CS-E4500 Advanced Course in Algorithms

Week 06 - Tutorial

1. The events A_{1}, A_{2}, A_{3} are pairwise independent if, for all $i \neq j, A_{i}$ is independent of A_{j}. However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $\mathrm{P}\left(A_{1}, A_{2}, A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)$. Construct an example where three events are pairwise independent but not mutually independent.

Solution. One example would concern two independent coin tosses. Let

- A_{1} : first toss is Head
- A_{2} : second toss is Head
- A_{3} : both tosses are the same

Clearly $\mathrm{P}\left(A_{i} \mid A_{j}\right)=\mathrm{P}\left(A_{i}\right)$ for all $i, j \in\{1,2,3\}$ such that $i \neq j$. However, since events A_{1} and A_{2} determine event A_{3}, they are not mutually independent.
2. Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are pairwise independent random variables. Prove that

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

This equality allows us to apply Chebyshev's inequality even when the random variables are only pairwise independent.

Solution. By a well known relation,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

where

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left(\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right)\left(X_{j}-\mathrm{E}\left(X_{j}\right)\right)\right)=\mathrm{E}\left(X_{i} X_{j}\right)-\mathrm{E}\left(X_{i}\right) \mathrm{E}\left(X_{j}\right)
$$

Since $X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent, it is clear that for any $i \neq j$ we have

$$
\mathrm{E}\left(X_{i} X_{j}\right)-\mathrm{E}\left(X_{i}\right) \mathrm{E}\left(X_{j}\right)=0
$$

and therefore

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

