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Intended Learning Outcomes

After this lecture, you will be able to:
describe the idea of dynamic modeling in sensor fusion,
explain the process of constructing continuous-time
state-space models,
distinguish deterministic and stochastic state-space
models,
construct linear and nonlinear continuous-time state-space
models.
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Recap (1/2)
The Gauss–Newton update can be scaled with additional
parameter γ:

x̂(i+1) = x̂(i) + γ∆x̂(i+1).

The parameter can be found via line search that minimizes

J(i)
WLS(γ) = JWLS

(
x̂(i) + γ∆x̂(i+1)

)
.

We can also use inexact line search which ensures that the
cost is decreased a sufficient amount.
In Levenberg–Marquardt (LM) algorithm we replace the
linear approximation in Gauss–Newton with its regularized
version.
In LM algorithm, we find a suitable regularization
parameter λ via an iterative procedure.
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Recap (2/2)

We can also consider regularized nonlinear problems with
a simple trick:

JReLS(x) = (y− g(x))TR−1(y− g(x)) + (m− x)TP−1(m− x)

=

([
y
m

]
−
[
g(x)

x

])T [R−1 0
0 P−1

]([
y
m

]
−
[
g(x)

x

])
.

Quasi-Newton methods are more general optimization
methods that approximate the Hessian in Newton’s
method.
Various convergence criteria are available for terminating
iterative optimization methods.



Linear Continuous-Time Dynamic Models
Simo Särkkä

8 / 33

Motivation: Moving Targets (1/2)
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Motivation: Moving Targets (2/2)

In practice, we often wish to track a moving target.
One way is to recompute the position at every time step.
This ignores the time continuity.
We get a better result by modeling the temporal
relationship of measurements.
This can be done using (stochastic) differential equations
and difference equations.
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Localizing a Moving Target (1/4)

Target moves rather
than being
stationary
Sensors measure
periodically, e.g.,
every second
We can now either

1 recompute the
position estimate
at every time, or

2 use a dynamic
model to connect
the time points.

px

py



Linear Continuous-Time Dynamic Models
Simo Särkkä

11 / 33

Localizing a Moving Target (2/4)
Let us try a straight line model:

px (t) = px (0) + vx t ,
py (t) = py (0) + vy t .

Measurement model:

yn(t) =

√
(px (t)− sx

n)2 + (py (t)− sy
n)2 + rn(t)

=

√
(px (0) + vx t − sx

n)2 + (py (0) + vy t − sy
n)2 + rn(t)

We need to estimate 4 parameters:

x =
[
px

t (0) py
t (0) vx vy

]T
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Localizing a Moving Target (3/4)

px

py
Separate Points

Straight Line



Linear Continuous-Time Dynamic Models
Simo Särkkä

13 / 33

Localizing a Moving Target (4/4)

px

py
Separate Points

Straight Line
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Localizing a Moving Target: Conclusions

The static approach is not too well suited for time-varying
processes
A systematic method that relates (time-wise) related
measurements is needed
Solution: Use differential (and difference) equations to
model the time-varying, i.e., dynamic, system
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ODE Modeling of Dynamic Systems
Ordinary differential equations (ODEs) can be used to
describe many dynamic systems.
Example: Spring-damper system:

k

η
m

u(t)

p

Second order ordinary differential equation:

ma(t) = −kp(t)− ηv(t) + u(t)

Other examples: Newtonion/Hamiltonian dynamics,
kinematic models, heat and mass transfer, wave equations,
. . .
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Example: State-Space Representation of ODEs

The second order ODE for spring:

ma(t) = −kp(t)− ηv(t) + u(t)

Equation system representation:[
v(t)
a(t)

]
=

[
0 1
− k

m − η
m

] [
p(t)
v(t)

]
+

[
0
1
m

]
u(t)

First order ODE equation system:

ẋ(t) =

[
0 1
− k

m − η
m

]
x(t) +

[
0
1
m

]
u(t)

x(t) =
[
p(t) v(t)

]T is the state of the system
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Example: A Coffee Cup’s Cooling (1/2)
Newton’s law of cooling for the coffee cup:

dTc(t)
dt

= −k1(Tc(t)− Tr(t)),

Newton’s law of cooling for the room:

dTr(t)
dt

= −k2(Tr(t)− Ta(t)) + h(t),

Equation system:

dTr(t)
dt

= −k2(Tr(t)− Ta(t)) + h(t)

dTc(t)
dt

= −k1(Tc(t)− Tr(t))
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Example: A Coffee Cup’s Cooling (2/2)
The equation system:

dTr(t)
dt

= −k2(Tr(t)− Ta(t)) + h(t)

dTc(t)
dt

= −k1(Tc(t)− Tr(t))

In matrix form:[
dTr(t)

dt
dTc(t)

dt

]
=

[
−k2 0
k1 −k1

] [
Tr(t)
Tc(t)

]
+

[
k2 1
0 0

] [
Ta(t)
h(t)

]
Compact state-space notation:

ẋ(t) = Ax(t) + Buu(t)
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A Linear System of Differential Equations (1/2)

General system of first order differential equations:

ẋ1(t) = a11x1(t) + a12x2(t) + · · ·+ a1dx xdx (t)
+ b11u1(t) + b12u2(t) + · · ·+ b1du udu (t)

ẋ2(t) = a21x1(t) + a22x2(t) + · · ·+ a2dx xdx (t)
+ b21u1(t) + b22u2(t) + · · ·+ b2du udu (t)

...
ẋdx (t) = adx 1x1(t) + adx 2x2(t) + · · ·+ adx dx xdx (t)

+ bdx 1u1(t) + bdx 2u2(t) + · · ·+ bdx du udu (t)
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A Linear System of Differential Equations (2/2)

In matrix form: ẋ1(t)
...

ẋdx (t)

 =

 a11 . . . a1dx
...

. . .
...

adx 1 . . . adx dx


 x1(t)

...
xdx (t)

+

 b11 . . . b1du
...

. . .
...

bdx 1 . . . bdx du


 u1(t)

...
udu (t)


Compact state-space notation:

ẋ(t) = Ax(t) + Buu(t)

This is called the state-space form of the differential
equation system, x(t) is the state of the system
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Transforming ODEs to State-Space Form (1/2)
Lth order ODE in z(t)

dLz(t)
dtL = c0z(t) + c2

dz(t)
dt

+ · · ·+ cL−1
dL−1z(t)

dtL−1 + d1u(t)

Choose state components:

x1(t) = z(t), x2(t) =
dz(t)

dt
, . . . , xdx (t) =

dL−1z(t)
dtL−1

Then we have:

ẋ1(t) =
dz(t)

dt
= x2(t)

ẋ2(t) =
d2z(t)

dt2 = x3(t)

...

ẋdx (t) =
dLz(t)

dtL = c0z(t) + c2
dz(t)

dt
+ · · ·+ cL−1

dL−1z(t)
dtL−1 + d1u(t)
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Transforming ODEs to State-Space Form (2/2)
Rewritten in terms of states xi :

ẋ1(t) = x2(t)
...

ẋdx (t) = c0x1(t) + c1x2(t) + · · ·+ cL−1xdx (t) + d1u(t)

In matrix form:
ẋ1(t)
ẋ2(t)

...
ẋdx (t)


︸ ︷︷ ︸

,ẋ(t)

=


0 1 0 . . . 0

0 0 1
...

...
. . . 0

c0 c1 . . . cL−1


︸ ︷︷ ︸

,A


x1(t)
x2(t)

...
xdx (t)


︸ ︷︷ ︸

,x(t)

+


0
0
...

d1


︸ ︷︷ ︸
,Bu

u(t).
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Deterministic Linear State-Space Model
The dynamic model describes the evolution of the state:

ẋ(t) = Ax(t) + Bu(t)

The measurement model relates the state xn = x(tn) at tn
to the measurement yn

The linear measurement model is

yn = Gxn + rn.

The deterministic linear state-space model combines the
linear dynamic and measurement models

ẋ(t) = Ax(t) + Buu(t),
yn = Gxn + rn.
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Example: A Car Navigating in 2D (1)
Newton’s law gives:

m ax = F x
p

m ay = F y
p

Defining state x =
[
px py vx vy]T leads to

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x +


0 0
0 0

1/m 0
0 1/m

[F x
p

F y
p

]

Assuming position measurements yn gives

yn =

[
1 0 0 0
0 1 0 0

]
xn + rn.
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Uncertainty in Dynamic Models

The deterministic input u(t) might not be known
The model does not capture every aspect of the process
Solution: Add a stochastic process w(t) as an input
Example: Stochastic differential equation (SDE) of order L:

dLz(t)
dtL = c0z(t) + c1

dz(t)
dt

+ · · ·+ cL−1
dL−1z(t)

dtL−1 + d1w(t)
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Input Process w(t)

Assumed to be zero-mean and stationary
Characterized by its autocorrelation function. . .

Rww (τ) = E{w(t + τ)w(t)}

. . . or its power spectral density

Sww (ω) =

∫
Rww (τ)e− iωτdτ
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White Processes

“White noise” — equal contributions of each frequency
Autocorrelation function: Rww (τ) = σ2

wδ(τ)

Power spectral density: Sww = σ2
w

Many forms of colored noise are filtered versions of white
noise

−4
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2
4

t

w
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)
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Stochastic Linear State-Space Model
Derivation of the stochastic dynamic model follows the
same steps as for the deterministic case
The stochastic process w(t) takes the place of the
deterministic input u(t)
A system can have both deterministic and stochastic inputs
Linear stochastic dynamic model:

ẋ(t) = Ax(t) + Bww(t)

Linear stochastic state-space model with measurements:

ẋ(t) = Ax(t) + Bww(t)
yn = Gxn + rn
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Example: A Car Navigating in 2D (2)
Recall the deterministic dynamic model:

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x +


0 0
0 0

1/m 0
0 1/m

[F x
p

F y
p

]

F x
p ,F

y
p might be unknown when localizing the car

Assume stochastic processes as the input:

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x +


0 0
0 0
1 0
0 1

[w1(t)
w2(t)

]

This is the Wiener velocity model in 2D
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Summary
Higher order ODEs and SDEs can be transformed to a
first-order vector-valued equation system
The deterministic linear state-space model is

ẋ(t) = Ax(t) + Buu(t)
yn = Gxn + rn

The stochastic linear state-space model with stochastic
input process w(t) is

ẋ(t) = Ax(t) + Bww(t)
yn = Gxn + rn

The 2D Wiener velocity model is

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x +


0 0
0 0
1 0
0 1

[w1(t)
w2(t)

]
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