplane for C at x
- if you move from x towards any feasible y, f does not decrease

Epigraph form

write standard form problem as

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, i=1, \ldots, m \\
& g_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- variables are (x, t)
- $m+1$ inequality constraints
- objective is linear: $t=e_{n+1}^{T}(x, t)$
- if original problem is cvx, so is epigraph form

linear objective is 'universal' for convex optimization

Std form with generalized inequalities

convex optimization problem in standard form with generalized inequalities:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i} \preceq_{K_{i}} 0, i=1, \ldots, L \\
& A x=b
\end{array}
$$

where:

- $\preceq_{K_{i}}$ are generalized inequalities on $\mathbf{R}^{m_{i}}$
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m_{i}}$ are K_{i}-convex

Example. semidefinite programming minimize $c^{T} x$ subject to $A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq 0$ where $A_{i}=A_{i} \in \mathbf{R}^{p \times p}$

- one generalized inequality constraint $(L=1)$
- K_{1} is PSD cone; \preceq is matrix inequality
- f_{1} is affine, hence matrix convex

How f_{i}, g_{i} are described

analytical form

functions can have analytical form, e.g.,

$$
f(x)=x^{T} P x+2 q^{T} x+r
$$

f is specified by giving the problem data, coefficients, or parameters, e.g.

$$
P=P^{T} \in \mathbf{R}^{n \times n}, \quad q \in \mathbf{R}^{n}, \quad r \in \mathbf{R}
$$

oracle form

functions can be given by oracle or subroutine that, given x, computes $f(x)$ (and maybe $\nabla f(x), \nabla^{2} f(x), \ldots$)

- oracle model can be useful even if f has analytic form, e.g., linear but sparse
- how f given affects choice of algorithm, storage required to specify problem, etc.

Some hard problems

'Slight' modification of convex problem can be very hard

- convex maximization, concave minimization, e.g. maximize $\|x\|$
subject to $A x \preceq b$
- nonlinear equality constraints, e.g.
minimize $c^{T} x$
subject to $x^{T} P_{i} x+q_{i}^{T} x+r_{i}=0, i=1, \ldots, K$
- minimizing over non-convex sets, e.g., integer constraints

find $\quad x$	
such that	$A x \preceq b, \quad x_{i} \in\{0,1\}$

Multicriterion optimization

Vector objective

$$
F(x)=\left(f_{1}(x), \ldots, f_{N}(x)\right)
$$

$f_{1}, \ldots, f_{N}: \mathbf{R}^{n} \rightarrow \mathbf{R}$
(can include constraint $C \subseteq \mathbf{R}^{n} \ldots$)
f_{i} called objective functions: roughly speaking, want all f_{i} small

Family of specifications indexed by $t \in \mathbf{R}^{N}$:

$$
F(x) \preceq t
$$

i.e., $f_{i}(x) \leq t_{i}, i=1, \ldots, N$.

Achievable specification: t s.t. $F(x) \preceq t$ feasible

Achievable specifications

set of achievable objectives:

$$
\mathcal{A}=\left\{t \in \mathbf{R}^{N} \mid \exists x \text { s.t. } F(x) \preceq t\right\}
$$

if f_{i} are convex then \mathcal{A} is convex
\mathcal{A} is projection of vector function epigraph

$$
\operatorname{epi}(F)=\left\{(x, t) \in \mathbf{R}^{n} \times \mathbf{R}^{N} \mid F(x) \preceq t\right\}
$$

on t-space.
boundary of \mathcal{A} is called (optimal) tradeoff surface

Pareto optimality

x dominates (is better than) \tilde{x} if $F(x) \preceq F(\tilde{x})$ and $F(x) \neq F(\tilde{x})$
i.e., x is no worse than \tilde{x} in any objective, and better in at least one
x_{0} is Pareto optimal if no x dominates it

roughly, x_{0} Pareto optimal means $F\left(x_{0}\right)$ is on tradeoff surface
x_{0} Pareto optimal $\Rightarrow F\left(x_{0}\right) \in \partial \mathcal{A}$
(converse not quite true)

Pareto problem: find Pareto-optimal x

Real (but more vague) engineering problem: search/explore/characterize tradeoff surface, e.g.:

- 'can reduce f_{5} below 0.1 , but only at huge cost in f_{4} and $f_{2}{ }^{\prime}$
- 'can pretty much minimize f_{3} independently of other objectives'
- ' f_{1} and f_{2} tradeoff strongly for $f_{1} \leq 1, f_{2} \leq 2$ '

Scalarization

multicriterion problem with f_{1}, \ldots, f_{N}

weighted sum of objectives: choose weights $w_{i}>0$, solve $\operatorname{minimize} \sum_{i} w_{i} f_{i}(x)$
which is the same as

$$
\begin{array}{ll}
\text { minimize } & w^{T} t \\
\text { subject to } & t \in \mathcal{A}
\end{array}
$$

- solution x_{0} is Pareto optimal
- for many cvx problems, all Pareto optimal points can be found this way, as weights vary over \mathbf{R}_{+}^{N}

halfspace of specifications $\left\{t \mid w^{T} t<w^{T} F(x)\right\}$ are unachievable (i.e., supports \mathcal{A} at x)

Restriction and relaxation

original problem, with optimal value f^{\star} :

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

new problem, with optimal value \tilde{f}^{\star} :
minimize $f(x)$
subject to $x \in \tilde{C}$
new problem is

- relaxation (of original) if $\tilde{C} \supseteq C$
(in which case $\tilde{f}^{\star} \leq f^{\star}$)
- restriction if $\tilde{C} \subseteq C$
(in which case $\tilde{f}^{\star} \geq f^{\star}$)

Example. f is convex, C is nonconvex; $\tilde{C}=\mathbf{C o} C$ relaxation is convex problem that gives lower bound for original, nonconvex problem

