
Designing and Building
Scalable Web Applications

Lecture 2 / 31.10.2022

The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

scratching today

Agenda

● Brief HTTP Refresher
● Caching and Content Delivery Networks
● Starting with Client-side Web Development

HTTP Refresher

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

https://www.rfc-editor.org/rfc/rfc9110.html

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

https://www.rfc-editor.org/rfc/rfc9110.html

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

https://www.rfc-editor.org/rfc/rfc9110.html

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

Read
message

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

Read
message

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

Read
response

Read
message

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

Read
response

Read
message

Possibility to keep connections
open and to reuse them!

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

● HTTP is stateless: every request is
independent of other requests.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

ok!

Read
response

Read
message

Possibility to keep connections
open and to reuse them!

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

● HTTP is stateless: every request is
independent of other requests.

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

But… cookies,
tokens, etc!

ok!

Read
response

Read
message

Possibility to keep connections
open and to reuse them!

https://www.rfc-editor.org/rfc/rfc9110.html

HTTP Refresher

● HTTP is used for communicating with a
server through exchanging messages.

● HTTP is stateless: every request is
independent of other requests.

● Older RFC: Persistent connections to
the server should be limited (no more
than 2 connections per server).

The flow of a request

Open up a TCP connection to the server

Send HTTP message

Send HTTP response &

close connection

https://www.rfc-editor.org/rfc/rfc9110.html

But… cookies,
tokens, etc!

ok!

Read
response

Read
message

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4

Possibility to keep connections
open and to reuse them!

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4

Retrieving a web page

Retrieving a web page

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

Retrieving a web page
GET /index.html HTTP/1.1

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

Retrieving a web page
GET /index.html HTTP/1.1

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

● If the response contains resources that
the client needs, the client retrieves
additional resources.

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

● If the response contains resources that
the client needs, the client retrieves
additional resources.

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

● If the response contains resources that
the client needs, the client retrieves
additional resources.

“I need these

as well”

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

GET /styles/styles.css HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

● If the response contains resources that
the client needs, the client retrieves
additional resources.

“I need these

as well”

HTTP/1.1 200 OK…

HTTP/1.1 200 OK…

Retrieving a web page
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

GET /styles/styles.css HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1

● When retrieving a web page, the client
makes a request to the server, asking
for a resource.

● The server responds with the resource,
which is then interpreted by the client.

● If the response contains resources that
the client needs, the client retrieves
additional resources.

“I need these

as well”

HTTP/1.1 200 OK…

HTTP/1.1 200 OK…
By default, this happens every time

the client retrieves /index.html

Retrieving a web page

● There may be multiple resources that
need to be fetched.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

amazon.com is loaded with
about 300 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

aalto.fi/en is loaded with
about 80 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

aalto.fi/en is loaded with
about 80 requests.

fitech101.aalto.fi/web-software-development/

is loaded with about 50 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

● The number of concurrent connections
from a client is limited.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

aalto.fi/en is loaded with
about 80 requests.

fitech101.aalto.fi/web-software-development/

is loaded with about 50 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

● The number of concurrent connections
from a client is limited.

● We may have to wait to load some of
the resources.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

aalto.fi/en is loaded with
about 80 requests.

fitech101.aalto.fi/web-software-development/

is loaded with about 50 requests.

Retrieving a web page

● There may be multiple resources that
need to be fetched.

● The number of concurrent connections
from a client is limited.

● We may have to wait to load some of
the resources.

● How to get around this?
○ Use caches to limit unnecessary loading.
○ Distribute resources over servers.

amazon.com is loaded with
about 300 requests.

bbc.com is loaded with about
200 requests.

aalto.fi/en is loaded with
about 80 requests.

fitech101.aalto.fi/web-software-development/

is loaded with about 50 requests.

Caching

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

Caching

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

Caching

GET /index.html HTTP/1.1

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

“I might have

these already,

yay!”

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

● Two types of cache:
○ Private cache on the client
○ Shared cache on the server (or a server)

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

https://www.rfc-editor.org/rfc/rfc9111.html

“I might have

these already,

yay!”

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

● Two types of cache:
○ Private cache on the client
○ Shared cache on the server (or a server)

● Client-side caching managed using
HTTP headers

○ Recently also Web Cache API

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

https://www.rfc-editor.org/rfc/rfc9111.html

“I might have

these already,

yay!”

https://www.rfc-editor.org/rfc/rfc9111.html

● Caching means storing data in a
temporary location, reducing the need
to re-retrieve the data.

● Two types of cache:
○ Private cache on the client
○ Shared cache on the server (or a server)

● Client-side caching managed using
HTTP headers

○ Recently also Web Cache API

● Multiple shared (server-side) cache
implementations / approaches

Caching

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet" href="/styles/styles.css">

 </head>

<body>

</body>
</html>

https://www.rfc-editor.org/rfc/rfc9111.html

“I might have

these already,

yay!”

https://www.rfc-editor.org/rfc/rfc9111.html

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

Used to enable caching for resource and,

optionally, to set an age for a resource

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

max-age given in seconds

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

max-age given in seconds

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

Used to enable caching for resource and,

optionally, to set an age for a resource

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

But, it needs to be

retrieved after that.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

But, it needs to be

retrieved after that.

Ask for a new version of the resource only if it has not been modified since Last-Modified.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-Modified-Since: Mon, 31 Oct 2022 09:45:00 GMT

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

But, it needs to be

retrieved after that.

Ask for a new version of the resource only if it has not been modified since Last-Modified.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-Modified-Since: Mon, 31 Oct 2022 09:45:00 GMT

HTTP/1.1 304 Not Modified

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

But, it needs to be

retrieved after that.

Ask for a new version of the resource only if it has not been modified since Last-Modified.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

Last-Modified: Mon, 31 Oct 2022 09:45:00 GMT

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-Modified-Since: Mon, 31 Oct 2022 09:45:00 GMT

HTTP/1.1 304 Not Modified

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Now, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

But, it needs to be

retrieved after that.

Ask for a new version of the resource only if it has not been modified since Last-Modified.

No data in response

if the cached file is

still valid.

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Ask for a new version of the resource only if its unique identifier does not match ETag.

Content-based
caching

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-None-Match: unique-identifier-from-server

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Ask for a new version of the resource only if its unique identifier does not match ETag.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-None-Match: unique-identifier-from-server

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Ask for a new version of the resource only if its unique identifier does not match ETag.
HTTP/1.1 304 Not Modified

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-None-Match: unique-identifier-from-server

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Ask for a new version of the resource only if its unique identifier does not match ETag.
HTTP/1.1 304 Not Modified

No data in response

if the cached file is

still valid.

https://www.rfc-editor.org/rfc/rfc9111.html

HTTP/1.1 200 OK

Cache-Control: private, max-age: 86400

ETag: "unique-identifier-from-server"

… data …

● Information about caching of resources
provided in HTTP headers, e.g.

○ Cache-Control
○ Last-Modified → If-Modified-Since
○ ETag → If-None-Matches

● Headers received in HTTP responses
and sent in HTTP requests.

● Recently also Web Cache API that
can, e.g., be used to cache
JavaScript request responses.
See RFC9111.

Client-side Caching

https://www.rfc-editor.org/rfc/rfc9111.html

GET /images/retro-sax-guy.gif HTTP/1.1

GET /images/retro-sax-guy.gif HTTP/1.1If-None-Match: unique-identifier-from-server

Used to enable caching for resource and,

optionally, to set an age for a resource

Time-based
caching

Content-based
caching

Again, there’s no need to re-retrieve the resource in 60 * 60 * 24 = 86400 seconds.

Again, it needs to be

retrieved after that.

Ask for a new version of the resource only if its unique identifier does not match ETag.
HTTP/1.1 304 Not Modified

No data in response

if the cached file is

still valid.

https://www.rfc-editor.org/rfc/rfc9111.html

Client-side Caching: Example

Server-side Caching

● Many approaches, many ways to
implement – typically on a need basis:

○ Caching static resources from disk
○ Caching resources retrieved from database
○ Caching dynamic content
○ Caching resources on the server
○ Caching resources on a separate server, e.g.

a dedicated cache server, load balancer,
reverse proxy, …

Server-side Caching

● Many approaches, many ways to
implement – typically on a need basis:

○ Caching static resources from disk
○ Caching resources retrieved from database
○ Caching dynamic content
○ Caching resources on the server
○ Caching resources on a separate server, e.g.

a dedicated cache server, load balancer,
reverse proxy, …

● Previously also caching on proxy
servers. With increasing use of HTTPS,
this is used less often (and is less often
useful).

Server-side Caching

● Many approaches, many ways to
implement – typically on a need basis:

○ Caching static resources from disk
○ Caching resources retrieved from database
○ Caching dynamic content
○ Caching resources on the server
○ Caching resources on a separate server, e.g.

a dedicated cache server, load balancer,
reverse proxy, …

● Previously also caching on proxy
servers. With increasing use of HTTPS,
this is used less often (and is less often
useful).

Server-side Caching

Note: proxy servers and reverse

proxy are different

● Many approaches, many ways to
implement – typically on a need basis:

○ Caching static resources from disk
○ Caching resources retrieved from database
○ Caching dynamic content
○ Caching resources on the server
○ Caching resources on a separate server, e.g.

a dedicated cache server, load balancer,
reverse proxy, …

● Previously also caching on proxy
servers. With increasing use of HTTPS,
this is used less often (and is less often
useful).

Server-side Caching

Note: proxy servers and reverse

proxy are different

Less often used, well.. except for..

Content-Delivery Networks

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

GET /index.html HTTP/1.1

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

● CDN servers typically geographically
distributed.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

● CDN servers typically geographically
distributed.

○ Requests to CDN routed to the closest servers.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

● CDN servers typically geographically
distributed.

○ Requests to CDN routed to the closest servers.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

“The edge”

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

● CDN servers typically geographically
distributed.

○ Requests to CDN routed to the closest servers.

● Naturally, CDNs also use HTTP headers
allowing client-side caching.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

“The edge”

Content-Delivery Networks

● A specific shared cache; cacheable data (e.g.
static content) is distributed across a body of
servers – a Content-Delivery Network (CDN).

● Multiple servers with different addresses.
○ Remember that browsers can open up a limited

number of concurrent requests per server.
○ With multiple servers, browsers can open up the

limited number of concurrent requests to each server.

● CDN servers typically geographically
distributed.

○ Requests to CDN routed to the closest servers.

● Naturally, CDNs also use HTTP headers
allowing client-side caching.

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

(headers)

<html>
 <head>
 <link rel="stylesheet"

 href="https://s1.cdn-srvr.com/identifier/styles.css">

 </head>
<body>

</body>
</html>

Now, these two resources

would be retrieved from a

separate CDN server.

“The edge”

Can also be used like a proxy server

Content-Delivery Networks

● Can lead to significantly fewer requests to
the “main servers” → Requests for
resources distributed over CDN servers.

Content-Delivery Networks

● Can lead to significantly fewer requests to
the “main servers” → Requests for
resources distributed over CDN servers.

● Can lead to faster web application loading
times → Static resources loaded from the
edge.

Content-Delivery Networks

● Can lead to significantly fewer requests to
the “main servers” → Requests for
resources distributed over CDN servers.

● Can lead to faster web application loading
times → Static resources loaded from the
edge.

● Resources on CDN servers available even
if the main servers are not available.

Content-Delivery Networks

Any downsides with Caching and CDNs?

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.
“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

● Comes with some costs (fees for CDN
service providers, set up effort, …).

“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

● Comes with some costs (fees for CDN
service providers, set up effort, …).

“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

See e.g. https://cloud.google.com/cdn/pricing

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

● Comes with some costs (fees for CDN
service providers, set up effort, …).

● Also potential cyber-security issues, e.g.
integrity of second-hand content; using
CDNs for DOS attacks (for latter, see
RFC8586).

“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

See e.g. https://cloud.google.com/cdn/pricing

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

● Comes with some costs (fees for CDN
service providers, set up effort, …).

● Also potential cyber-security issues, e.g.
integrity of second-hand content; using
CDNs for DOS attacks (for latter, see
RFC8586).

“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

https://www.rfc-editor.org/rfc/rfc8586.html

See e.g. https://cloud.google.com/cdn/pricing

https://www.rfc-editor.org/rfc/rfc8586.html

Any downsides with Caching and CDNs?

● Stale cache → invalid content shown.

● Comes with some costs (fees for CDN
service providers, set up effort, …).

● Also potential cyber-security issues, e.g.
integrity of second-hand content; using
CDNs for DOS attacks (for latter, see
RFC8586).

“There are only two hard problems in
Computer Science: cache invalidation

and naming things.” – Phil Karlton

https://www.rfc-editor.org/rfc/rfc8586.html https://dmsec.io/hacking-thousands-of-websites-via-third-party-javascript-libraries/

See e.g. https://cloud.google.com/cdn/pricing

https://www.rfc-editor.org/rfc/rfc8586.html

Example: Cloudflare CDN

https://cloudflare.com

Starting with Client-Side Web Development

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

● Often realized using HTML, CSS and
JavaScript (or with languages that compile to
one or more of these).

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

● Often realized using HTML, CSS and
JavaScript (or with languages that compile to
one or more of these).

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

E.g. Dart and Flutter (used in CS-E4270 Device-Agnostic Design)

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

● Often realized using HTML, CSS and
JavaScript (or with languages that compile to
one or more of these).

● Plenty of tools and frameworks for the
purpose, e.g. Angular, Ember, Svelte, React,
VueJs…

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

E.g. Dart and Flutter (used in CS-E4270 Device-Agnostic Design)

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

● Often realized using HTML, CSS and
JavaScript (or with languages that compile to
one or more of these).

● Plenty of tools and frameworks for the
purpose, e.g. Angular, Ember, Svelte, React,
VueJs…

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

E.g. Dart and Flutter (used in CS-E4270 Device-Agnostic Design)

New ones popping up every

now and then.

Client-Side Web Development

● Client-side applications run on the client (e.g.
the browser) and do not necessarily interact
with a server.

● Often realized using HTML, CSS and
JavaScript (or with languages that compile to
one or more of these).

● Plenty of tools and frameworks for the
purpose, e.g. Angular, Ember, Svelte, React,
VueJs…

● The field has evolved significantly during the
last decade and seems to still be evolving.

Full stack development refers to working on

both client-side apps (frontend) and

server-side apps (backend).

E.g. Dart and Flutter (used in CS-E4270 Device-Agnostic Design)

New ones popping up every

now and then.

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components. Button

Item
Cart

Category

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application.

Button

Item
Cart

Category

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application. Button

Item

CartCategory

Item

Shop

Button

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application. Button

Item

CartCategory

Item

Shop

Button

State management libraries another area with continuous

development – looking for developer-friendly approaches

for maintaining state across the application.

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application. Button

Item

CartCategory

Item

Shop

Button

State management libraries another area with continuous

development – looking for developer-friendly approaches

for maintaining state across the application.

E.g. how to add an item to the cart when the button is clicked.

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application.

● When an application is released, the
application is compiled into a bundle
consisting of HTML, CSS and JavaScript,
which can be loaded by browsers.

Button

Item

CartCategory

Item

Shop

Button

State management libraries another area with continuous

development – looking for developer-friendly approaches

for maintaining state across the application.

E.g. how to add an item to the cart when the button is clicked.

Client-Side Web Development

● Many of the popular client-side frameworks
are essentially libraries for building (reusable)
components.

● Applications are formed by building and
nesting components in a meaningful (typically
tree-like) structure, which leads to the
client-side application.

● When an application is released, the
application is compiled into a bundle
consisting of HTML, CSS and JavaScript,
which can be loaded by browsers.

● The bundle is then added to a server from
where it can be accessed.

Button

Item

CartCategory

Item

Shop

Button

State management libraries another area with continuous

development – looking for developer-friendly approaches

for maintaining state across the application.

E.g. how to add an item to the cart when the button is clicked.

A Brief Peek at Svelte

https://kit.svelte.dev/

