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Intended Learning Outcomes

After this lecture, you will be able to:
@ describe the idea of dynamic modeling in sensor fusion,

@ explain the process of constructing continuous-time
state-space models,

@ distinguish deterministic and stochastic state-space
models,

@ construct linear and nonlinear continuous-time state-space
models.
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Recap (1/2)

@ The Gauss—Newton update can be scaled with additional
parameter ~:

K0+ = %0 AR+,
@ The parameter can be found via line search that minimizes
J\%)LS(V) = Jwis <)A((i) + ’YA)A((M)) :

@ We can also use inexact line search which ensures that the
cost is decreased a sufficient amount.

@ In Levenberg—Marquardt (LM) algorithm we replace the
linear approximation in Gauss—Newton with its regularized
version.

@ In LM algorithm, we find a suitable regularization
parameter A via an iterative procedure.
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Recap (2/2)

@ We can also consider regularized nonlinear problems with
a simple trick:

Jrets(X) = (¥ = 9(x))"R™'(y — g(x)) + (m — x)"P~'(m - x)

T ro—
_([y] _[e)]) [RT © y] _ [9(x)
m X 0 P! m X '
@ Quasi-Newton methods are more general optimization
methods that approximate the Hessian in Newton’s

method.

@ Various convergence criteria are available for terminating
iterative optimization methods.
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Motivation: Moving Targets (1/2)
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Motivation: Moving Targets (2/2)

@ In practice, we often wish to track a moving target.
@ One way is to recompute the position at every time step.
@ This ignores the time continuity.

@ We get a better result by modeling the temporal
relationship of measurements.

@ This can be done using (stochastic) differential equations
and difference equations.
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Localizing a Moving Target (1/4)

@ Target moves rather
than being o
stationary

@ Sensors measure
periodically, e.g., »
every second

@ We can now either \d

@ recompute the .
position estimate .
at every time, or °

@ use a dynamic
model to connect
the time points.
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Localizing a Moving Target (2/4)

@ Let us try a straight line model:

p(t) = p*(0) + v,
p'(t) = p¥(0) + v't.

@ Measurement model:

() = \/(05(0) — 52 + (P7(0) — 2 + 1l
= \/(px(o) + vt —sX)2 + (pY(0) + vt — S%)Q +ra(8)

@ We need to estimate 4 parameters:

x=[p{(0) p(0) v¥ W'
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Localizing a Moving Target (3/4)

Jod

o Separate Points
- ®- Straight Line
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Localizing a Moving Target (4/4)
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o Separate Points
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Localizing a Moving Target: Conclusions

@ The static approach is not too well suited for time-varying
processes

@ A systematic method that relates (time-wise) related
measurements is needed

@ Solution: Use differential (and difference) equations to
model the time-varying, i.e., dynamic, system
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ODE Modeling of Dynamic Systems

@ Ordinary differential equations (ODEs) can be used to
describe many dynamic systems.

@ Example: Spring-damper system:

k
@ Second order ordinary differential equation:
ma(t) = —kp(t) —nv(t) + u(t)

@ Other examples: Newtonion/Hamiltonian dynamics,
kinematic models, heat and mass transfer, wave equations,
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Example: State-Space Representation of ODEs
@ The second order ODE for spring:
ma(t) = —kp(t) — nv(t) + u(t)

@ Equation system representation:

115 S+ [5o

@ First order ODE equation system:

x(1) = [ 0 1 ]x(t)-i- m u(t)

_k _n
m m m

e x(t) = [p(t) v(z‘)]T is the state of the system
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Example: A Coffee Cup’s Cooling (1/2)

@ Newton’s law of cooling for the coffee cup:

Tt — k(7o) - T,
o Newton’s law of cooling for the room:
D — () - Talt) + A1),
e Equation system:
IO — o(Ttt) — Talt) + (1)
el — ko (Ta(t) ~ Tt
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Example: A Coffee Cup’s Cooling (2/2)

@ The equation system:

T — ()~ Ta(t)) + (1)
el — ky(Ta(t) ~ 7ot

@ In matrix form:

o] = [ SR (5 o (36

@ Compact state-space notation:
x(t) = Ax(t) + Byu(t)
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A Linear System of Differential Equations (1/2)

General system of first order differential equations:

x1(t) = ay1xq(t) + araxo(t) + - -+ + @14, Xq, (1)

+ bi1uq(t) + braua(t) + - - - + byg,Ug, (1)
Xo(t) = ao1Xq(t) + aoXo(t) + - - - + aog, Xq, ()

+ boruq(t) + bogtp(t) + - - - + bog,Ug, (1)

Xa, (8) = ag1x1(t) + agoXo(t) + - + ag,q, Xa, (1)
+ bdx1 U4 (t) + bdX2U2(t) + -+ bdxduudu(t)
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A Linear System of Differential Equations (2/2)

@ In matrix form:

X1(t) ayr ... ag, X1(t) b1 ... b1du U1(t)
: =l - : : 1 : :
Xq, (1) ag,1 --- Aadedy | | Xa, (1) bg1 ... bdd,| |Uq,(t)
@ Compact state-space notation:
x(t) = Ax(t) + Byu(t)

@ This is called the state-space form of the differential
equation system, x(t) is the state of the system
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Transforming ODEs to State-Space Form (1/2)

@ [th order ODE in z(t)

dbz(t) dz(t) L
T:CQZU)—FCQ df +"‘+CL_1dtL—_1+d1U(t)
@ Choose state components:
dz(t) d-=1z(1)
(1) = 2(1), xe(t) = = - Xa () = =g
@ Then we have:
o dz(t)
X1(t) = ar Xg(t)
: d2z(t
sot) = T2 — )
g, (1) = d'z(t) _ z(t) + 92(t) g A2 g u(t)
al) = ~qr — @ T, S TTE
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Transforming ODEs to State-Space Form (2/2)

@ Reuwritten in terms of states x;:

Xi(t) = xo(t)

X, (1) = coxi(t) + cix2(t) + -+ - + cL_1Xq, (t) + dru(t)

@ In matrix form:

):(1(1‘) 0o 1 0 ... O x4(t) 0
Xo(1) _ |0 0 1 : Xo(1) N 0 u()
B : oo || s
£x(1) 2 2x(t) 2By
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Deterministic Linear State-Space Model
@ The dynamic model describes the evolution of the state:

X(t) = Ax(t) + Bu(t)

@ The measurement model relates the state x, = x(t,) at t,
to the measurementy,

@ The linear measurement model is
yn = GXn + rn.

@ The deterministic linear state-space model combines the
linear dynamic and measurement models

x(t) = Ax(t) + Byu(t),
Yn=GXp+ .
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Example: A Car Navigating in 2D (1)

@ Newton’s law gives:

ma* = Fy
ma’ = F)

@ Defining state x = [p* p¥ v¥ vy]T leads to
0010 0 0 /e
«_ |0 00 1l fO 0|[F '
10 0 0 O
@ Assuming position measurements y, gives

_[tooo], .,
Yn=10 1 o o|Xn "'
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Uncertainty in Dynamic Models

@ The deterministic input u(t) might not be known

@ The model does not capture every aspect of the process

@ Solution: Add a stochastic process w(t) as an input

@ Example: Stochastic differential equation (SDE) of order L:

dbz(t)
dtt

dz(t) d=1z(t)

= coz(t) + ¢4 + dyw(t)
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Input Process w(t)

@ Assumed to be zero-mean and stationary
@ Characterized by its autocorrelation function. ..

Ruw(7) = E{w(t + T)w(t)}

@ ...or its power spectral density
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White Processes

@ “White noise” — equal contributions of each frequency

@ Autocorrelation function: Ruw(7) = 02,6(7)

@ Power spectral density: Sy = 02,

@ Many forms of colored noise are filtered versions of white

noise
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Stochastic Linear State-Space Model

@ Derivation of the stochastic dynamic model follows the
same steps as for the deterministic case

@ The stochastic process w(t) takes the place of the
deterministic input u()

@ A system can have both deterministic and stochastic inputs

@ Linear stochastic dynamic model:

x(t) = Ax(t) + Byw(t)
@ Linear stochastic state-space model with measurements:

x(t) = Ax(t) + B,w(t)
Yn=GXp+rp
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Example: A Car Navigating in 2D (2)

@ Recall the deterministic dynamic model:

0010 0 o0
w_ 000 1 |oO o[Fg]

0000 1/m 0 | |F}

0000 0 1/m

° FJ, F},’ might be unknown when localizing the car
@ Assume stochastic processes as the input:

0

0
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Summary

@ Higher order ODEs and SDEs can be transformed to a
first-order vector-valued equation system
@ The deterministic linear state-space model is

x(t) = Ax(t) + Byu(t)
Yn = GXp+1p

@ The stochastic linear state-space model with stochastic
input process w(t) is

x(1) = Ax(t) + B,w(t)

Yn=GXp+rp
@ The 2D Wiener velocity model is
0 010 0 0
. |0 0 0 1 0 Of [wi(t)
X=1o 00 o[*"|1 0 {Wg(l‘)}
0 00O 0 1
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