Mathematics for Economists

Problem Set 5
 Due date: Wednesday 2.11 at 12.15

Exercise 1

Let $u\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ be a consumer's utility function. Use the Lagrangian to solve the following utility maximization problem:

$$
\begin{array}{rl}
\max _{x_{1}, x_{2}} & u\left(x_{1}, x_{2}\right) \\
\text { s.t. } & p_{1} x_{1}+p_{2} x_{2}=w
\end{array}
$$

where $p_{1}>0$ and $p_{2}>0$ are commodity prices, and $w>0$ is income. You may assume that the solution satisfies $x_{1}, x_{2}>0$.

Exercise 2

Find the solutions of the first order conditions of $\max x_{1} x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}=1$. Do the second order sufficient optimlaity conditions hold? How can you deduce the global optimality of a critical point of the Lagrange function?

Exercise 3

Let $U\left(c_{1}, c_{2}\right)=u\left(c_{0}\right)+\delta u\left(c_{1}\right)$ be a consumer's utility function over consumption in two periods; c_{0} is the money spent on consumption in period 0 and c_{1} is the money spent on consumption in period 1. Assume that all the consumer's income is earned in the first period, let I_{0} be the income.
a) Formulate an intertemopral budget constraint for the consumer when the interest rate on savings is r (i.e., amount s invested in period 0 yields $(1+r) s$ in period 1). Note the intertemporal budget constraint can be written in the form $p_{0} c_{0}+p_{1} c_{1}=p_{0} I_{0}$ with a suitable choice of paramteres p_{0} and p_{1}.
b) Use the Lagrangian show that the consumer's utility maximization problem over the intertemporal budget constraint satisfies:

$$
\begin{aligned}
M R S\left(c_{0}, c_{1}\right) & =p_{0} / p_{1} \\
p_{0} c_{0}+p_{1} c_{1} & =p_{0} I_{0}
\end{aligned}
$$

where $p_{0}>0$ and $p_{1}>0$ are parameters you obtain in your formulation of the intertemporal budget constraint, and $\operatorname{MRS}\left(c_{0}, c_{1}\right)=\left[\partial U\left(c_{0}, c_{1}\right) / \partial c_{0}\right] /\left[\partial U\left(c_{0}, c_{1}\right) / \partial c_{1}\right]$ (marginal rate of substitution).

Exercise 4

Let $f(x, y, z)=x+2 z$ be a function defined over \mathbb{R}^{3}. In addition, let $g_{1}(x, y, z)=x+y+z$ and $g_{2}(x, y, z)=x^{2}+y^{2}+z$ be two additional functions defined over \mathbb{R}^{3}. Consider the constrained maximization problem:

$$
\begin{array}{rl}
\max _{x, y, z} & f(x, y, z) \\
\text { s.t. } & g_{1}(x, y, z)=1 \\
& g_{2}(x, y, z)=\frac{7}{4} .
\end{array}
$$

(a) Check if the NDCQ is satisfied.
(b) Solve the maximization problem.

Exercise 5

Consider the following constrained minimization problem:

$$
\begin{array}{cl}
\min _{x, y, z} & f(x, y, z)=x^{2}+y^{2}+z^{2} \\
\text { s.t. } & g_{1}(x, y, z)=x+2 y+z=30 \\
& g_{2}(x, y, z)=2 x-y-3 z=10 .
\end{array}
$$

(a) Find the unique point that satisfies the first order conditions for optimality.
(b) Argue why the point you found in (a) is a local minimizer of f subject to the constraints.

