

MS-E2135 Decision Analysis Lecture 7

- From EUT to MAUT
- Axioms for preference relations
- Assessment of attribute-specific utility functions and attribute weights
- Decision recommendations
- MAVT vs. MAUT

Motivation

- ☐ Multiattribute <u>value</u> theory helps generate decision recommendations when
 - Alternatives are evaluated with regard to (w.r.t.) multiple attributes
 - Alternatives' attribute-specific values are certain
- ☐ What if the attribute-specific performances are *uncertain*?
 - Designing supply chains: minimize cost, minimize supply shortage, minimize storage costs
 - Building an investment portfolio: maximize return, minimize risk
- → Multiattribute <u>utility</u> theory

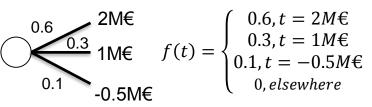
From EUT to MAUT

EUT

- Set of possible outcomes *T*:
 - E.g., revenue $T = \mathbb{R}$ euros, demand $T = \mathbb{N}$
- Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $t \in T$
- Deterministic outcomes modeled as degenerate lotteries

Lottery

Decision tree



Probability mass function

Decision tree

Probability distribution function

$$\frac{1}{1}$$
 1M€ $f(t) = \begin{cases} 1, t = 1M \in \\ 0, elsewhere \end{cases}$

From EUT to MAUT

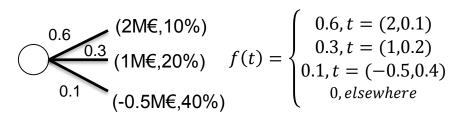
MAUT

Multidimensional set of outcomes X

$$X = X_1 \times \cdots \times X_n$$

- E.g., X_1 = revenue (\mathfrak{C}), X_2 = market share
- ☐ Set of all possible lotteries *L*
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $x = (x_1, ..., x_n) \in X$
- Deterministic outcomes are modelled as degenerate lotteries

Lottery



Degenerate lottery

Decision tree

PDF

1 (1M€,20%)
$$f(t) = \begin{cases} 1, t = (1,0.2) \\ 0, elsewhere \end{cases}$$

Aggregation of utilities

□ Problem: How to measure the overall utility of alternative $x = (x_1, x_2, ... x_n)$?

$$U(x_1, x_2, \dots x_n) = ?$$

☐ Question: Can the overall utility be expressed as a weighted sum of the attribute-specific utilities?

$$U(x_1, x_2, \dots x_n) = \sum_{i=1}^n w_i \, u_i(x_i)?$$

- ☐ Answer: Yes, if the attributes are
 - Mutually preferentially independent and
 - Additive independent (new)

Preferential independence

□ **Definition:** Attribute *X* is **preferentially independent (PI)** of the other attributes *Y*, if the preference order of degenerate lotteries that differ only in *X* does not depend on the levels of attributes *Y*

$$(x, y) \geqslant (x', y) \Rightarrow (x, y') \geqslant (x', y')$$
 for all $y' \in Y$

- ☐ Interpretation: Preference over the <u>certain</u> level of attribute *X* does not depend on the <u>certain</u> levels of the other attributes, as long as they stay the same
- □ Same as in MAVT

Mutual preferential independence

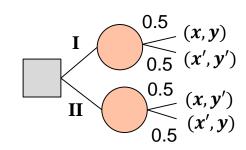
☐ **Definition**: Attributes A are **mutually preferentially independent** (MPI), if any subset **X** of attributes A is preferentially independent of the other attributes $Y=A\setminus X$. I.e., for any degenerate lotteries

$$(x, y') \geqslant (x', y') \Rightarrow (x, y) \geqslant (x', y)$$
 for all $y \in Y$.

- ☐ Interpretation: Preferences over <u>certain</u> levels of attributes *X* does not depend on certain levels of the other attributes as long as these stay the same
- Same as in MAVT

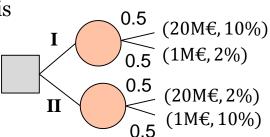
Additive independence (the new one!)

□ **Definition:** Subset of attributes $X \subset A$ is **additive independent (AI)**, if the DM is indifferent between lotteries I and II for any $(x, y), (x', y') \in A$



□ Example:

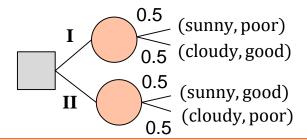
- Profit is AI if the DM is indifferent between I and II
- However, she might prefer II, because it does not include an outcome where all attributes have very poor values. In this case profit is not AI.



Additive independence (new)

□ Example:

- A tourist is planning a downhill skiing weekend trip to the mountains
- 2 attributes: sunshine ({sunny, cloudy}) and snow conditions ({good, poor})
- Additive independence holds, if she is indifferent between I and II
 - In both, there is a 50 % probability of getting sunshine
 - In both, there is a 50 % probability of having good snow conditions
 - If the DM values sunshine and snow conditions independently of each other, then I and II can be equally preferred



Additive multiattribute utility function

□ <u>Theorem</u>: The reference relation > can be represented by an additive multi-attribute utility function

$$U(x) = \sum_{i=1}^{n} w_i u_i^N(x_i),$$

where $u_i^N(x_i^0) = 0$, $u_i^N(x_i^*) = 1$ and $\sum_{i=1}^n w_i = 1$, $w_i \ge 0$,

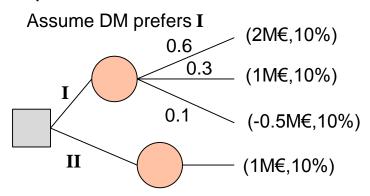
if and only if the attributes are mutually preferentially independent and **single** attributes are additive independent.

What if MPI & AI do not hold?

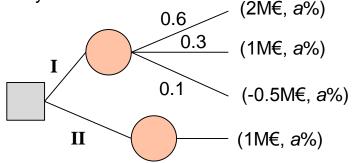
Definition: Attribute $X \in A$ is **utility independent (UI)** if the preference order between lotteries that have equal <u>certain</u> outcomes on attributes $Y = A \setminus X$ does not depend on the level of these outcomes, i.e.,

$$(\tilde{x}, y) \geq (\tilde{x}', y) \Rightarrow (\tilde{x}, y') \geq (\tilde{x}', y') \forall y'$$

■ Example:



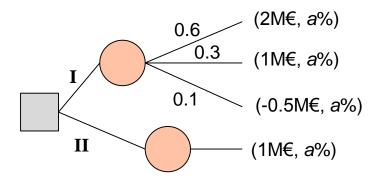
If profit is UI, then the DM should prefer I for any market share *a*



However, for a small market share (a), the DM may be more risk averse and choose II → profit would not be UI

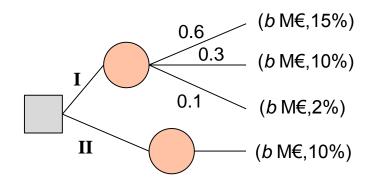
Mutual utility independence

Definition: Attributes A are mutually utility independent (MUI), if every subset $X \subset A$ is the utility independent of the other attributes $Y = A \setminus X$ i.e., $(\widetilde{x}, y) \geqslant (\widetilde{x}', y) \Rightarrow (\widetilde{x}, y') \geqslant (\widetilde{x}', y') \forall y'$



If DM prefers I for some a, she should prefer I for all a

AND



If DM prefers I for some b, she should prefer I for all b

Other multi-attribute utility functions

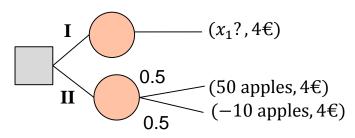
If attributes are mutually utility independent, then preferences can be represented by a multiplicative utility function

$$U(x) = \frac{\prod_{i=1}^{n} [1 + k w_i u_i(x_i)]}{k} - \frac{1}{k}$$

- ☐ All is the strongest of the three preference assumptions
 - Let $X \subset A$. Then, $(X \text{ is AI}) \Rightarrow (X \text{ is UI}) \Rightarrow (X \text{ is PI})$

Assessing attribute-specific utility functions

- ☐ Use the same techniques as with a unidimensional utility function
 - Certainty equivalent, probability equivalent, etc. & scale such that $u_i^N(x_i^0) = 0$, $u_i^N(x_i^*) = 1$.
 - Also direct rating often applied in practice
- What about the other attributes?
 - Fix them at the same level in every outcome
 - Do not matter! → Usually not even explicitly shown to the DM



$$U(x_1, 4) = 0.5U(50,4) + 0.5U(-10,4)$$

$$\Leftrightarrow w_1 u_1(x_1) + w_2 u_2(4) = 0.5w_1 u_1(50) + 0.5w_2 u_2(4) + 0.5w_1 u_1(-10) + 0.5w_2 u_2(4)$$

$$\Leftrightarrow w_1 u_1(x_1) = 0.5w_1 u_1(50) + 0.5w_1 u_1(-10)$$

$$\Leftrightarrow u_1(x_1) = 0.5u_1(50) + 0.5u_1(-10)$$

☐ Three attributes: cost, delay, quality

i	Name	X_{i}	x_i^0	x_i^*
1	Cost	[10,40] k€	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, excellent}	fair	excellent

 X_{i}

[10,40] k€

 $\{1,2,...,30\}$ days

{fair, good, exc.}

Name

Cost

Delay

Quality

1

2

3

 x_i^0

40

30

fair

10

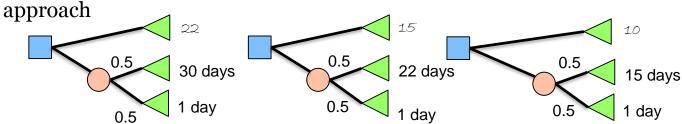
1

exc.

- Assessment of the attribute-specific utility functions
 - Quality: Direct assessment
 - o $u_3(fair) = 0, u_3(good) = 0.4, u_3(excellent) = 1$
 - Cost: Linear decreasing utility function

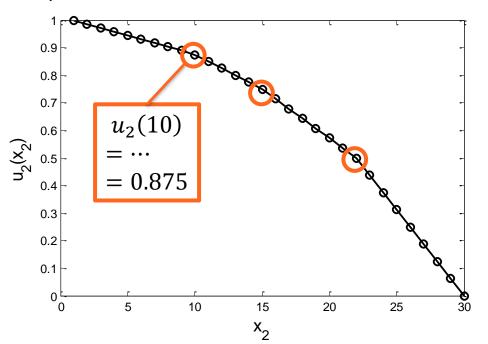
$$\circ$$
 $u_1(x_1) = \frac{40-x_1}{30}$

Delay: Assessment with certainty equivalent (CE)



$$u_2(22)$$
 $u_2(15)$ $u_2(10)$
= $0.5u_2(1) + 0.5u_2(30)$ = $0.5u_2(1) + 0.5u_2(22)$ = $0.5u_2(1) + 0.5u_2(22)$
= $0.5 * 1 + 0.5 * 0$ = $0.5 * 1 + 0.5 * 0.5$ = $0.5 * 1 + 0.5 * 0.75$
= 0.5 = 0.75 = 0.875

For *delay*, linear interpolation between specified values



x_2	$u_2(x_2)$	x_2	$u_2(x_2)$	
1	1	16	0.7143	
2	0.9861	17	0.6786	
3	0.9722	18	0.6429	
4	0.9583	19	0.6071	
5	0.9444	20	0.5714	
6	0.9306	21	0.5357	
7	0.9167	22	0.5	
8	0.9028	23	0.4375	
9	0.8889	24	0.375	
10	0.875	25	0.3125	
11	0.85	26	0.25	
12	0.825	27	0.1875	
13	0.8	28	0.125	
14	0.775	29	0.0625	
15	0.75	30	0	

Assessing attribute weights

- ☐ Attribute weights are elicited by constructing two equally preferred degenerate lotteries
 - E.g., ask the DM to establish a preference order for n hypothetical alternatives specified so that $(x_1^0, ..., x_i^*, ..., x_n^0)$, i = 1, ..., n.
 - Assume that $(x_1^*, x_2^0, ..., x_n^0) \ge (x_1^0, x_2^*, ..., x_n^0) \ge ... \ge (x_1^0, x_2^0, ..., x_n^*)$
 - Then, for each i=1,...,n-1 ask the DM to define $x_i \in X_i$ such that

$$(...x_{i}, x_{i+1}^{0}, ...) \sim (...x_{i}^{0}, x_{i+1}^{*}, ...)$$

$$\Rightarrow U(...x_{i}, x_{i+1}^{0}, ...) = U(...x_{i}^{0}, x_{i+1}^{*}, ...)$$

$$\Rightarrow w_{i}u_{i}(x_{i}) = w_{i+1}$$

- n-1 such comparisons + 1 normalization constraint ⇒ unique set of weights

■ Assessment of the attribute weights

- Assume preferences $(40k \in 1 \text{ day, fair}) \ge (10k \in 30 \text{ days, fair}) \ge (40k \in 30 \text{ days, exc.})$
- Choose delay $x_2 \in \{1, ..., 30\}$ such that $(40, x_2, x_3) \sim (10, 30, x_3)$
- Answer $x_2 = 8$ gives

$$w_1u_1(40) + w_2u_2(8) + w_3u_3(x_3) = w_1u_1(10) + w_2u_2(30) + w_3u_3(x_3)$$

 $w_2u_2(8) = w_1$
 $\Leftrightarrow w_2 \cdot 0.9028 = w_1$

- Choose cost $x_1 \in [10,40]$ such that $(x_1, x_2, fair) \sim (40, x_2, excellent)$
- Answer $x_1 = 20$ gives

$$w_1u_1(20) + w_2u_2(x_2) + w_3u_3(\text{fair}) = w_1u_1(40) + w_2u_2(x_2) + w_3u_3(\text{excellent})$$

 $w_1u_1(20) = w_3$
 $\Leftrightarrow w_1 \cdot \frac{2}{3} = w_3$

- Attribute weights: $w \approx \left(\frac{9}{25}, \frac{10}{25}, \frac{6}{25}\right)$

MAUT: Decision recommendations

- □ Consider m decision alternatives $x^j = \left(x_1^j, ..., x_n^j\right)$, j = 1, ..., m, where x^j is a random variable with probability density function (pdf) $f_{x^j}(x)$
- ☐ Alternatives are ranked by their expected (multiattribute) utilities

$$E[U(x^j)] = \sum_{x \in A} f_{x^j}(x) \ U(x) = \sum_{x \in A} f_{x^j}(x) \ \sum_i w_i u_i(x)$$

- Integral for continuous random variables
- ☐ In a decision tree, MAU is used just like unidimensional utility

Consider three suppliers

Supplier 1: Expensive, fair quality, can deliver without delay

$$x^1 = (35k \in 1, 1 \text{ day}, fair)$$

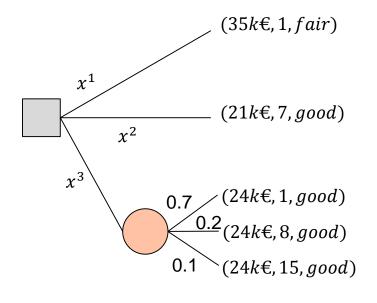
Supplier 2: Cheap, good quality, can deliver in 1 week

$$x^2 = (21k \in 7, 7 \text{ days}, good)$$

Supplier 3: Moderate price, good quality, 20% chance of 1-week delay and 10% chance of 2-week delay

$$x^{3} = (24k \in, \tilde{x}_{2}^{3}, good),$$

$$f_{\tilde{x}_{2}^{3}}(x) = \begin{cases} 0.7, x = (24k \in, 1 \text{ day}, good) \\ 0.2, x = (24k \in, 8 \text{ days}, good) \\ 0.1, x = (24k \in, 15 \text{ days}, good) \end{cases}$$



	u_1^N	u_2^N	u_3^N	U	$f_{x_k^j}$	E[<i>U</i>]
x^1	0.17	1.00	0.00	0.46	1	0.46
x^2	0.63	0.92	0.40	0.69	1	0.69
$x^3 (s_1)$	0.53	1.00	0.40	0.69	0.7	
$x^3 (s_2)$	0.53	0.90	0.40	0.65	0.2	0.67
$x^3 (s_3)$	0.53	0.75	0.40	0.59	0.1	
W	0.36	0.40	0.24			

 $= 0.36 \times 0.53 + 0.40 \times 1.00 + 0.24 \times 0.40$

 $= 0.7 \times 0.69 + 0.2 \times 0.65 + 0.1 \times 0.59$

MAVT vs. MAUT

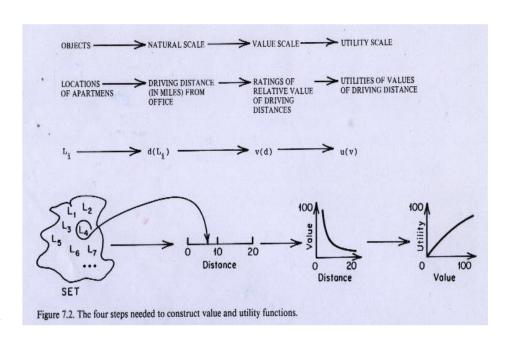
- MAVT: Preference between <u>alternatives with certain outcomes</u> can be represented by an additive multiattribute value function, iff the attributes are
 - Mutually preferentially independent
 - Difference independent
- MAUT: Preference between <u>lotteries with uncertain outcomes</u> can be represented by additive multiattribute utility function, iff the attributes are
 - Mutually preferentially independent
 - Additive independent

MAVT vs. MAUT

- □ Attribute-specific <u>value</u> functions are elicited by asking the DM to specify equally preferred differences in attribute levels
 - E.g., "Specify salary x such that you would be indifferent between change 1500€ → x€ and x€ → 2000€"
- □ Attribute-specific <u>utility</u> functions are elicited by asking the DM to specify equally preferred lotteries
 - E.g., "Specify salary x such that you would be indifferent between getting x€ for certain and a 50-50 gamble between getting 1500€ or 2000€"
- □ Attribute weights are elicited similarly in MAVT and MAUT

MAVT vs. MAUT

- □ In principal, the natural / measurement scale is first mapped to value scale and then (if needed) to utility scale
- ☐ Yet, in practice the value function is "hidden" in the utility function
 - E.g, if certainty equivalent of 50-50 gamble between 3k€ and 5k€ salary is 3.9k€, is this a sign of risk aversion or decreasing marginal value of salary?



Summary

- Multiattribute utility theory provides a representation for a preference relation between alternatives with uncertain outcomes on multiple attributes
- ☐ This representation is an additive utility function iff the attributes are mutually preferentially independent and additive independent
- □ Attribute-specific utility functions are elicited as in the case with a single attribute
- □ Attribute weights are elicited as in MAVT
- Decision recommendation: the alternative with highest expected utility
- □ Robust methods can also be used with MAUT