CS–E4500 Advanced Course in Algorithms *Week 06 – Tutorial*

1. The events A_1, A_2, A_3 are pairwise independent if, for all $i \neq j$, A_i is independent of A_j . However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $P(A_1, A_2, A_3) = P(A_1)P(A_2)P(A_3)$. Construct an example where three events are pairwise independent but not mutually independent.

Solution. One example would concern two independent coin tosses. Let

- A_1 : first toss is Head
- A_2 : second toss is Head
- A_3 : both tosses are the same

Clearly $P(A_i | A_j) = P(A_i)$ for all $i, j \in \{1, 2, 3\}$ such that $i \neq j$. However, since events A_1 and A_2 determine event A_3 , they are not mutually independent.

2. Let $X = \sum_{i=1}^{n} X_i$, where the X_i are pairwise independent random variables. Prove that

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

This equality allows us to apply Chebyshev's inequality even when the random variables are only pairwise independent.

Solution. By a well known relation,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}),$$

where

$$\operatorname{Cov}(X_i, X_j) = \operatorname{E}((X_i - \operatorname{E}(X_i))(X_j - \operatorname{E}(X_j))) = \operatorname{E}(X_i X_j) - \operatorname{E}(X_i) \operatorname{E}(X_j).$$

Since X_1, X_2, \ldots, X_n are pairwise independent, it is clear that for any $i \neq j$ we have

$$\mathbf{E}(X_i X_j) - \mathbf{E}(X_i) \mathbf{E}(X_j) = 0 ,$$

and therefore

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$
.