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Agenda

● Brief HTTP Refresher
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● Starting with Client-side Web Development
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● HTTP is used for communicating with a 
server through exchanging messages.

● HTTP is stateless: every request is 
independent of other requests.

● Older RFC: Persistent connections to 
the server should be limited (no more 
than 2 connections per server).

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response & 

close connection
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But… cookies, 
tokens,  etc!

ok!

Read 
response

Read 
message

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4 
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Retrieving a web page

● There may be multiple resources that 
need to be fetched.

● The number of concurrent connections 
from a client is limited.

● We may have to wait to load some of 
the resources.

● How to get around this?
○ Use caches to limit unnecessary loading.
○ Distribute resources over servers.

amazon.com is loaded with 
about 300 requests.
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temporary location, reducing the need 
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● Two types of cache:
○ Private cache on the client
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● Client-side caching managed using 
HTTP headers

○ Recently also Web Cache API

● Multiple shared (server-side) cache 
implementations / approaches
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Example: Cloudflare CDN

https://cloudflare.com
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JavaScript (or with languages that compile to 
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● Plenty of tools and frameworks for the 
purpose, e.g. Angular, Ember, Svelte, React, 
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● The field has evolved significantly during the 
last decade and seems to still be evolving.
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● Many of the popular client-side frameworks 
are essentially libraries for building (reusable) 
components. 

● Applications are formed by building and 
nesting components in a meaningful (typically 
tree-like) structure, which leads to the 
client-side application.

● When an application is released, the 
application is compiled into a bundle 
consisting of HTML, CSS and JavaScript, 
which can be loaded by browsers.

● The bundle is then added to a server from 
where it can be accessed.
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State management libraries another area with continuous 

development – looking for developer-friendly approaches 

for maintaining state across the application.

E.g. how to add an item to the cart when the button is clicked.



A Brief Peek at Svelte

https://kit.svelte.dev/


