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Lecture 3

Convex optimization problems

� abstract form problem

� standard form problem

� convex optimization problem

� standard form with generalized inequalities

� mulitcriterion optimization

� rstriction and relaxation
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Optimization problem (abstract form)

minimize f(x)
subject to x 2 C

where f : Rn ! R, C � dom f

� x is optimization variable

� f is objective or cost function

� C is feasible set or constraint set

� point x is feasible if x 2 C

� problem is feasible if C 6= ;
� problem is unconstrained if C = Rn

� optimal value is f ? = inf
x2C

f (x) (can be �1)

convention: f ? = +1 if infeasible

� optimal point: x 2 C s.t. f(x) = f ?

� can maximize f by minimizing �f

called `abstract' since we don't say how C is described
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Example:

minimize x1 + x2
subject to x1 � 0; x2 � 0; x1x2 � 1

� feasible set C is half-hyperboloid

� optimal value is f ? = 2

� only optimal point is x? = (1; 1)
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Optimization problem (standard form)

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ; m

gi(x) = 0; i = 1; : : : ; p

where fi; gi : R
n ! R

� feasible set is C = fxjfi(x) � 0; gi(x) = 0g
� fi are inequality constraint functions

� gi are equality constraint functions

� constraint i is active at x 2 C if fi(x) = 0

� point x is called strictly feasible if

fi(x) < 0; i = 1; : : : ; m; gi(x) = 0; i = 1; : : : ; p

i.e., all (inequality) constraints are inactive

� problem is strictly feasible if there is a strictly feasible
point

� can also have strict inequality constraints
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Example:

minimize x1 + x2
subject to x1 � 0; x2 � 0; x1x2 � 1

to put in standard form take f0(x) = x1 + x2,

f1(x) = �x1; f2(x) = �x2; f3(x) = 1� x1x2

note

� third constraint implies �rst two cannot be active

� �rst constraint is redundant: second and third imply it

can also put in standard form with f0(x) = x1 + x2,

f1(x) = maxf 0; � x1; � x2; 1� x1x2 g

� feasible set exactly the same

� one constraint function intead of three

� this standard form problem is not strictly feasible
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Feasibility problem

suppose objective f0 = 0, so

f ? =

8>><
>>:
0 if C 6= ;
+1 if C = ;

thus, problem is really to

� either �nd x 2 C,

� or determine that C = ;

i.e., solve the inequality / equality system

fi(x) � 0; i = 1; : : : ; m; gi(x) = 0; i = 1; : : : ; p

or determine that it is inconsistent
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Convex optimization problem

abstract form problem

minimize f(x)
subject to x 2 C

is convex if C and f are convex (set, fct)

� problem is quasiconvex if C is convex and f is
quasiconvex

� maximizing concave f over convex C is convex
optimization problem

standard form problem

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ; m

gi(x) = 0; i = 1; : : : ; p

is convex if f0; : : : ; fm convex, g1; : : : ; gp a�ne

often written as

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ; m

Ax = b

where A 2 Rp�n
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Example. problem above,

minimize x1 + x2
subject to �x1 � 0;

�x2 � 0;
1� x1x2 � 0

has convex objective and feasible set, hence is convex
problem in abstract form

it is not a standard form cvx opt problem since

f3(x) = 1� x1x2

is not convex (it is quasiconvex)

problem is easily cast as std form cvx opt problem, e.g.,

minimize x1 + x2
subject to �x1 � 0;

�x2 � 0;
1�px1x2 � 0

(1�px1x2 is convex on R2
+)

many other ways, e.g., replace third constraint with

� log x1 � log x2 � 0
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Example. fi all a�ne yields linear program

minimize cT0 x + d0
subject to cTi x + di � 0; i = 1; : : : ; m

Ax = b

which is a convex optimization problem

Example. minimum norm approximation with limits on
variables

minimize kAx� bk
subject to li � xi � ui; i = 1; : : : ; n

is convex

Example. minimum entropy with lin. equal. constraints

minimize
X

i
xi log xi

subject to xi � 0; i = 1; : : : ; n
X

i
xi = 1

Ax = b

is convex

(more on these later)
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Local and global optimality

x 2 C is locally optimal if it satis�es

y 2 C; ky � xk � R =) f (y) � f(x)

for some R > 0

c.f. (globally) optimal, which means x 2 C,

y 2 C =) f(y) � f(x)

for cvx opt problems, any local solution is also global

proof:

� suppose x is locally optimal, but y 2 C, f(y) < f (x)

� take small step from x towards y, i.e.,
z = �y + (1� �)x with � > 0 small

� z is near x, with f (z) < f (x); contradicts local
optimality
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An optimality criterion

suppose f is di�erentiable in cvx problem

minimize f(x)
subject to x 2 C

then x 2 C is optimal i�

y 2 C =) rf(x)T (y � x) � 0

� hence x 2 C, rf(x) = 0 implies x optimal

� for unconstrained problems, x is optimal i�
rf(x) = 0

x
�rf(x)

C

contour lines of f

interpretations:

� means �rf(x) de�nes supporting hyperplane for C
at x

� if you move from x towards any feasible y, f does not
decrease
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Epigraph form

write standard form problem as

minimize t

subject to f0(x)� t � 0;
fi(x) � 0; i = 1; : : : ; m
gi(x) = 0; i = 1; : : : ; p

� variables are (x; t)

� m + 1 inequality constraints

� objective is linear : t = eTn+1(x; t)

� if original problem is cvx, so is epigraph form

�en+1
C

f(x)

linear objective is `universal' for convex optimization
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Std form with generalized inequalities

convex optimization problem in standard form with

generalized inequalities :

minimize f0(x)
subject to fi �Ki

0; i = 1; : : : ; L
Ax = b

where:

� �Ki
are generalized inequalities on Rmi

� fi : Rn ! Rmi are Ki-convex

Example. semide�nite programming

minimize cTx

subject to A0 + x1A1 + � � � + xnAn � 0

where Ai = Ai 2 Rp�p

� one generalized inequality constraint (L = 1)

� K1 is PSD cone; � is matrix inequality

� f1 is a�ne, hence matrix convex
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How fi, gi are described

analytical form

functions can have analytical form, e.g.,

f(x) = xTPx + 2qTx + r

f is speci�ed by giving the problem data, coe�cients, or

parameters, e.g.

P = P T 2 Rn�n; q 2 Rn; r 2 R

oracle form

functions can be given by oracle or subroutine that, given
x, computes f(x) (and maybe rf (x), r2f(x), . . . )

� oracle model can be useful even if f has analytic
form, e.g., linear but sparse

� how f given a�ects choice of algorithm, storage
required to specify problem, etc.



Convex optimization problems 3 { 15

Some hard problems

`Slight' modi�cation of convex problem can be very hard

� convex maximization, concave minimization, e.g.

maximize kxk
subject to Ax � b

� nonlinear equality constraints, e.g.

minimize cTx

subject to xTPix + qTi x + ri = 0; i = 1; : : : ; K

� minimizing over non-convex sets, e.g., integer
constraints

�nd x

such that Ax � b; xi 2 f0; 1g
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Multicriterion optimization

Vector objective

F (x) = (f1(x); : : : ; fN(x))

f1, . . . , fN : Rn ! R

(can include constraint C � Rn . . . )

fi called objective functions : roughly speaking, want all
fi small

Family of speci�cations indexed by t 2 RN :

F (x) � t

i.e., fi(x) � ti, i = 1; : : : ; N .

Achievable speci�cation: t s.t. F (x) � t feasible
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Achievable speci�cations

set of achievable objectives:

A = ft 2 RN j 9x s.t. F (x) � tg

t1

t2
�	
A (achievable specs)

if fi are convex then A is convex

A is projection of vector function epigraph

epi(F ) = f(x; t) 2 Rn �RN jF (x) � tg
on t-space.

boundary of A is called (optimal) tradeo� surface
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Pareto optimality

x dominates (is better than) ~x if F (x) � F (~x) and
F (x) 6= F (~x)
i.e., x is no worse than ~x in any objective, and better in
at least one

x0 is Pareto optimal if no x dominates it

t1

t2
�	
achievable specs

@Ispecs tighter than F (x0)

F (x0)

roughly, x0 Pareto optimal means F (x0) is on tradeo�
surface
x0 Pareto optimal ) F (x0) 2 @A
(converse not quite true)
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Pareto problem: �nd Pareto-optimal x

Real (but more vague) engineering problem:
search/explore/characterize tradeo� surface, e.g.:

� `can reduce f5 below 0:1, but only at huge cost in f4
and f2'

� `can pretty much minimize f3 independently of other
objectives'

� `f1 and f2 tradeo� strongly for f1 � 1, f2 � 2'

t1

t2

weak tradeo�

strong tradeo�
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Scalarization

multicriterion problem with f1; : : : ; fN

weighted sum of objectives: choose weights wi > 0, solve

minimize
X

i
wifi(x)

which is the same as

minimize wT t

subject to t 2 A

t1

t2
�	
achievable specs

F (x0)

X
i

witi = constant

w

� solution x0 is Pareto optimal

� for many cvx problems, all Pareto optimal points can
be found this way, as weights vary over RN

+
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halfspace of speci�cations ft j wT t < wTF (x)g are
unachievable (i.e., supports A at x)

t1

t2
�	
achievable specs

F (x0)

@Iguaranteed unachievable specs
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Restriction and relaxation

original problem, with optimal value f ?:

minimize f(x)
subject to x 2 C

new problem, with optimal value ~f ?:

minimize f(x)

subject to x 2 ~C

new problem is

� relaxation (of original) if ~C � C

(in which case ~f ? � f ?)

� restriction if ~C � C

(in which case ~f ? � f ?)

Example. f is convex, C is nonconvex; ~C = CoC

relaxation is convex problem that gives lower bound for
original, nonconvex problem


