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Exercise (from Lecture 13)

Study the definiteness of the quadratic form

Q(x1, x2, x3, x4) = x21 − x22 + x23 + x24 + 4x2x3 − 2x1x4

on the following constraint set:

x2 + x3 + x4 = 0

x1 − 9x2 + x4 = 0.
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Exercise (from Lecture 13)

▶ We can write Q in matrix form Q(x) = xTAx , where the coefficient matrix is

A =


1 0 0 −1
0 −1 2 0
0 2 1 0
−1 0 0 1



▶ The set of linear constraints is

(
0 1 1 1
1 −9 0 1

)
x1
x2
x3
x4

 =

(
0
0

)
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Exercise (from Lecture 13)

▶ We can form the following bordered matrix

H6 =



0 0 0 1 1 1
0 0 1 −9 0 1
0 1 1 0 0 −1
1 −9 0 −1 2 0
1 0 0 2 1 0
1 1 −1 0 0 1



▶ The problem has n = 4 variables and m = 2 constraints. Hence we need to check
the last n −m = 2 leading principal minors
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Exercise (from Lecture 13)

▶ The last leading principal minor is the determinant of H6 itself, which is
detH6 = 24

▶ The second-to-last leading principal minor is the determinant of

H5 =


0 0 0 1 1
0 0 1 −9 0
0 1 1 0 0
1 −9 0 −1 2
1 0 0 2 1

 ,

which is detH5 = 77.

▶ Finally, since (−1)m = (−1)2 = +1, detH6 > 0 and detH5 > 0, we can conclude
that our constrained quadratic form is positive definite
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Constrained Optimization
▶ Suppose we want to solve the following optimization problem with one inequality

constraint:

max
x ,y

f (x , y)

s.t. g(x , y) ≤ b

▶ Let ∇f (p) and ∇g(p) be the gradient vectors of f and g at p, respectively

▶ For a given function F of n variables, the gradient of F at x is the vector

∇F (x) =


∂F
∂x1

(x)
∂F
∂x2

(x)
...

∂F
∂xn

(x)


▶ The gradient vector points in the direction in which the value of F increases most

rapidly
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Constrained Optimization
▶ Suppose that p solves our optimization problem and that it lies on the boundary

of the constraint set where g(x , y) = b. We say that the constraint g is binding
or active at p

▶ We have ∇f (p) = µ∇g(p), where µ is a Lagrange multiplier
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Constrained Optimization

▶ In ∇f (p) = µ∇g(p), µ must be non-negative

▶ ∇g(p) points to the region where g(x , y) ≥ b, and not to the constraint set
g(x , y) ≤ b

▶ Since p maximizes f on the set g(x , y) ≤ b, ∇f (p) cannot point to the constraint
set g(x , y) ≤ b

▶ Thus ∇f (p) and ∇g(p) must point in the same direction, i.e. µ ≥ 0
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Constrained Optimization

▶ Now suppose that the solution to the constrained maximization problem is q

▶ At q, the constraint is not binding (or inactive), i.e. g(q) < b
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Constrained Optimization

▶ q is also a local unconstrained maximizer of f

▶ From the first order conditions for unconstrained maximization,

∂f

∂x
(q) = 0 =

∂f

∂y
(q)

▶ In the constrained problem, we can still form the Lagrangian

L(x , y , µ) = f (x , y)− µ (g(x , y)− b)

▶ When the constraint g(x , y) ≤ b is inactive, we require µ = 0
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Constrained Optimization

▶ In summary:

▶ Either the constraint is binding, g(x , y) = b, in which case the multiplier must be
µ ≥ 0;

▶ or the constraint is inactive, g(x , y) < b, in which case the multiplier must be µ = 0

▶ The two cases above are summarized in the following complementary slackness
condition:

µ [g(x , y)− b] = 0
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Constrained Optimization

Proposition (First order necessary conditions, 2 variables, 1 inequality constraint)

Let f and g be C 1 functions defined over R2. Suppose that:

1. (x∗, y∗) maximizes f on the constraint set g(x , y) ≤ b;

2. if g(x∗, y∗) = b, then ∂g
∂x (x

∗, y∗) ̸= 0 or ∂g
∂y (x

∗, y∗) ̸= 0.

Let the Lagrangian function be:

L(x , y , µ) = f (x , y)− µ [g(x , y)− b] .

Then, there exists a number µ∗ such that

1. ∂L
∂x (x

∗, y∗) = 0 and ∂L
∂y (x

∗, y∗) = 0

2. µ∗ [g(x∗, y∗)− b] = 0

3. µ∗ ≥ 0

4. g(x∗, y∗) ≤ b
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Constrained Optimization
Equality vs. Inequality constraints:

▶ Both use the Lagrangian and both require that the partial derivatives of L with
respect to the xi ’s be zero

▶ The condition ∂L
∂λ = 0 for equality constraints may no longer hold for inequality

constraints. It is replaced by

µ [g(x , y)− b] = 0 and
∂L

∂µ
= g(x , y)− b ≤ 0

▶ The constraint qualification for inequality constraints must be checked only for
those constraints that are binding

▶ With equality constraints, there are no restrictions on the sign of the Lagrange
multipliers; with inequality constraints, the multiplier must be non-negative

▶ The first order conditions for equality constraints work both for maximization and
minimization problems; the first order conditions for inequality constraints in the
previous slide work only for maximization problems
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Constrained Optimization

▶ Example. Consider the utility maximization problem

max
x1,x2

u(x1, x2)

s.t. p1x1 + p2x2 ≤ w ,

where p1 and p2 are prices, and w is income or wealth

▶ Suppose that preferences are monotone. That is, at every (x1, x2), the marginal
utility of each commodity is positive:

∂u

∂x1
(x1, x2) > 0 and

∂u

∂x2
(x1, x2) > 0
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Constrained Optimization
▶ The Lagrangian is

L(x1, x2, µ) = u(x1, x2)− µ(p1x1 + p2x2 − w)

▶ At a solution (x∗1 , x
∗
2 ), we have

∂u

∂x1
(x∗1 , x

∗
2 )− µp1 = 0,

∂u

∂x2
(x∗1 , x

∗
2 )− µp2 = 0 (1)

µ∗ ≥ 0, p1x
∗
1 + p2x

∗
2 ≤ w , µ∗ (p1x

∗
1 + p2x

∗
2 − w) = 0

▶ Notice that µ∗ cannot be equal to zero, otherwise both equations in (1) would be
inconsistent with positive marginal utilities

▶ Since µ∗ > 0, the complementary slackness condition implies p1x
∗
1 + p2x

∗
2 = w .

That is, the budget constraint is binding

▶ In general, when the utility function represents monotone preferences, one can
treat the budget constraint as an equality constraint
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Constrained Optimization

▶ The general formulation of a constrained maximization problem with n variables
and k inequality constraints is to
▶ maximize the objective function f (x1, . . . , xn) with respect to (x1, . . . , xn)
▶ subject to the constraints:

g1(x1, . . . , xn) ≤ b1

g2(x1, . . . , xn) ≤ b2

. . . . . . . . . . . .

gk(x1, . . . , xn) ≤ bk

▶ The constraint set is

C = {x ∈ Rn : g1(x) ≤ b1, g2(x) ≤ b2, . . . , gk(x) ≤ bk} ,

where x = (x1, . . . , xn)
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Constrained Optimization

▶ The non-degenerate constraint qualification (NDCQ) at a given point x is
formulated as follows:

▶ Without loss of generality, suppose that the first k0 inequality constraints (k0 ≤ k)
are binding at x, and the last k − k0 are inactive at x

▶ The Jacobian of the binding constraints is

Dg(x) =


∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)
...

. . .
...

∂gk0
∂x1

(x) · · · ∂gk0
∂xn

(x)



▶ We say that the NDCQ is satisfied at x if the rank of Dg(x) is as large as it can be
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Constrained Optimization

Proposition (First order necessary conditions)

Let f , g1, . . . , gk be C 1 functions defined over Rn. Suppose that:

1. x∗ is a local maximizer of f on the constraint set defined by the inequalities

g1(x) ≤ b1, g2(x) ≤ b2, . . . , gk(x) ≤ bk

2. the NDCQ is satisfied at x∗.

Form the Lagrangian L(x , µ1, . . . , µk) = f (x)−
∑k

i=1 µi [gi (x)− bi ] .
Then, there exists multipliers µ∗

1, . . . , µ
∗
k such that

1. ∂L
∂x1

(x∗,µ∗) = 0, . . . , ∂L
∂xn

(x∗,µ∗) = 0

2. µ∗
1 [g1(x

∗)− b1] = 0, . . . , µ∗
k [gk(x

∗)− bk ] = 0

3. µ∗
1 ≥ 0, . . . , µ∗

k ≥ 0

4. g1(x∗) ≤ b1, . . . , gk(x∗) ≤ bk .
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Constrained Optimization

Proposition (First order necessary conditions)

Let f , g1, . . . , gk be C 1 functions defined over Rn. Suppose that:

1. x∗ is a local minimizer of f on the constraint set defined by the inequalities

g1(x) ≥ b1, g2(x) ≥ b2, . . . , gk(x) ≥ bk

2. the NDCQ is satisfied at x∗.

Form the Lagrangian L(x , µ1, . . . , µk) = f (x)−
∑k

i=1 µi [gi (x)− bi ] .
Then, there exists multipliers µ∗

1, . . . , µ
∗
k such that

1. ∂L
∂x1

(x∗,µ∗) = 0, . . . , ∂L
∂xn

(x∗,µ∗) = 0

2. µ∗
1 [g1(x

∗)− b1] = 0, . . . , µ∗
k [gk(x

∗)− bk ] = 0

3. µ∗
1 ≥ 0, . . . , µ∗

k ≥ 0

4. g1(x∗) ≥ b1, . . . , gk(x∗) ≥ bk .
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Constrained Optimization

▶ Example. Consider the constrained maximization problem

max
x ,y

x2 + y2

s.t. 2x + y ≤ 2

x ≥ 0, y ≥ 0

▶ Here we can invoke Weierstrass’s theorem and claim that a solution exists (why?)

▶ The Lagrangian is

L = x2 + y2 − µ(2x + y − 2) + λ1x + λ2y
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Constrained Optimization

▶ Example (cont’d). The first order conditions are

2x − 2µ+ λ1 = 0

2y − µ+ λ2 = 0

µ(2x + y − 2) = 0

λ1x = 0

λ2y = 0

µ ≥ 0, λ1 ≥ 0, λ2 ≥ 0

2x + y ≤ 2, x ≥ 0, y ≥ 0
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Constrained Optimization
▶ Example (cont’d). To find all the candidates for a solution, we can consider four

distinct cases.

1. x = y = µ = λ1 = λ2 = 0 satisfies all the first order conditions, hence (0, 0) is a
candidate for a solution.

2. Suppose there is a solution with x = 0 and y > 0. If so, then λ1 = 2µ and y = 2. If
y = 2, then λ2 = 0, so µ = 4 and λ1 = 8, which is consistent with all the first order
conditions. Thus (x , y) = (0, 2) is a candidate for a solution.

3. Suppose there is a solution with y = 0 and x > 0. If so, then λ2 = µ and x = 1. If
x = 1, then λ1 = 0, so µ = 1 and λ2 = 1, which is consistent with all the first order
conditions. Thus (x , y) = (1, 0) is a candidate for a solution.

4. Suppose there is a solution with y > 0 and x > 0. If so, then λ1 = λ2 = 0.
Consequently, x = µ = 4

5 and y = 2
5 , which is consistent with all the first order

conditions. Thus (x , y) = ( 45 ,
2
5 ) is a candidate for a solution.
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Constrained Optimization

▶ Example (cont’d). If we evaluate the objective function at the four candidates
for a solution, we find that the global constrained maximizer is (x∗, y∗) = (0, 2)

▶ Exercise. Check whether the NDCQ is satisfied

▶ Exercise. Solve the problem of minimizing f over the same set of constraints of
this example
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Constrained Optimization
▶ Suppose we want to solve the following problem with k inequality constraints and

n non-negativity constraints:

▶ maximize f (x1, . . . , xn) with respect to (x1, . . . , xn)
▶ subject to the constraints:

g1(x1, . . . , xn) ≤ b1

g2(x1, . . . , xn) ≤ b2

. . . . . . . . . . . .

gk(x1, . . . , xn) ≤ bk

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

▶ Clearly, one can solve this problem by using the first order conditions we already
saw

▶ Alternatively, an equivalent way to solve the problem is to use the Kuhn-Tucker
formulation
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Constrained Optimization

▶ The Kuhn-Tucker Lagrangian of this problem is

L̃(x , µ1, . . . , µk) = f (x)−
k∑

i=1

µi [gi (x)− bi ] ,

in which non-negativity constraints are not included.
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Constrained Optimization

▶ The first order conditions in terms of the Kuhn-Tucker Lagrangian are

∂L̃

∂x1
≤ 0, . . . ,

∂L̃

∂xn
≤ 0,

∂L̃

∂µ1
≥ 0, . . . ,

∂L̃

∂µk
≥ 0

x1
∂L̃

∂x1
= 0, . . . , xn

∂L̃

∂xn
= 0, µ1

∂L̃

∂µ1
= 0, . . . , µk

∂L̃

∂µk
= 0

x1 ≥ 0, . . . , xn ≥ 0, µ1 ≥ 0, . . . , µk ≥ 0.

▶ If a solution x∗ exists, and if the NDCQ is satisfied, the above system is satisfied
at x∗
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Constrained Optimization

▶ Example. Consider the utility maximization problem

max
x1,x2

u(x1, x2)

s.t. p1x1 + p2x2 ≤ w

x1 ≥ 0, x2 ≥ 0

▶ The Kuhn-Tucker Lagrangian is

L̃ = u(x1, x2)− µ [p1x1 + p2x2 − w ]
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Constrained Optimization

▶ Example (cont’d). The first order conditions are:

∂u

∂x1
− µp1 ≤ 0,

∂u

∂x2
− µp2 ≤ 0,

x1

(
∂u

∂x1
− µp1

)
= 0, x2

(
∂u

∂x2
− µp2

)
= 0,

∂L̃

∂µ
= (w − p1x1 − p2x2) ≥ 0, µ

∂L̃

∂µ
= µ(w − p1x1 − p2x2) = 0

x1 ≥ 0, x2 ≥ 0, µ ≥ 0.

▶ Exercise. Solve the constrained optimization problem at p. 20 by using the
Kuhn-Tucker formulation
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Constrained Optimization

▶ Example. Consider the constrained maximization problem:

max
x ,y

f (x , y) = x2 + 2y

s.t. g1(x , y) = x2 + y2 ≤ 5

g2(x , y) = −y ≤ 0

▶ Before solving this problem, we want to check the NDCQ. That is, we want to
check if there are points in the constraint set in which the NDCQ fails. If such
points exist, we include them in our set of candidates for a solution together with
the points that satisfy the first order necessary conditions
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Constrained Optimization

▶ Example (cont’d). We have to check four cases:

(1) Both constraints are inactive. In this case the NDCQ holds trivially

(2) Constraint 1 is active and constraint 2 is inactive. This means that x2 + y2 = 5 and
y > 0. The Jacobian is

Dg(x , y) =
(
2x 2y

)
The rank is zero if and only if x = y = 0, which contradicts y > 0. Hence the
NDCQ is satisfied in this case
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Constrained Optimization

▶ Example (cont’d).

(3) Constraint 2 is active and constraint 1 is inactive. This means that x2 + y2 < 5 and
y = 0. The Jacobian is

Dg(x , y) =
(
0 −1

)
The rank is always equal to 1. Hence the NDCQ is satisfied in this case

(4) Both constraints are active. This means that x2+ y2 = 5 and y = 0. The Jacobian is

Dg(x , y) =

(
2x 2y
0 −1

)
Since y = 0, x = ±

√
5. At both (

√
5, 0) and (−

√
5, 0), then rank is 2. Hence the

NDCQ is satisfied in this case

▶ We can conclude that the NDCQ is satisfied at every point in the constraint set
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Constrained Optimization
▶ Example (cont’d). To solve the problem, we first observe that a solution exists

by Weierstrass’s Theorem

▶ The Lagrangian is

L = x2 + 2y − λ1

(
x2 + y2 − 5

)
+ λ2y

▶ The first order conditions are

2x − 2xλ1 = 0 (2)

2− 2yλ1 + λ2 = 0 (3)

λ1(x
2 + y2 − 5) = 0 (4)

λ2y = 0 (5)

λ1 ≥ 0, λ2 ≥ 0 (6)

x2 + y2 − 5 ≤ 5, y ≥ 0 (7)
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Constrained Optimization

▶ Example (cont’d). Like we did when checking the NDCQ, we consider four
cases.

(1) Both constraints are inactive. This implies λ1 = λ2 = 0, which contradicts (3).

(2) Constraint 1 is active and constraint 2 is inactive. This means that x2 + y2 = 5 and
y > 0, which implies λ2 = 0. From (2), x(1− λ1) = 0. Thus x = 0 or λ1 = 1, or
both. If x = 0, then y = ±

√
5. Since y > 0, only y =

√
5 is possible. Then

λ1 =
1√
5
. Hence (x , y) = (0,

√
5) is a solution candidate.

If λ1 = 1, then we get y = 1 from (3). Furthermore, the first constraint implies
x = ±2. Thus the points (2, 1) and (−2, 1) are two more solution candidates.

33 / 34



Constrained Optimization
▶ Example (cont’d).

(3) Constraint 2 is active and constraint 1 is inactive. This implies λ1 = 0. By (3),
λ2 = −2, which contradicts (6).

(4) Both constraints are active. If y = 0, then (3) implies λ2 = −2, which contradicts
(6).

▶ In sum, we have three solution candidates:

(x , y) = (0,
√
5), (x , y) = (2, 1), (x , y) = (−2, 1)

▶ Since we have
f (2, 1) = f (−2, 1) = 6 > 2

√
5 = f (0,

√
5),

we can conclude that both (2, 1) and (−2, 1) solve this constrained maximization
problem
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