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Sampling

In signal processing, sampling is the reduction of a continuous-
time signal to a discrete-time signal.

T
x(t),t=0 {\/ \ e® o x(kTs), k=0,1,2,..
°

« T. denotes sampling interval
- f~1/T;denotes sampling frequency
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Nyquist sampling theorem

A bandlimited continuous-time signal x(r) having bandwidth B can

be sampled and perfectly reconstructed from its samples x(kT,) if
the waveform is sampled with rate

fi==->2B.

The minimum sampling rate f, that produces a signal that still
contains all of the original signal’s information is known as the
Nyquist rate (a.k.a. Nyquist limit frequency)

s
=,
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Aliasing

Any sinusoidal component of the signal of
frequency f higher than fy is not only lost, but it is
reintroduced in the sampled signal by folding at
frequency fy as an alias (false name) sinusoidal
component of frequency f’

I R
L]
' f
Fr=If —kfslLk=123,..
0< f'</x
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Aliasing example

A time domain signal

x(t) = Agcos(2mfot + 0y) + Ay cos(2mfit + 6,)
is sampled using sampling frequency ;=180 Hz.

What frequencies are present in the sampled signal?

Answer:

f __ fs _ 180 Hz
N—H ™ 2

fo=50 Hz < fy = f,=50 Hz will be present without folding
f1=100 Hz > f,’=1100 Hz — 180 Hz| = 80 Hz
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Anti-aliasing filter

An anti-aliasing filter (AAF) is a filter used before a signal sampler
to restrict the bandwidth of a signal to satisfy the Nyquist—
Shannon sampling theorem over the band of interest.
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a. ldeal Anti-alias Filter b. Practical Anti-alias Filter

Y(f) = H(HX()
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Ideal sampling

Multiplication with Dirac’s delta function samples a signal
x(t)6(t — nT,) = x(nT,)5(t — nTy)

j x(t) §(t — nTy)dt = x(nTy)

— 00
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Ideal sampling

- Continuous time signal /L\/\‘
2 #
O /

x(t)
« Sampling signal (periodic with periodicity T)

S(t)—Zn__oo5(t—nT)——Zn__ooest HEEEE

v

Exponentlal Fourier series ‘
« Sampled signal

x5 (0) = x(D)s(t) ] |
i I

v
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Ideal sampling

Time domain signals

x(t)

xs(t) = x(t)s(t)
- Z x(£)5(t — kT.,)

k=—o0

1 — 2,
—x(t)— z e’ Ts
S

n=-—oo
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Frequency domain signals

X(f) =j x(t)e—jZthdt Fourier

transform

XS(onz )}zof) R S(f) Convolution

— z x(nT,)e~ J2rfKTs  Discrete Time

Fourier transform
n=—oo
(00
1
X(f-=
Ts
n=-—oo



Discrete time Fourier transform (DTFT)

Discrete Time Fourier Transform (DTFT)
DTFT[{x(kT,), ..., —1,k,1,..}] = 3% _o, x(nT,)e J2m/nTs

[00] [00]

Poisson’s sum formula z x(nT,)e—1onTs — 1 z X(f _ Z)
e Ty 4o Ts
DTFT is periodic in frequency domain
1
T
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Discrete time Fourier transform (DTFT)

Fourier transform of the sampled signal

[00] [o0]

XD = Y aaye sz = 5 x(r - 1)

n=—oo n=-co
1 o8 = <2B
X(HI2 Ty Xs(H)I? Ts Xs()I?
A A A
) 4 L4 >
B 1 5 1 7, 2B Y
T, Ty
Spectrum of the original Original signal can be Original signal cannot be
continuous time signal Reconstructed from the reconstructed from the
sampled signal sampled signal.
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DTFT example

: : : 4 X
Sinusoidal signal ET T 1
x(t) = Acos(2nfot) & 5 (8 + fy) + 6 — f») "
_fO fo
Sampling signal
2 21 1 > 1 1 1 15( ) 1 1
s(0) = 7+ Z T g Z S(f—in) 71 TT T _ST 71
_4 1 0 1 2 .
Sampled signal i T T & f
x,(6) = x(t) & X(F) ® S() X()
Convolution A A A A
F1ELF L F
- _E 1 0 1 2 ”
A? HEE . %% %%



Discrete Fourier Transform DFT

DFT transforms a sequence of complex numers {x,, x;,x, ...,xy_,} into
another sequence of complex numbers {x(0),x(1),X(2) .., X(N — 1)}

N-1

—j2m
X(k) = z x,e N K"

n=0

Inverse Discrete Fourier Transform

1% 2
s
X =y z X(k)e W
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DFT

DFT is periodic
X(k +N) = X(k)

and assumes also the discrete
sequence to be periodic

Xn+N = Xn
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Fourier transform of a Gauss pulse
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Fast Fourier Transform

Fast Fourier Transform (FFT) is a computationally
efficient method to calculate DFT.

 DFT is used as defined has complexity O(N2)
*  FFT has complexity O(Nlog(N))

FFT libraries are available for (almost) all
programming languages

Matlab: £ft (X, N, DIM)
Phyton NumPy: fft (a[, n, axis, norm])

Similarly to FFT, there also exist Inverse Fast Fourier
Transform
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z(10)
x(11)
x(12)
z(13)
x(14)
x(15)

16 point FFT

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)

- X(0)
- X(8)
- X(4)
- X(12)
- X(2)
- X(10)
- X(6)
- X(14)
- X(1)
-~ X(9)
- X(5)
- X(13)
- X(3)
- X(11)
- X(7)
- X(15)



DFT vs DTFT

Consider N samples of a continuous time signal {x(n7,),n = 0,1,.. N}
Xo(=DTFT[x(kTy), k = 0,1, ..., N — 1] = Y¥=} x(nTy)e /2 Tsm

DFT Of the Samples Fourier transform and DFT of a Gaussian pulse
X(K)=DFT[x(kTy), k = 0,1, ..., N — 1] = E¥=2 x(nTy)e v "

Equivalent if

k k1 k
fTS_NSf_NTS_NfS We can use DFT (FFT)

to calculate DTFT!

Frequency granularity Af = % fs
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Parseval’s theorem

Parseval’s theorem for DFT

Example: Sinusoid
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1
Dl =5
n=0

N§|X<k>|2
k=0

0, otherwise

Zh=

ol X(R)1? =

N2
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DFT vs Fourier transform

Fourier transform of a pulse defined on an interval [0,T]

[ & pm, T=W-DT,
X() = [ x@e 2 <1, ) 2ur)e ok
0 T k=0 o N s
3 {\db\
Q/\:\&(\@g‘%\\o(\ DFT
N 0 T=0.5
Triangle pulse ol
1
x(t) = tria (L — 1) I t 20
T/2 > 0
| T v 5-30—
Spectrum g 4o N=16
T2 T a1 | -
X(PI = -sinc* (%) 3 T2
- ol N=64
A? e A

.
0 10 20 30 40 50 60
f[Hz]



Zero padding

Adding N, zeros in the
end of the sequence

makes DFT to
interpolate more
frequencies. The
frequency granularity

-50

K% x
x % X
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Af = fs TITPITVITTIL. Loy
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Spectral density
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Spectral density

A?

Spectral density [dB]
A
o

Two sided spectrum

Aliasing

Aliasing
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For better estimate of the
spectrum we should
apply anti-aliasing filter
before sampling
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Spectral density

Nyquist
frequency
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FFT based spectrum analyzer
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Periodic convolution

Periodic convolution is defined for periodic sequences

Xn = Xn+nN

e AX0, X1 X, vy Xy—q }|{(X0 X1 X2 s XN—1} {xo,xl,xz’ ...,xN_l}

-N,-N+1,-N+2,..,-1,]0,1,2 ..., N-1I, N, N+1,N+2,..2N-1,..

Y= hy Eg Xn = Z%_:lo hmXn—m

DFT of periodic convolution
Y (k)=DFT[h, & x, ] = H(k)X (k)
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Discrete linear convolution

Discrete linear convolution between pulse sequences h, and x,

1. Add zeros
A :hn n=01,.., N, —1
a0 n=Ny+1,N,+2..,Ny+ N, —1
(%), n=01,.., N, —1
Yan =10 n=Ng+ 1N +2,.., Ny + Ny — 1

2. Calculate the sum
N—-1

Yn = ha,nxa,(m—n) mod N N=Np+N,—1
m=0
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Discrete linear convolution using
FFT and IFFT

Discrete linear convolution between pulse sequences h, and x,

1. Add zeros
h _ :hn n = 0,1, ...,Nh —1
@m0 n=Ny+1,Ny+2,..,N,+ N, — 1
. :xn n = 0,1, ...,Nx - 1
¥an =10 n=Ne+1L,Ne+2,..,Ny+ Ny — 1

2. Calulate (k) = FFT[hy ] and X(k) = FFT[x, ]

3. Obtain the convolution by applying IFFT on Y(k)=H (k)X (k) to obtain
Yn = IFFT[Y (K]
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Discrete linear convolution
example

Singing in a studio Impulse response model Singing in the church
of the church hall

Time domain sound signal

Time domain sound signal x; Acoustic impulse response h

Zero padded signal x,,, Zero signal %an P ! Y= Xan @ han=IFFT[ X(k)-H(k) ]
Frequency domain signal Frequency response:

X(k)=FFTlxa,nl H(k)=FFT[h,,n]
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