Mathematics for Economists

Mitri Kitti
Aalto University
Optimization Problems with Inequality Constraints

Optimization Problem with Inequality Constraints

Proposition (Necessary and sufficient conditions for concave problems)

Let f, g_{1}, \ldots, g_{k} be C^{1} functions defined over \mathbb{R}^{n}, and let b_{1}, \ldots, b_{k} be real numbers. Consider the problem of maximizing f on the constraint set defined by the inequalities

$$
g_{1}(\boldsymbol{x}) \leq b_{1}, g_{2}(\boldsymbol{x}) \leq b_{2}, \ldots, g_{k}(\boldsymbol{x}) \leq b_{k}
$$

Suppose that:
(1) f is concave
(2) either each g_{i} is linear or each g_{i} is convex and there exists $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $g_{i}(\boldsymbol{x})<b_{i}$ for $i=1, \ldots, k$.

Form the Lagrangian $L\left(\boldsymbol{x}, \mu_{1}, \ldots, \mu_{k}\right)=f(\boldsymbol{x})-\sum_{i=1}^{k} \mu_{i}\left[g_{i}(\boldsymbol{x})-b_{i}\right]$.
(Continued on next page)

Concave Problems

Proposition (Necessary and sufficient conditions for concave problems) (Cont'd)

Then $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ solves the constrained maximization problem under consideration if and only if there exist multipliers $\mu_{1}^{*}, \ldots, \mu_{k}^{*}$ such that

1. $\frac{\partial L}{\partial x_{1}}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right)=0, \ldots, \frac{\partial L}{\partial x_{n}}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right)=0$
2. $\mu_{1}^{*}\left[g_{1}\left(\boldsymbol{x}^{*}\right)-b_{1}\right]=0, \ldots, \mu_{k}^{*}\left[g_{k}\left(\boldsymbol{x}^{*}\right)-b_{k}\right]=0$
3. $\mu_{1}^{*} \geq 0, \ldots, \mu_{k}^{*} \geq 0$
4. $g_{1}\left(\boldsymbol{x}^{*}\right) \leq b_{1}, \ldots, g_{k}\left(\boldsymbol{x}^{*}\right) \leq b_{k}$.

Note: The NDCQ is replaced by:
(2) either each g_{i} is linear or each g_{i} is convex and there exists $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $g_{i}(\boldsymbol{x})<b_{i}$ for $i=1, \ldots, k$.

Concave Problems

- Example. Consider the constrained maximization problem:

$$
\begin{array}{cl}
\max _{x, y, z} & f(x, y, z)=x+y-2 z \\
\text { s.t. } & g_{1}(x, y, z)=x^{2}+y^{2}-z \leq 0 \\
& g_{2}(x, y, z)=-x \leq 0 \\
& g_{3}(x, y, z)=-y \leq 0 \\
& g_{4}(x, y, z)=-z \leq 0
\end{array}
$$

- The objective function f is concave
- Each g_{i} is convex and there exists a point, e.g. $\boldsymbol{x}=(1,1,3)$, such that $g_{i}(\boldsymbol{x})<0$ for $i=1, \ldots, 4$
- Thus a solution to this problem is fully identified by first order conditions

Concave Problems

- Example (cont'd). The Lagrangian is

$$
L=x+y-2 z-\lambda_{1}\left(x^{2}+y^{2}-z\right)+\lambda_{2} x+\lambda_{3} y+\lambda_{4} z
$$

- The first order conditions are

$$
\begin{align*}
2 x \lambda_{1} & =1+\lambda_{2} \tag{1}\\
2 y \lambda_{1} & =1+\lambda_{3} \tag{2}\\
\lambda_{1}+\lambda_{4} & =2 \tag{3}\\
\lambda_{1}\left(x^{2}+y^{2}-z\right) & =0 \tag{4}\\
\lambda_{2} x & =0 \tag{5}\\
\lambda_{3} y & =0 \tag{6}\\
\lambda_{4} z & =0 \tag{7}\\
\lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{3} \geq 0, \lambda_{4} & \geq 0 \tag{8}\\
x^{2}+y^{2}-z \leq 0, x \geq 0, y \geq 0, z & \geq 0 \tag{9}
\end{align*}
$$

Concave Problems

- Example (cont'd). If $\lambda_{1}=0$ or $x=0$, then $\lambda_{2}=-1$ by (1), so contradicting (8). Thus we must have $\lambda_{1}>0$ and $x>0$
- By the same token, we can use (2) to conclude that $y>0$
- $x>0$ and $y>0$ imply $\lambda_{2}=\lambda_{3}=0$ via (5) and (6)
- Since $\lambda_{1}>0$, we get $x=y=\frac{1}{2 \lambda_{1}}$ from (1) and (2). Consequently, $z=\frac{1}{2 \lambda_{1}^{2}}>0$, which in turn implies $\lambda_{4}=0$ via (7)
- Finally, we get $\lambda_{1}=2$ from (3)
- Thus the unique solution is

$$
x=y=\frac{1}{4}, z=\frac{1}{8}
$$

with multipliers

$$
\lambda_{1}=2, \lambda_{2}=\lambda_{3}=\lambda_{4}=0
$$

Concave Problems

- Exercise. Consider the constrained maximization problem:

$$
\begin{array}{rl}
\max _{x, y, z} & f(x, y, z)=3 \ln (z+1)-z-2 x-y \\
\text { s.t. } & g_{1}(x, y, z)=z^{2}-x-y \leq 0 \\
& g_{2}(x, y, z)=-x \leq 0 \\
& g_{3}(x, y, z)=-y \leq 0 \\
& g_{4}(x, y, z)=-z \leq 0
\end{array}
$$

- Can you apply the Proposition at pp. 2-3? Why or why not?
- Show that the unique solution to this problem is

$$
(x, y, z)=\left(0, \frac{1}{4}, \frac{1}{2}\right)
$$

Concave Problems

- Exercise. Consider the constrained maximization problem:

$$
\begin{array}{cl}
\max _{x, y} & f(x, y)=x+a y \\
\text { s.t. } & g_{1}(x, y, z)=x^{2}+y^{2} \leq 1 \\
& g_{2}(x, y, z)=-x-y \leq 0
\end{array}
$$

where $a \in \mathbb{R}$ is a parameter

- Can you apply the Proposition at pp. 2-3? Why or why not?
- Show that:
- when $a \geq-1$, the unique solution is

$$
(x, y)=\left(\frac{1}{\sqrt{1+a^{2}}}, \frac{a}{\sqrt{1+a^{2}}}\right)
$$

- when $a<-1$, the unique solution is

$$
(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) .
$$

Mixed Constraints

- Suppose we have to solve the following constrained maximization problem:

$$
\begin{array}{ll}
\max _{x, y} & 3 x y-x^{3} \\
\text { s.t. } & 2 x-y=-5 \\
& -5 x-2 y \leq-37 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

- This is a problem with mixed constraints: one equality and three inequality constraints

Mixed Constraints

- We can rewrite the problem as one with inequality constraints only and then solve it. That is,

$$
\begin{array}{cl}
\max _{x, y} & 3 x y-x^{3} \\
\text { s.t. } & \mathbf{2 x}-\boldsymbol{y} \leq-\mathbf{5} \\
& -\mathbf{2 x}+\boldsymbol{y} \leq \mathbf{5} \\
& -5 x-2 y \leq-37 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

- Alternatively, we can combine results from previous lectures and formulate a general proposition that will enable us to solve a problem like this without doing any rewriting/transformation

Mixed Constraints

- The general formulation of a constrained maximization problem with n variables and mixed constraints (k inequality and m equality constraints) is to
- maximize the objective function $f\left(x_{1}, \ldots, x_{n}\right)$ with respect to $\left(x_{1}, \ldots, x_{n}\right)$
- subject to the constraints:

$$
\begin{aligned}
& g_{1}\left(x_{1}, \ldots, x_{n}\right) \leq b_{1} \\
& g_{2}\left(x_{1}, \ldots, x_{n}\right) \leq b_{2} \\
& \ldots \quad \ldots \quad \ldots \\
& \ldots \\
& g_{k}\left(x_{1}, \ldots, x_{n}\right) \leq b_{k} \\
& h_{1}\left(x_{1}, \ldots, x_{n}\right)=c_{1} \\
& h_{2}\left(x_{1}, \ldots, x_{n}\right)=c_{2} \\
& \ldots \quad \ldots \quad \ldots \\
& \ldots \\
& h_{m}\left(x_{1}, \ldots, x_{n}\right)=c_{m}
\end{aligned}
$$

Mixed Constraints

- The non-degenerate constraint qualification (NDCQ) at a given point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is formulated as follows:
- Without loss of generality, suppose that the first k_{0} inequality constraints ($k_{0} \leq k$) are binding at \mathbf{x}, and the last $k-k_{0}$ are inactive at \mathbf{x}
- The Jacobian of the equality constraints and the binding inequality constraints is

$$
D \mathbf{g}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial g_{1}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{k_{0}}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial g_{k_{0}}}{\partial x_{n}}(\mathbf{x}) \\
\frac{\partial h_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial n_{1}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{m}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial h_{m}}{\partial x_{n}}(\mathbf{x})
\end{array}\right)
$$

- We say that the NDCQ is satisfied at \mathbf{x} if the rank of $\operatorname{Dg}(\mathbf{x})$ is as large as it can be

Mixed Constraints

Proposition (First order necessary conditions)

Let $f, g_{1}, \ldots, g_{k}, h_{1}, \ldots, h_{m}$ be C^{1} functions defined on \mathbb{R}^{n}. Suppose that:

1. x^{*} is a local maximizer of f on the constraint set defined by

$$
g_{1}(\boldsymbol{x}) \leq b_{1}, \ldots, g_{k}(\boldsymbol{x}) \leq b_{k}, h_{1}(\boldsymbol{x})=c_{1}, \ldots, h_{m}(\boldsymbol{x})=c_{m}
$$

2. the $N D C Q$ is satisfied at \boldsymbol{x}^{*}.

Form the Lagrangian $L(x, \boldsymbol{\mu}, \boldsymbol{\lambda})=f(x)-\sum_{i=1}^{k} \mu_{i}\left[g_{i}(x)-b_{i}\right]-\sum_{i=1}^{m} \lambda_{i}\left[h_{i}(x)-c_{i}\right]$. Then, there exist multipliers $\mu_{1}^{*}, \ldots, \mu_{k}^{*}, \lambda_{1}^{*}, \ldots, \lambda_{m}^{*}$ such that:

1. $\frac{\partial L}{\partial x_{1}}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\lambda}^{*}\right)=0, \ldots, \frac{\partial L}{\partial x_{n}}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\lambda}^{*}\right)=0$
2. $\mu_{1}^{*}\left[g_{1}\left(\boldsymbol{x}^{*}\right)-b_{1}\right]=0, \ldots, \mu_{k}^{*}\left[g_{k}\left(\boldsymbol{x}^{*}\right)-b_{k}\right]=0$
3. $h_{1}\left(x^{*}\right)=c_{1}, \ldots, h_{m}\left(x^{*}\right)=c_{m}$
4. $\mu_{1}^{*} \geq 0, \ldots, \mu_{k}^{*} \geq 0$
5. $g_{1}\left(\boldsymbol{x}^{*}\right) \leq b_{1}, \ldots, g_{k}\left(\boldsymbol{x}^{*}\right) \leq b_{k}$.

Mixed Constraints

- Back to the maximization problem:

$$
\begin{array}{cl}
\max _{x, y} & 3 x y-x^{3} \\
\text { s.t. } & 2 x-y=-5 \\
& -5 x-2 y \leq-37 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

- The Lagrangian is

$$
L=3 x y-x^{3}-\lambda(2 x-y+5)-\mu_{1}(-5 x-2 y+37)+\mu_{2} x+\mu_{3} y
$$

Mixed Constraints

- The first order conditions are:

$$
\begin{aligned}
\frac{\partial L}{\partial x}=0 \Longleftrightarrow & 3 y-3 x^{2}-2 \lambda+5 \mu_{1}+\mu_{2}=0 \\
\frac{\partial L}{\partial y}=0 \Longleftrightarrow & 3 x+\lambda+2 \mu_{1}+\mu_{3}=0 \\
& \mu_{1}(-5 x-2 y+37)=0 \\
& \mu_{2} x=0 \\
& \mu_{3} y=0 \\
& \mu_{1}, \mu_{2}, \mu_{3} \geq 0 \\
& 2 x-y+5=0 \\
& -5 x-2 y+37 \leq 0, \quad x \geq 0, \quad y \geq 0
\end{aligned}
$$

- Exercise: Show that the only point that satisfies the first order conditions is such that $x=5, y=15, \lambda=-15, \mu_{1}=\mu_{2}=\mu_{3}=0$
- Exercise: Show that the NDCQ is always satisfied

Verifying the Optimality

- Assume \mathbf{x}^{*} is a candidate for an optimal point (satisfies FOCs), is it optimal (locally or globally)?

1. Is the problem concave (or convex)?

- in maximization f should be concave and the feasible set convex
- note 1: inequality constraints are $g_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m$ and g_{i} are convex functions, and inequality constraints are linear, the feasible set is convex
- \mathbf{x}^{*} is a global maximizer
- note 2: sometimes equality constraints can be turned into inequalities without affecting the optimality, which may help

2. Can the problem be transformed into a concave problem?

- for example Cobb-Douglas functions are log-concave
- note: with log-transformation variables need to be >0

Verifying the Optimality

3. Is the feasible set compact and objective function continuous? Are all the critical points known?

- If yes, and NDCQ does not fail in the feasible set, evaluate the objective function at critical points and find the global maximizer

4. Try the second order conditions

- If the Hessian of the Lagrangian is neg. def. you have a local maximizer
- If you cant directly say anything about the definiteness of the Hessian of L, try the Bordered Hessian

