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Sampling

In signal processing, sampling is the reduction of a continuous-
time signal to a discrete-time signal.

• Ts denotes sampling interval 
• fs=1/Ts denotes sampling frequency

𝑥 𝑡 , 𝑡 ≥ 0 𝑥(𝑘𝑇𝑠),  k=0,1,2,..
Ts



Nyquist sampling theorem

A bandlimited continuous-time signal x(t) having bandwidth B can 
be sampled and perfectly reconstructed from its samples x(kTs) if 
the waveform is sampled with rate

fs=
𝟏
𝑻𝒔

>2B.

The minimum sampling rate fs that produces a signal that still 
contains all of the original signal’s information is known as the 
Nyquist rate (a.k.a. Nyquist limit frequency)

fN=𝒇𝒔
𝟐



Aliasing

Any sinusoidal component of the signal of 
frequency f higher than fN is not only lost, but it is 
reintroduced in the sampled signal by folding at 
frequency fN as an alias (false name) sinusoidal 
component of frequency f’ 

Nf𝑓′ 𝑓

𝑓! = 𝑓 − 𝑘 𝑓𝑠 , 𝑘 = 1,2,3,…
0 ≤ 𝑓! ≤ 𝑓"

Nf



Aliasing example

A time domain signal
𝑥 𝑡 = 𝐴0 cos 2𝜋𝑓0𝑡 + 𝜃! + 𝐴1 cos 2𝜋𝑓1𝑡 + 𝜃"
is sampled using sampling frequency fs=180 Hz. 
What frequencies are present in the sampled signal?
Answer:

𝑓0=50 Hz
𝑓1=100 Hz

𝑓" =
#!
$
= %&' ()

$
= 90 Hz

𝑓0=50 Hz  < 𝑓" ⇒ 𝑓0=50 Hz will be present without folding

𝑓1=100 Hz  > 𝑓1’= |100 Hz – 180 Hz| = 80 Hz   

Original signal and aliased signal



Anti-aliasing filter

An anti-aliasing filter (AAF) is a filter used before a signal sampler 
to restrict the bandwidth of a signal to satisfy the Nyquist–
Shannon sampling theorem over the band of interest.

|H(f)| |H(f)|

𝑌 𝑓 = 𝐻 𝑓 𝑋(𝑓)

Amplifier

X(f) Y(f)

𝐻 𝑓



Ideal sampling 

Multiplication with Dirac’s delta function samples a signal
𝑥 𝑡 𝛿 𝑡 − 𝑛𝑇% = 𝑥 𝑛𝑇% 𝛿 𝑡 − 𝑛𝑇%
(
&'

'
𝑥(𝑡) 𝛿 𝑡 − 𝑛𝑇% 𝑑𝑡 = 𝑥 𝑛𝑇%



Ideal sampling

• Continuous time signal
𝑥 𝑡

• Sampling signal (periodic with periodicity Ts) 

𝑠 𝑡 = ∑()&'' 𝛿 𝑡 − 𝑛𝑇% = *
+"
∑()&'' 𝑒,

#$
%"
(-

• Sampled signal
𝑥𝑠 𝑡 = 𝑥 𝑡 𝑠(𝑡)

Exponential Fourier series



Ideal sampling

Time domain signals
𝑥 𝑡

𝑥𝑠 𝑡 = 𝑥 𝑡 𝑠(𝑡)

= /
.)&'

'

𝑥(𝑡)𝛿 𝑡 − 𝑘𝑇%

= 𝑥(𝑡)
1
𝑇%

/
()&'

'

𝑒,
/0
+"
(-

Frequency domain signals

𝑋 𝑓 = (
&'

'
𝑥(𝑡)𝑒&,/01-𝑑𝑡

𝑋𝑠 𝑓 = 𝑋 𝑓 ⊗ 𝑆(𝑓)

= /
()&'

'

𝑥 𝑛𝑇% 𝑒&,/01.+"

=
1
𝑇%

/
()&'

'

𝑋 𝑓 −
𝑛
𝑇%

Discrete Time
Fourier transform

Fourier 
transform

Convolution



Discrete time Fourier transform (DTFT)

Discrete Time Fourier Transform (DTFT)
DTFT 𝑥 𝑘𝑇% , … , −1, 𝑘, 1, . . = ∑()&'' 𝑥 𝑛𝑇% 𝑒&,/01(+$

Poisson’s	sum	formula 9
*+,-

-

𝑥 𝑛𝑇. 𝑒,/$0#*1! =
1
𝑇.

9
*+,-

-

𝑋 𝑓 −
𝑛
𝑇.

DTFT is periodic in frequency domain

… …

𝑓

𝑓𝑠 =
1
𝑇.



Discrete time Fourier transform (DTFT)

Fourier transform of the sampled signal

𝑋𝑠 𝑓 = 9
*+,-

-

𝑥 𝑛𝑇. 𝑒,/$0#*1! =
1
𝑇.

9
*+,-

-

𝑋 𝑓 −
𝑛
𝑇.

B

|𝑋 𝑓 |2

B

|𝑋𝑠 𝑓 |2|𝑋𝑠 𝑓 |2

B

%
1!
³2B

%
1!
<2B

… … … …

1
𝑇.

−
1
𝑇.

Original signal can be 
Reconstructed from the 
sampled signal

Original signal cannot be 
reconstructed from the 
sampled signal.
Aliasing happens!

%
1!
<2B

Spectrum of the original
continuous time signal



DTFT example

Sinusoidal signal
𝑥 𝑡 = 𝐴 cos 2𝜋𝑓0𝑡 ⇔

𝐴
2
𝛿 𝑓 + 𝑓' + 𝛿 𝑓 − 𝑓'

Sampling signal

Sampled signal
𝑥𝑠 𝑡 = 𝑥 𝑡 ⇔ 𝑋(𝑓)⊗ 𝑆(𝑓)

𝑠 𝑡 =
1
𝑇.

9
*+,-

-

𝑒/
$0
1!
*2 ⇔

1
𝑇.

9
*+,-

-

𝛿 𝑓 −
1
𝑇.
𝑛

𝑓0−𝑓0

𝑋 𝑓

1
𝑇.

1
𝑇.

1
𝑇%−

1
𝑇%

S 𝑓
1
𝑇.

1
𝑇.

𝐴
2

𝐴
2

Convolution

−
2
𝑇%

2
𝑇%

……

0
𝑇%

1
𝑇.

𝐴
2𝑇.

𝐴
2𝑇.

1
𝑇%−

1
𝑇%

X𝑠 𝑓
𝐴
2𝑇.

𝐴
2𝑇.

−
2
𝑇%

2
𝑇%

……

0
𝑇%

𝐴
2𝑇.



Discrete Fourier Transform DFT

DFT transforms a sequence of complex numers 𝑥!, 𝑥", 𝑥)… , 𝑥*+" into 
another sequence of complex numbers 𝑋(0), 𝑋(1), 𝑋(2)… , 𝑋(𝑁 − 1)

Inverse Discrete Fourier Transform

𝑋 𝑘 = 9
*+'

",%

𝑥*𝑒
,/$0
" 3*

𝑥& =
1
𝑁9
3+'

",%

𝑋(𝑘)𝑒
/$0
" 3*



DFT

DFT is periodic

and assumes also the discrete 
sequence to be periodic

𝑋 𝑘 +𝑁 = 𝑋(𝑘)

𝑥*4" = 𝑥*

Fourier transform of a Gauss pulse                           



Fast Fourier Transform

Fast Fourier Transform (FFT) is a computationally 
efficient method to calculate DFT.  
• DFT is used as defined has complexity O(N2)
• FFT has complexity O(Nlog(N))

FFT libraries are available for (almost) all 
programming languages

Similarly to FFT, there also exist Inverse Fast Fourier 
Transform 𝑊' = 𝑒

()*+
'

16 point FFT

Matlab: fft(X,N,DIM)
Phyton NumPy: fft(a[, n, axis, norm])



DFT vs DTFT

Consider N samples of a continuous time signal 𝑥 𝑛𝑇0 , 𝑛 = 0,1, …𝑁

DFT of the samples

Equivalent if

Xs(f)=DTFT[𝑥 𝑘𝑇. , 𝑘 = 0,1,… ,𝑁 − 1] = ∑3+'",%𝑥 𝑛𝑇. 𝑒,/$0#1!*

X(k)=DFT[𝑥 𝑘𝑇. , 𝑘 = 0,1,… ,𝑁 − 1] = ∑3+'",%𝑥 𝑛𝑇. 𝑒
$%&'
( 3*

𝑓𝑇. =
𝑘
𝑁 ⇒ 𝑓 =

𝑘
𝑁
1
𝑇.
=
𝑘
𝑁𝑓.

We can use DFT (FFT) 
to calculate DTFT!

Frequency granularity  Δ𝑓 = %
"
𝑓.

Fourier transform and DFT of a Gaussian pulse



Parseval’s theorem

Parseval’s theorem for DFT 9
*+'

",%

𝑥* $ =
1
𝑁9

3+'

",%

𝑋(𝑘) $

𝑥* = sin
2𝜋𝑛
𝑁

𝑋 𝑘 =
−𝑗
𝑁
2 , 𝑘 = 1

𝑗
𝑁
2 , 𝑘 = 𝑁

0, otherwise

∑3+'",% 𝑋(𝑘) $ = "&

5
+ "&

5
= "&

$

9
*+'

",%

𝑥* $ =
𝑁
2

Example: Sinusoid



DFT vs Fourier transform

Fourier transform of a pulse defined on an interval [0,T]

𝑋 𝑓 = S
'

1

𝑥 𝑡 𝑒,/$0#2 ≈ 𝑇. 9
3+'

",%

𝑥 𝑛𝑇. 𝑒
,/$0
" 3*

𝑇 = 𝑁−1 𝑇.
𝑓 =

𝑘
𝑁𝑓.

Euler 

numerica
l 

integration DFT

N=64

N=32

N=16

𝑥 𝑡 = tria
𝑡
𝑇/2 − 1

|𝑋 𝑓 |2 =
𝑇2
4 sinc

4 𝑓𝑇
2

Triangle pulse

Spectrum

T=0.5

T
t

1



Zero padding

Adding Nz zeros in the 
end of the sequence 
makes DFT to 
interpolate more 
frequencies. The 
frequency granularity 
becomes

Δ𝑓 =
1

𝑁 + 𝑁𝑧
𝑓%



Spectral density

fN

Aliasing

Frequency range of
interest

Copy of the 
negative frequencies 



Spectral density

fN-fN

Two sided spectrum

AliasingAliasing For better estimate of the
spectrum we should 
apply anti-aliasing filter 
before sampling



Modulated signal

Example: Modulated tria pulse

• Pulse width T=10s
• Carrier Frequency fc=30 Hz

• Sampling frequency fs=100 Hz

𝑥 𝑡 = tria
𝑡 − 12𝑇
𝑇 cos(2π𝑓6𝑡)
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Spectral density
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FFT based spectrum analyzer



Periodic convolution

Periodic convolution is defined for periodic sequences

DFT of periodic convolution

𝑦*= ℎ* ⊕
8 𝑥* = ∑9+:",% ℎ9𝑥*,9

𝑥* = 𝑥*4"

…{𝑥',𝑥%,𝑥$,…, 𝑥",%} {𝑥',𝑥%,𝑥$,…, 𝑥",%} 𝑥',𝑥%,𝑥$,…, 𝑥",% …

-N,-N+1,-N+2,…,-1, 0,1,2 …., N-1,   N, N+1,N+2,…2N-1,…

𝑌(𝑘)=DFT[ℎ* ⊕
8 𝑥* ] = 𝐻 𝑘 𝑋(𝑘)



Discrete linear convolution

Discrete linear convolution between pulse sequences hn and xn

1.	Add	zeros	

ℎ2,( = Cℎ( 𝑛 = 0,1,… ,𝑁4 − 1
0 𝑛 = 𝑁4 + 1,𝑁4 + 2,… ,𝑁4 + 𝑁5 − 1

𝑥2,( = C𝑥( 𝑛 = 0,1,… ,𝑁5 − 1
0 𝑛 = 𝑁5 + 1,𝑁5 + 2,… ,𝑁4 + 𝑁5 − 1

2.	Calculate	the	sum

𝑦( = /
6)7

8&*

ℎ2,(𝑥2,(6&() ;<= 8 𝑁 = 𝑁< +𝑁= −1



Discrete linear convolution using 
FFT and IFFT
Discrete linear convolution between pulse sequences hn and xn

1.	Add	zeros	

ℎ2,( = Cℎ( 𝑛 = 0,1,… ,𝑁4 − 1
0 𝑛 = 𝑁4 + 1,𝑁4 + 2,… ,𝑁4 + 𝑁5 − 1

𝑥2,( = C𝑥( 𝑛 = 0,1,… ,𝑁5 − 1
0 𝑛 = 𝑁5 + 1,𝑁5 + 2,… ,𝑁4 + 𝑁5 − 1

2.	CalulateH(k)	=	FFT[ℎ2,(]	and	X (k)	=	FFT[𝑥2,(]	
3.	Obtain	the	convolution	by	applying	IFFT	on	Y(k)=H(k)X (k)	to	obtain

𝑦( = 𝐼𝐹𝐹𝑇[𝑌 𝑘 ]



Discrete linear convolution 
example

Singing in a studio Impulse response model
of the church hall

⊗ =

Singing in the church

Time domain sound signal xn
Zero padded signal xa,n
Frequency domain signal 
X(k)=FFT[xa,n]

Acoustic impulse response hn
Zero signal ha,n
Frequency response: 
H(k)=FFT[ha,n]

Time domain sound signal 
yn= xa,n⊗ ha,n =IFFT[ X(k)·H(k) ]


