CS-E4500 Advanced Course in Algorithms

Week 06 - Tutorial

1. The events A_{1}, A_{2}, A_{3} are pairwise independent if, for all $i \neq j, A_{i}$ is independent of A_{j}. However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $\mathrm{P}\left(A_{1}, A_{2}, A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)$. Construct an example where three events are pairwise independent but not mutually independent.
2. Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are pairwise independent random variables. Prove that

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

This equality allows us to apply Chebyshev's inequality even when the random variables are only pairwise independent.

