Mathematics for Economists

Mitri Kitti

Aalto University

Optimization Problems with Inequality Constraints

Optimization Problem with Inequality Constraints

Proposition (Necessary and sufficient conditions for concave problems)

Let f, g_1, \ldots, g_k be C^1 functions defined over \mathbb{R}^n , and let b_1, \ldots, b_k be real numbers. Consider the problem of maximizing f on the constraint set defined by the inequalities

$$g_1(x) \leq b_1, g_2(x) \leq b_2, \ldots, g_k(x) \leq b_k.$$

Suppose that:

- (1) f is concave
- (2) **either** each g_i is linear **or** each g_i is convex and there exists $\mathbf{x} \in \mathbb{R}^n$ such that $g_i(\mathbf{x}) < b_i$ for i = 1, ..., k.

Form the Lagrangian
$$L(\mathbf{x}, \mu_1, \dots, \mu_k) = f(\mathbf{x}) - \sum_{i=1}^k \mu_i \left[g_i(\mathbf{x}) - b_i \right]$$
.

(Continued on next page)

Proposition (Necessary and sufficient conditions for concave problems) (Cont'd)

Then $\mathbf{x}^* \in \mathbb{R}^n$ solves the constrained maximization problem under consideration if and only if there exist multipliers μ_1^*, \dots, μ_k^* such that

- 1. $\frac{\partial L}{\partial x_1}(\mathbf{x}^*, \boldsymbol{\mu}^*) = 0, \dots, \frac{\partial L}{\partial x_n}(\mathbf{x}^*, \boldsymbol{\mu}^*) = 0$
- 2. $\mu_1^*[g_1(\mathbf{x}^*) b_1] = 0, \dots, \mu_k^*[g_k(\mathbf{x}^*) b_k] = 0$
- 3. $\mu_1^* \geq 0, \dots, \mu_k^* \geq 0$
- 4. $g_1(\mathbf{x}^*) \leq b_1, \ldots, g_k(\mathbf{x}^*) \leq b_k$.

Note: The NDCQ is replaced by:

(2) **either** each g_i is linear **or** each g_i is convex and there exists $\mathbf{x} \in \mathbb{R}^n$ such that $g_i(\mathbf{x}) < b_i$ for i = 1, ..., k.

Example. Consider the constrained maximization problem:

$$\max_{x,y,z} f(x,y,z) = x + y - 2z$$
s.t.
$$g_1(x,y,z) = x^2 + y^2 - z \le 0$$

$$g_2(x,y,z) = -x \le 0$$

$$g_3(x,y,z) = -y \le 0$$

$$g_4(x,y,z) = -z \le 0$$

- The objective function f is concave
- ▶ Each g_i is convex and there exists a point, e.g. $\mathbf{x} = (1, 1, 3)$, such that $g_i(\mathbf{x}) < 0$ for i = 1, ..., 4
- Thus a solution to this problem is fully identified by first order conditions

Example (cont'd). The Lagrangian is

$$L = x + y - 2z - \lambda_1(x^2 + y^2 - z) + \lambda_2 x + \lambda_3 y + \lambda_4 z$$

▶ The first order conditions are

 $\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > 0, \ \lambda_4 > 0$

 $x^2 + v^2 - z < 0$, x > 0, y > 0, z > 0

$$\lambda_1(x)$$

$$2y\lambda_1 = 1 + \lambda_3$$
$$\lambda_1 + \lambda_4 = 2$$

$$\lambda_1 + \lambda_4 = 2$$
$$\lambda_1(x^2 + y^2 - z) = 0$$

 $2x\lambda_1 = 1 + \lambda_2$

$$\lambda_3 y = 0$$

$$\lambda_2 x = 0$$

$$\lambda_2 y = 0$$

(8)

(1)

(2)

(3)

(4)

$$\lambda_3 y = 0$$
$$\lambda_4 z = 0$$

- **Example (cont'd).** If $\lambda_1 = 0$ or x = 0, then $\lambda_2 = -1$ by (1), so contradicting (8). Thus we must have $\lambda_1 > 0$ and x > 0
- ▶ By the same token, we can use (2) to conclude that y > 0
- ightharpoonup x > 0 and y > 0 imply $\lambda_2 = \lambda_3 = 0$ via (5) and (6)
- ► Since $\lambda_1 > 0$, we get $x = y = \frac{1}{2\lambda_1}$ from (1) and (2). Consequently, $z = \frac{1}{2\lambda_1^2} > 0$, which in turn implies $\lambda_4 = 0$ via (7)
- Finally, we get $\lambda_1 = 2$ from (3)
- ► Thus the unique solution is

$$x = y = \frac{1}{4}, \ z = \frac{1}{8}$$

with multipliers

$$\lambda_1 = 2, \ \lambda_2 = \lambda_3 = \lambda_4 = 0.$$

Exercise. Consider the constrained maximization problem:

$$\max_{x,y,z} f(x,y,z) = 3\ln(z+1) - z - 2x - y$$
s.t.
$$g_1(x,y,z) = z^2 - x - y \le 0$$

$$g_2(x,y,z) = -x \le 0$$

$$g_3(x,y,z) = -y \le 0$$

$$g_4(x,y,z) = -z \le 0$$

- Can you apply the Proposition at pp. 2-3? Why or why not?
- Show that the unique solution to this problem is

$$(x,y,z)=\left(0,\frac{1}{4},\frac{1}{2}\right)$$

Exercise. Consider the constrained maximization problem:

$$\max_{x,y} f(x,y) = x + ay$$
s.t. $g_1(x,y,z) = x^2 + y^2 \le 1$

$$g_2(x,y,z) = -x - y \le 0,$$

where $a \in \mathbb{R}$ is a parameter

- Can you apply the Proposition at pp. 2-3? Why or why not?
- ► Show that:
 - ▶ when $a \ge -1$, the unique solution is

$$(x,y) = \left(\frac{1}{\sqrt{1+a^2}}, \frac{a}{\sqrt{1+a^2}}\right);$$

ightharpoonup when a < -1, the unique solution is

$$(x,y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right).$$

▶ Suppose we have to solve the following constrained maximization problem:

$$\max_{x,y} \quad 3xy - x^3$$
s.t.
$$2x - y = -5$$

$$-5x - 2y \le -37$$

$$x \ge 0$$

$$y \ge 0$$

► This is a problem with **mixed** constraints: one *equality* and three *inequality* constraints

We can rewrite the problem as one with inequality constraints only and then solve it. That is,

$$\max_{x,y} \quad 3xy - x^3$$
s.t.
$$2x - y \le -5$$

$$-2x + y \le 5$$

$$-5x - 2y \le -37$$

$$x \ge 0$$

$$y \ge 0$$

► Alternatively, we can combine results from previous lectures and formulate a general proposition that will enable us to solve a problem like this without doing any rewriting/transformation

- The general formulation of a constrained maximization problem with n variables and mixed constraints (k inequality and m equality constraints) is to
 - **maximize** the objective function $f(x_1, \ldots, x_n)$ with respect to (x_1, \ldots, x_n)
 - subject to the constraints:

$$g_1(x_1, \ldots, x_n) \leq b_1$$

$$g_2(x_1, \ldots, x_n) \leq b_2$$

$$\ldots \qquad \ldots$$

$$g_k(x_1, \ldots, x_n) \leq b_k$$

$$h_1(x_1, \ldots, x_n) = c_1$$

$$h_2(x_1, \ldots, x_n) = c_2$$

$$\ldots \qquad \ldots$$

$$h_m(x_1, \ldots, x_n) = c_m$$

- The non-degenerate constraint qualification (NDCQ) at a given point $\mathbf{x} = (x_1, \dots, x_n)$ is formulated as follows:
 - Without loss of generality, suppose that the first k_0 inequality constraints $(k_0 \le k)$ are binding at \mathbf{x} , and the last $k k_0$ are inactive at \mathbf{x}
 - The Jacobian of the equality constraints and the binding inequality constraints is

$$D\mathbf{g}(\mathbf{x}) = egin{pmatrix} rac{\partial g_1}{\partial x_1}(\mathbf{x}) & \cdots & rac{\partial g_1}{\partial x_n}(\mathbf{x}) \ dots & \ddots & dots \ rac{\partial g_{k_0}}{\partial x_1}(\mathbf{x}) & \cdots & rac{\partial g_{k_0}}{\partial x_n}(\mathbf{x}) \ rac{\partial h_1}{\partial x_1}(\mathbf{x}) & \cdots & rac{\partial h_1}{\partial x_n}(\mathbf{x}) \ dots & \ddots & dots \ rac{\partial h_m}{\partial x_1}(\mathbf{x}) & \cdots & rac{\partial h_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

 \blacktriangleright We say that the NDCQ is satisfied at x if the rank of Dg(x) is as large as it can be

Proposition (First order necessary conditions)

Let $f, g_1, \ldots, g_k, h_1, \ldots, h_m$ be C^1 functions defined on \mathbb{R}^n . Suppose that:

1. x^* is a local maximizer of f on the constraint set defined by

$$g_1(x) \leq b_1, \ldots, g_k(x) \leq b_k, h_1(x) = c_1, \ldots, h_m(x) = c_m$$

2. the NDCQ is satisfied at x^* .

Form the Lagrangian $L(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^k \mu_i \left[g_i(\mathbf{x}) - b_i \right] - \sum_{i=1}^m \lambda_i \left[h_i(\mathbf{x}) - c_i \right]$. Then, there exist multipliers $\mu_1^*, \dots, \mu_k^*, \lambda_1^*, \dots, \lambda_m^*$ such that:

- 1. $\frac{\partial L}{\partial x_1}(\mathbf{x}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = 0, \dots, \frac{\partial L}{\partial x_n}(\mathbf{x}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = 0$
- 2. $\mu_1^* [g_1(\mathbf{x}^*) b_1] = 0, \dots, \mu_k^* [g_k(\mathbf{x}^*) b_k] = 0$
- 3. $h_1(\mathbf{x}^*) = c_1, \ldots, h_m(\mathbf{x}^*) = c_m$
- 4. $\mu_1^* \geq 0, \ldots, \mu_k^* \geq 0$
- 5. $g_1(\mathbf{x}^*) \leq b_1, \ldots, g_k(\mathbf{x}^*) \leq b_k$.

▶ Back to the maximization problem:

$$\max_{x,y} \quad 3xy - x^3$$
s.t.
$$2x - y = -5$$

$$-5x - 2y \le -37$$

$$x \ge 0$$

$$y \ge 0$$

► The Lagrangian is

$$L = 3xy - x^3 - \lambda(2x - y + 5) - \mu_1(-5x - 2y + 37) + \mu_2x + \mu_3y$$

► The first order conditions are:

$$\frac{\partial L}{\partial x} = 0 \iff 3y - 3x^2 - 2\lambda + 5\mu_1 + \mu_2 = 0$$

$$\frac{\partial L}{\partial y} = 0 \iff 3x + \lambda + 2\mu_1 + \mu_3 = 0$$

$$\mu_1 (-5x - 2y + 37) = 0$$

$$\mu_2 x = 0$$

$$\mu_3 y = 0$$

$$\mu_1, \mu_2, \mu_3 \ge 0$$

$$2x - y + 5 = 0$$

$$-5x - 2y + 37 < 0, \quad x > 0, \quad y > 0$$

- **Exercise:** Show that the only point that satisfies the first order conditions is such that x=5, y=15, $\lambda=-15$, $\mu_1=\mu_2=\mu_3=0$
- Exercise: Show that the NDCQ is always satisfied

Verifying the Optimality

- Assume **x*** is a candidate for an optimal point (satisfies FOCs), is it optimal (locally or globally)?
- 1. Is the problem concave (or convex)?
 - in maximization f should be concave and the feasible set convex
 - ▶ note 1: inequality constraints are $g_i(\mathbf{x}) \leq 0$, i = 1, ..., m and g_i are convex functions, and inequality constraints are linear, the feasible set is convex
 - x* is a global maximizer
 - note 2: sometimes equality constraints can be turned into inequalities without affecting the optimality, which may help
- 2. Can the problem be transformed into a concave problem?
 - ▶ for example Cobb-Douglas functions are log-concave
 - ightharpoonup note: with log-transformation variables need to be >0

Verifying the Optimality

- 3. Is the feasible set compact and objective function continuous? Are all the critical points known?
 - ▶ If yes, and NDCQ does not fail in the feasible set, evaluate the objective function at critical points and find the global maximizer
- 4. Try the second order conditions
 - ▶ If the Hessian of the Lagrangian is neg. def. you have a local maximizer
 - ▶ If you cant directly say anything about the definiteness of the Hessian of *L*, try the Bordered Hessian