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Motivating example: consumer model

Consumer model
max
c,l

U(c , l) s.t. pc ≤ w(h − l) + I

U : R2
+ 7→ R utility function

c ≥ 0 consumption

l ∈ [0, h] leisure, h − l = hours worked

p price of the consumption bundle

w wage, w × (h − l)=wage income

I non-wage income

▶ Which of the variables are endogenous/exogenous?

▶ How does the welfare change when exogenous variables vary?

▶ How does the optimal utility change when exogenous variables vary?
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Motivating example: income tax

Consumer model
max
c,l

U(c , l) s.t. pc ≤ (1− t)w(h − l) + I

▶ Note: w is replaced with (1− t)w , t is the tax rate

▶ What is the impact of changing taxes? [see, e.g., Mirrlees 1971, Saez and Piketty
2012, Henden 2020]

What happens when t is marginally increased or decreased?

▶ behavioral response; changes of c and l

▶ How is the optimal utility changed?
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https://www.jstor.org/stable/2296779
https://eml.berkeley.edu/~saez/piketty-saezNBER12handbook.pdf
https://eml.berkeley.edu/~saez/piketty-saezNBER12handbook.pdf
https://scholar.harvard.edu/files/hendren/files/eww_jpubec_vround2_vfinal.pdf


Comparative statics of optimal values

Optimization problem maxx∈Rn f (x , a), where a ∈ Rm is the vector of exogenous
variables
▶ the solution depends on a, assuming uniqueness: x(a)

What happens to the optimal f when a is changed?
▶ comparative statics of the (optimal) value function v(a) = maxx f (x , a) = f (x(a), a)
▶ What are ∂v(a)

∂ai
, i = 1, . . . ,m?

▶ note ∆v
∆ai

≈ ∂v(a)
∂ai

for small ∆ai ’s, or ∆v ≈
(

∂v(a)
∂ai

)
∆ai

▶ note ∆v
∆ai

≈ ∂v(a)
∂ai

for small ∆ai ’s, or ∆v ≈
(

∂v(a)
∂ai

)
∆ai

The problem is unconstrained, but what about the consumer problem that is
constrained?
▶ max

c,l
U(c , l) s.t. pc ≤ w(h − l) + I

▶ max
l

U ([w(h − l) + I ]/p, l) after elimination of c
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Example 1: direct computation of v

▶ f (x , a) = −x2 + 2ax + 4a2

▶ First order condition

∂f (x , a)

∂x
= 0 holds at x = x(a)

−2x + 2a = 0, which gives x(a) = a

▶ Plug the solution into f to form v , and differentiate w.r.t a:

v(a) = f (x(a), a) = −a2 + 2a2 + 4a2 = 5a2

=⇒
dv(a)

da
= 10a

▶ What if x(a) cannot be found analytically or finding it is hard?

5 / 27



Rowing ...

Assume x , a ∈ R

dv(a)
da = df (x(a),a)

da =?

Chain rule:
df (x(a),a)

da = x ′(a)∂f (x(a),a)∂x + [d(a)/da]∂f (x(a),a)∂a

Chain rule:
df (x(a),a)

da = x ′(a)∂f (x(a),a)∂x + 1∂f (x(a),a)
∂a
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...

Chain rule:
df (x(a), a)

da︸ ︷︷ ︸
Total effect

= x ′(a)
∂f (x(a), a)

∂x︸ ︷︷ ︸
indirect effect

+
∂f (x(a), a)

∂a︸ ︷︷ ︸
direct effect

Chain rule:
df (x(a), a)

da︸ ︷︷ ︸
Total effect

= x ′(a)× 0︸ ︷︷ ︸
indirect effect

+
∂f (x(a), a)

∂a︸ ︷︷ ︸
direct effect

How to handle the indirect effect, which contains x(a)?

by the first order condition ∂f (x(a),a)
∂x = 0

⇒ Indirect effect vanishes!
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Envelope theorem

From
df (x(a), a)

da︸ ︷︷ ︸
Total effect

= x ′(a)
∂f (x(a), a)

∂x︸ ︷︷ ︸
indirect effect

+
∂f (x(a), a)

∂a︸ ︷︷ ︸
direct effect

to

df (x(a),a)
da = ∂f (x(a),a)

∂a

total effect = direct effect
A version of the envelope theorem
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Back to Example 1

▶ f (x , a) = −x2 + 2ax + 4a2

▶ By invoking the envelope theorem

dv(a)

da
= 2x(a) + 8a = 10a

▶ By invoking the envelope theorem

dv(a)

da
= 2x(a) + 8a (= 10a)

▶ No need to find v(a) analytically!
▶ If the signs of x(a) and a were known, we would also know the sign of dv(a)/da

using the envelope theorem it is possible to obtain ”qualitative” results of this type,
without actually ever finding x(a) explicitly
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The envelope theorem

Assume that the optimum of f is unique in the neighborhood of a∗, f is differ-
entiable at (x(a∗), a∗), and x(a) is differentiable at a∗. Then

∂v(a∗)

∂ai
=

∂f (x(a∗), a∗)

∂ai

for all i = 1, . . . ,m, where v is the value function

▶ Indirect effects do not matter

▶ Changes of the behavior can be ignored
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Geometric interpretation

▶ The graph of the value function v is the envelope of the family of graphs of f (·, a)
▶ The slope of v is the slope of f (·, a) to which it is a tangent

▶ Example f (x , a) = −x2 + 2ax + 4a2: video
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http://mitrikitti.fi/envelopethm.mp4


Application: Wage increase of Wal-Mart

In 2015 Wal-Mart increased its minimum wages from $9/hr to $10/hr
▶ outcome: lower turnover of employees, more work applications
▶ note: there was exogenous pressure coming from competitors

Efficiency wages
▶ worker effort dependent on wages e(w) (increasing)
▶ profit function π(L,w) = R(L× e(w))− wL

1. What is the effect of a marginal increase in the wage?
▶ assume the optimality of $9/hr and a small change, what happens to profits?

2. What would happen in the competitive case if w increases?
▶ e(w) = 1 and w is exogeneous

▶ Note: ∆v ≈
(

∂v(a)
∂ai

)
× (∆ai )

Paul Krugman: Wal-Mart’s Visible Hand
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https://www.nytimes.com/2015/03/02/opinion/paul-krugman-walmarts-visible-hand.html


Interpretation of Lagrange multipliers

Proposition (Envelope Theorem for Constrained Problems)

Let f , h1, . . . , hm be C 1 functions on Rn. Let a = (a1, . . . , am) ∈ Rm be parameters,
and consider the problem of maximizing or minimizing f (x) w.r.t. x subject to the
constraints:

h1(x) = a1, . . . , hm(x) = am.

Let (x∗1 (a), . . . , x
∗
n (a)) be the solution to this problem, with corresponding Lagrange

multipliers λ∗
1(a), . . . , λ

∗
m(a).

Suppose further that all the x∗i ’s and λ∗
i ’s are differentiable functions of a and that the

NDCQ holds. Then, for each j = 1, . . . ,m,

d

daj
f (x∗1 (a), . . . , x

∗
n (a)) = λ∗

j (a).
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Interpretation of Lagrange multipliers
The previous proposition can be easily generalized to the case with inequality
constraints.

Proposition (Envelope Theorem for Constrained Problems)

Let f , g1, . . . , gm be C 1 functions on Rn. Let a = (a1, . . . , am) ∈ Rm be parameters,
and consider the problem of maximizing f (x) w.r.t. x subject to the constraints:

g1(x) ≤ a1, . . . , gm(x) ≤ am.

Let (x∗1 (a), . . . , x
∗
n (a)) be the solution to this problem, with corresponding Lagrange

multipliers µ∗
1(a), . . . , µ

∗
m(a).

Suppose further that all the x∗i ’s and µ∗
i ’s are differentiable functions of a and that the

NDCQ holds. Then, for each j = 1, . . . ,m,

d

daj
f (x∗1 (a), . . . , x

∗
n (a)) = µ∗

j (a).
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Interpretation of Lagrange multipliers

Proposition

Let f , g1, . . . , gm be C 1 functions on Rn. Let a = (a1, . . . , am) ∈ Rm be parameters,
and consider the problem of minimizing f (x) w.r.t. x subject to the constraints:

g1(x) ≥ a1, . . . , gm(x) ≥ am.

Let (x∗1 (a), . . . , x
∗
n (a)) be the solution to this problem, with corresponding Lagrange

multipliers µ∗
1(a), . . . , µ

∗
m(a).

Suppose further that all the x∗i ’s and µ∗
i ’s are differentiable functions of a and that the

NDCQ holds. Then, for each j = 1, . . . ,m,

d

daj
f (x∗1 (a), . . . , x

∗
n (a)) = µ∗

j (a).
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Example

▶ Consider the problem

max
x ,y ,z

f (x , y , z) = xyz

s.t. x + y + z ≤ 1

x ≥ 0

y ≥ 0

z ≥ 0

▶ The Lagrangian is

L = xyz − µ1(x + y + z − 1) + µ2x + µ3y + µ4z

▶ You can verify that the solution is x∗ = y∗ = z∗ = 1
3 , with µ∗

1 =
1
9 and

µ∗
2 = µ∗

3 = µ∗
4 = 0

16 / 27



Example
▶ Suppose that the first constrained is changed to x + y + z ≤ 0.9. What is the

corresponding change in the value function f (x∗, y∗, z∗)?

▶ Write the constraint in parametric form x + y + z ≤ a. We know the solution
when a = 1, and now we want to estimate the change in the value function when
da = −0.1

▶ By the envelope theorem,

df (x∗(1), y∗(1), z∗(1)) = µ∗
1da =

1

9

(
− 1

10

)
= − 1

90

▶ So by decreasing a from 1 to 0.9, the value function decreases approximately by
0.0111

▶ Notice that the envelope theorem enables us to estimate the change without
solving the problem with a = 0.9. If we solved the new problem, we would find
the exact change in the value function
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Shadow Prices

▶ We can use the envelope theorem to give an economic interpretation to Lagrange
multipliers

▶ Consider a firm producing n different final goods. Those final goods are using as
inputs m different resources whose total supplies are a1, . . . , am

▶ Given the quantities x1, . . . , xn of the final goods, let π(x) denote the firm’s profit
when goods x = (x1, . . . , xn) are produced, and let gi (x) be the corresponding
number of units of resource number i required, with i = 1, . . . ,m
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Shadow Prices
▶ The firm’s profit maximization problem is

max
x

π(x)

s.t. g1(x) ≤ a1

. . .

gm(x) ≤ am

▶ By the envelope theorem,

dπ

dai
(x∗1 (a), . . . , x

∗
n (a)) = µ∗

i (a)

▶ In words, the multiplier µ∗
i (a) tells how valuable another unit of input i would be

to the firm’s profit

▶ µ∗
i (a) is often called the shadow price or internal value of input i
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Shadow Prices

▶ Exercise. If x thousand Euro is spent on labor and y thousand Euro is spent on

equipment, a certain factory produces Q(x , y) = 50x
1
2 y2 units of output.

(a) How should 80, 000 Euro be allocated between labor and equipment to yield the
largest possible output?

(b) Use the envelope theorem to estimate the change in maximum output if this
allocation decreased by 1000 Euro

(c) Compute the exact change in (b)
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Net National Product
▶ Consider a two period consumption/investment model of a social planner

max
c0,c1,i0

u(c0)+δu(c1)

c0 + i0 ≤ k0

c1 ≤ f (i0)

▶ First order conditions

u′(c∗0 ) = λ0

δu′(c∗1 ) = λ1

−λ0 + λ1f
′(i∗0 ) = 0

▶ Observation 1: if the objective function was linearized at c∗0 , c
∗
1 , we would get an

objective function λ0(c0 − c∗0 ) + λ(c1 − c∗1 )
▶ Observation 2: The first order conditions hold for the linearized objective function

hold at c∗0 , c
∗
1
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Net National Product

▶ Observation 3: assuming c∗1 = f (i∗0 ) we have
λ0c

∗
0 + λ1c

∗
1 = λ0c

∗
0 + λ0f (i

∗
0 )/f

′(i∗0 ) ≈ λ0c0 + λ0f
′(i∗0 )i

∗
0/f

′(i∗0 ) = λ0(c
∗
0 + i∗0 )

▶ c∗0 + i∗0 is the net national product
▶ Net national product is an approximation of the optimal welfare!

▶ national accounting system provides a way to measure welfare
▶ BUT: this is only in an idealized world

▶ What if the national accounting system is missing something (goods with no
markets/prices)?
▶ find shadow prices! (e.g. green national accounting) (more)
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https://academic.oup.com/qje/article-abstract/90/1/156/1860289?login=true


Harvesting a Resource Stock

▶ Two period with consumptions c0 and c2
▶ Objective function (NPV)

∑1
t=0[B(ct)− C (ct)]/(1 + r)t

▶ Resoure constraint c0 + c1 = S

▶ FOCs:

B ′(c0)− C ′(c0)− λ = 0

[B ′(c1)− C ′(c1)]/(1 + r)− λ = 0

c0 + c1 = S

▶ Observation 1: marginal wtp ̸= marginal cost!
▶ Observation 2: present value of MWTP −MC is constant in each period

▶ note B ′ can be interpreted as the market price (why?)
▶ the difference B ′(ct)− C ′(ct) is the scarcity rent (which equals the shadow price)
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A General Envelope Theorem
The following Proposition combines the envelope theorem and the interpretation of
Lagrange multipliers

Proposition (Envelope Theorem for Constrained Problems)

Let f , h1, . . . , hm be C 1 functions on Rn. Let a ∈ R be a parameter, and consider the
problem of maximizing f (x ; a) w.r.t. x subject to the constraints:

h1(x ; a) = 0, . . . , hm(x ; a) = 0.

Let (x∗1 (a), . . . , x
∗
n (a)) be the solution to this problem, with corresponding Lagrange

multipliers µ∗
1(a), . . . , µ

∗
m(a).

Suppose further that all the x∗i ’s and µ∗
i ’s are differentiable functions of a and that the

NDCQ holds. Then,

d

da
f (x∗1 (a), . . . , x

∗
n (a); a) =

∂L
∂a

(x∗1 (a), . . . , x
∗
n (a), µ

∗
1(a), . . . , µ

∗
m(a); a) ,

where L is the Lagrangian function for this problem.
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Example

▶ Consider the utility maximization problem

max
x1,x2

u(x1, x2)

s.t. p1x1 + p2x2 ≤ w ,

where p1 > 0 and p2 > 0 are prices, and w > 0 is income or wealth

▶ Notice that x1 and x2 are unknown variables, whereas p1, p2 and w are
parameters

▶ Suppose this problem has a unique solution, at which the budget constraint is
binding:

x∗1 (p1, p2,w), x∗2 (p1, p2,w)
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Example

▶ Define the value function v of this problem:

v(p1, p2,w) := u (x∗1 (p1, p2,w), x∗2 (p1, p2,w))

▶ The function v is called indirect utility function

▶ By using the envelope theorem, we can estimate how v changes when we change
one of the problem’s parameters

▶ Recall that the Lagrangian is

L(x1, x2, µ; p1, p2,w) = u(x1, x2)− µ(p1x1 + p2x2 − w)
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Example

▶ Thus we have:

dv

dp1
(p1, p2,w) =

∂L
∂p1

(x∗1 , x
∗
2 , µ

∗; p1, p2,w) = −µ∗x∗1

dv

dp2
(p1, p2,w) =

∂L
∂p2

(x∗1 , x
∗
2 , µ

∗; p1, p2,w) = −µ∗x∗2

dv

dw
(p1, p2,w) =

∂L
∂w

(x∗1 , x
∗
2 , µ

∗; p1, p2,w) = µ∗
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