Mathematics for Economists

Mitri Kitti
Aalto University

Comparative Statics

Envelope theorem

J. Viner

Motivating example: consumer model

Consumer model
$\max _{c, l} U(c, I)$ s.t. $p c \leq w(h-I)+I$
$U: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}$ utility function
$c \geq 0$ consumption
$I \in[0, h]$ leisure, $h-I=$ hours worked
p price of the consumption bundle
w wage, $w \times(h-l)=$ wage income
I non-wage income

- Which of the variables are endogenous/exogenous?
- How does the welfare change when exogenous variables vary?
- How does the optimal utility change when exogenous variables vary?

Motivating example: income tax

Consumer model
$\max _{c, I} U(c, I)$ s.t. $p c \leq(1-t) w(h-I)+I$

- Note: w is replaced with $(1-t) w, t$ is the tax rate
- What is the impact of changing taxes? [see, e.g., Mirrlees 1971, Saez and Piketty 2012, Henden 2020]
What happens when t is marginally increased or decreased?
- behavioral response; changes of c and I
- How is the optimal utility changed?

Comparative statics of optimal values

Optimization problem $\max _{x \in \mathbb{R}^{n}} f(x, a)$, where $a \in \mathbb{R}^{m}$ is the vector of exogenous variables

- the solution depends on a, assuming uniqueness: $x(a)$

What happens to the optimal f when a is changed?

- comparative statics of the (optimal) value function $v(a)=\max _{x} f(x, a)=f(x(a), a)$
-What are $\frac{\partial v(a)}{\partial a_{i}}, i=1, \ldots, m$?
- note $\frac{\Delta v}{\Delta a_{i}} \approx \frac{\partial v(a)}{\partial a_{i}}$ for small Δa_{i} 's, or $\Delta v \approx\left(\frac{\partial v(a)}{\partial a_{i}}\right) \Delta a_{i}$
- note $\frac{\Delta v}{\Delta a_{i}} \approx \frac{\partial v(a)}{\partial a_{i}}$ for small Δa_{i} 's, or $\Delta v \approx\left(\frac{\partial v(a)}{\partial a_{i}}\right) \Delta a_{i}$

The problem is unconstrained, but what about the consumer problem that is constrained?

- $\max _{c, I} U(c, l)$ s.t. $p c \leq w(h-I)+I$
- $\max _{I} U([w(h-I)+I] / p, I)$ after elimination of c

Example 1: direct computation of v

- $f(x, a)=-x^{2}+2 a x+4 a^{2}$
- First order condition

$$
\begin{gathered}
\frac{\partial f(x, a)}{\partial x}=0 \text { holds at } x=x(a) \\
-2 x+2 a=0, \quad \text { which gives } x(a)=a
\end{gathered}
$$

- Plug the solution into f to form v, and differentiate w.r.t a :

$$
\begin{aligned}
& \stackrel{v(a)}{\Longrightarrow}=f(x(a), a)=-a^{2}+2 a^{2}+4 a^{2}=5 a^{2} \\
& \frac{d v(a)}{d a}=10 a
\end{aligned}
$$

- What if $x(a)$ cannot be found analytically or finding it is hard?

Rowing ...

Assume $x, a \in \mathbb{R}$

$$
\frac{d v(a)}{d a}=\frac{d f(x(a), a)}{d a}=?
$$

Chain rule: $\frac{d f(x(a), a)}{d a}=x^{\prime}(a) \frac{\partial f(x(a), a)}{\partial x}+[d(a) / d a] \frac{\partial f(x(a), a)}{\partial a}$
Chain rule: $\frac{d f(x(a), a)}{d a}=x^{\prime}(a) \frac{\partial f(x(a), a)}{\partial x}+1 \frac{\partial f(x(a), a)}{\partial a}$

Chain rule: $\underbrace{\frac{d f(x(a), a)}{d a}}_{\text {Total effect }}=\underbrace{x^{\prime}(a) \frac{\partial f(x(a), a)}{\partial x}}_{\text {indirect effect }}+\underbrace{\frac{\partial f(x(a), a)}{\partial a}}_{\text {direct effect }}$
Chain rule: $\underbrace{\frac{d f(x(a), a)}{d a}}_{\text {Total effect }}=\underbrace{x^{\prime}(a) \times 0}_{\text {indirect effect }}+\underbrace{\frac{\partial f(x(a), a)}{\partial a}}_{\text {direct effect }}$
How to handle the indirect effect, which contains $x(a)$? by the first order condition $\frac{\partial f(x(a), a)}{\partial x}=0$
\Rightarrow Indirect effect vanishes!

Envelope theorem

From $\underbrace{\frac{d f(x(a), a)}{d a}}_{\text {Total effect }}=\underbrace{x^{\prime}(a) \frac{\partial f(x(a), a)}{\partial x}}_{\text {indirect effect }}+\underbrace{\frac{\partial f(x(a), a)}{\partial a}}_{\text {direct effect }}$
to

$$
\frac{d f(x(a), a)}{d a}=\frac{\partial f(x(a), a)}{\partial a}
$$

total effect $=$ direct effect
A version of the envelope theorem

Back to Example 1

- $f(x, a)=-x^{2}+2 a x+4 a^{2}$
- By invoking the envelope theorem

$$
\frac{d v(a)}{d a}=2 x(a)+8 a=10 a
$$

- By invoking the envelope theorem

$$
\frac{d v(a)}{d a}=2 x(a)+8 a \quad(=10 a)
$$

- No need to find $v(a)$ analytically!
- If the signs of $x(a)$ and a were known, we would also know the sign of $d v(a) / d a$ using the envelope theorem it is possible to obtain "qualitative" results of this type, without actually ever finding x (a) explicitly

The envelope theorem

Assume that the optimum of f is unique in the neighborhood of a^{*}, f is differentiable at $\left(x\left(a^{*}\right), a^{*}\right)$, and $x(a)$ is differentiable at a^{*}. Then

$$
\frac{\partial v\left(a^{*}\right)}{\partial a_{i}}=\frac{\partial f\left(x\left(a^{*}\right), a^{*}\right)}{\partial a_{i}}
$$

for all $i=1, \ldots, m$, where v is the value function

- Indirect effects do not matter
- Changes of the behavior can be ignored

Geometric interpretation

- The graph of the value function v is the envelope of the family of graphs of $f(\cdot, a)$
- The slope of v is the slope of $f(\cdot, a)$ to which it is a tangent
- Example $f(x, a)=-x^{2}+2 a x+4 a^{2}$: video

Application: Wage increase of Wal-Mart

In 2015 Wal-Mart increased its minimum wages from $\$ 9 / \mathrm{hr}$ to $\$ 10 / \mathrm{hr}$

- outcome: lower turnover of employees, more work applications
- note: there was exogenous pressure coming from competitors

Efficiency wages

- worker effort dependent on wages $e(w)$ (increasing)
- profit function $\pi(L, w)=R(L \times e(w))-w L$

1. What is the effect of a marginal increase in the wage?

- assume the optimality of $\$ 9 / \mathrm{hr}$ and a small change, what happens to profits?

2. What would happen in the competitive case if w increases?

- $e(w)=1$ and w is exogeneous
- Note: $\Delta v \approx\left(\frac{\partial v(a)}{\partial a_{i}}\right) \times\left(\Delta a_{i}\right)$

Interpretation of Lagrange multipliers

Proposition (Envelope Theorem for Constrained Problems)

Let f, h_{1}, \ldots, h_{m} be C^{1} functions on \mathbb{R}^{n}. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ be parameters, and consider the problem of maximizing or minimizing $f(\boldsymbol{x})$ w.r.t. \boldsymbol{x} subject to the constraints:

$$
h_{1}(\boldsymbol{x})=a_{1}, \ldots, h_{m}(\boldsymbol{x})=a_{m}
$$

Let $\left(x_{1}^{*}(\mathbf{a}), \ldots, x_{n}^{*}(\mathbf{a})\right)$ be the solution to this problem, with corresponding Lagrange multipliers $\lambda_{1}^{*}(\boldsymbol{a}), \ldots, \lambda_{m}^{*}(\boldsymbol{a})$.

Suppose further that all the x_{i}^{*} 's and λ_{i}^{*} 's are differentiable functions of \mathbf{a} and that the NDCQ holds. Then, for each $j=1, \ldots, m$,

$$
\frac{d}{d a_{j}} f\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)=\lambda_{j}^{*}(\boldsymbol{a}) .
$$

Interpretation of Lagrange multipliers

The previous proposition can be easily generalized to the case with inequality constraints.

Proposition (Envelope Theorem for Constrained Problems)
Let f, g_{1}, \ldots, g_{m} be C^{1} functions on \mathbb{R}^{n}. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ be parameters, and consider the problem of maximizing $f(\boldsymbol{x})$ w.r.t. \boldsymbol{x} subject to the constraints:

$$
g_{1}(\boldsymbol{x}) \leq a_{1}, \ldots, g_{m}(\boldsymbol{x}) \leq a_{m}
$$

Let $\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)$ be the solution to this problem, with corresponding Lagrange multipliers $\mu_{1}^{*}(\boldsymbol{a}), \ldots, \mu_{m}^{*}(\boldsymbol{a})$.
Suppose further that all the x_{i}^{*} 's and μ_{i}^{*} 's are differentiable functions of \mathbf{a} and that the $N D C Q$ holds. Then, for each $j=1, \ldots, m$,

$$
\frac{d}{d a_{j}} f\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)=\mu_{j}^{*}(\boldsymbol{a})
$$

Interpretation of Lagrange multipliers

Proposition

Let f, g_{1}, \ldots, g_{m} be C^{1} functions on \mathbb{R}^{n}. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ be parameters, and consider the problem of minimizing $f(\boldsymbol{x})$ w.r.t. \boldsymbol{x} subject to the constraints:

$$
g_{1}(\boldsymbol{x}) \geq a_{1}, \ldots, g_{m}(\boldsymbol{x}) \geq a_{m}
$$

Let $\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)$ be the solution to this problem, with corresponding Lagrange multipliers $\mu_{1}^{*}(\boldsymbol{a}), \ldots, \mu_{m}^{*}(\boldsymbol{a})$.
Suppose further that all the x_{i}^{*} 's and μ_{i}^{*} 's are differentiable functions of \mathbf{a} and that the $N D C Q$ holds. Then, for each $j=1, \ldots, m$,

$$
\frac{d}{d a_{j}} f\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)=\mu_{j}^{*}(\boldsymbol{a}) .
$$

Example

- Consider the problem

$$
\begin{array}{cl}
\max _{x, y, z} & f(x, y, z)=x y z \\
\text { s.t. } & x+y+z \leq 1 \\
& x \geq 0 \\
& y \geq 0 \\
& z \geq 0
\end{array}
$$

- The Lagrangian is

$$
L=x y z-\mu_{1}(x+y+z-1)+\mu_{2} x+\mu_{3} y+\mu_{4} z
$$

- You can verify that the solution is $x^{*}=y^{*}=z^{*}=\frac{1}{3}$, with $\mu_{1}^{*}=\frac{1}{9}$ and $\mu_{2}^{*}=\mu_{3}^{*}=\mu_{4}^{*}=0$

Example

- Suppose that the first constrained is changed to $x+y+z \leq 0.9$. What is the corresponding change in the value function $f\left(x^{*}, y^{*}, z^{*}\right)$?
- Write the constraint in parametric form $x+y+z \leq a$. We know the solution when $a=1$, and now we want to estimate the change in the value function when $d a=-0.1$
- By the envelope theorem,

$$
d f\left(x^{*}(1), y^{*}(1), z^{*}(1)\right)=\mu_{1}^{*} d a=\frac{1}{9}\left(-\frac{1}{10}\right)=-\frac{1}{90}
$$

- So by decreasing a from 1 to 0.9 , the value function decreases approximately by 0.0111
- Notice that the envelope theorem enables us to estimate the change without solving the problem with $a=0.9$. If we solved the new problem, we would find the exact change in the value function

Shadow Prices

- We can use the envelope theorem to give an economic interpretation to Lagrange multipliers
- Consider a firm producing n different final goods. Those final goods are using as inputs m different resources whose total supplies are a_{1}, \ldots, a_{m}
- Given the quantities x_{1}, \ldots, x_{n} of the final goods, let $\pi(\boldsymbol{x})$ denote the firm's profit when goods $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ are produced, and let $g_{i}(\boldsymbol{x})$ be the corresponding number of units of resource number i required, with $i=1, \ldots, m$

Shadow Prices

- The firm's profit maximization problem is

$$
\begin{array}{cl}
\max _{\boldsymbol{x}} & \pi(\boldsymbol{x}) \\
\text { s.t. } & g_{1}(\boldsymbol{x}) \leq a_{1} \\
& \cdots \\
& g_{m}(\boldsymbol{x}) \leq a_{m}
\end{array}
$$

- By the envelope theorem,

$$
\frac{d \pi}{d a_{i}}\left(x_{1}^{*}(\boldsymbol{a}), \ldots, x_{n}^{*}(\boldsymbol{a})\right)=\mu_{i}^{*}(\boldsymbol{a})
$$

- In words, the multiplier $\mu_{i}^{*}(\boldsymbol{a})$ tells how valuable another unit of input i would be to the firm's profit
- $\mu_{i}^{*}(\boldsymbol{a})$ is often called the shadow price or internal value of input i

Shadow Prices

- Exercise. If x thousand Euro is spent on labor and y thousand Euro is spent on equipment, a certain factory produces $Q(x, y)=50 x^{\frac{1}{2}} y^{2}$ units of output.
(a) How should 80, 000 Euro be allocated between labor and equipment to yield the largest possible output?
(b) Use the envelope theorem to estimate the change in maximum output if this allocation decreased by 1000 Euro
(c) Compute the exact change in (b)

Net National Product

- Consider a two period consumption/investment model of a social planner

$$
\begin{aligned}
& \max _{c_{0}, c_{1}, i_{0}} u\left(c_{0}\right)+\delta u\left(c_{1}\right) \\
& c_{0}+i_{0} \leq k_{0} \\
& c_{1} \leq f\left(i_{0}\right)
\end{aligned}
$$

- First order conditions

$$
\begin{aligned}
u^{\prime}\left(c_{0}^{*}\right) & =\lambda_{0} \\
\delta u^{\prime}\left(c_{1}^{*}\right) & =\lambda_{1} \\
-\lambda_{0}+\lambda_{1} f^{\prime}\left(i_{0}^{*}\right) & =0
\end{aligned}
$$

- Observation 1: if the objective function was linearized at c_{0}^{*}, c_{1}^{*}, we would get an objective function $\lambda_{0}\left(c_{0}-c_{0}^{*}\right)+\lambda\left(c_{1}-c_{1}^{*}\right)$
- Observation 2: The first order conditions hold for the linearized objective function hold at c_{0}^{*}, c_{1}^{*}

Net National Product

- Observation 3: assuming $c_{1}^{*}=f\left(i_{0}^{*}\right)$ we have

$$
\lambda_{0} c_{0}^{*}+\lambda_{1} c_{1}^{*}=\lambda_{0} c_{0}^{*}+\lambda_{0} f\left(i_{0}^{*}\right) / f^{\prime}\left(i_{0}^{*}\right) \approx \lambda_{0} c_{0}+\lambda_{0} f^{\prime}\left(i_{0}^{*}\right) i_{0}^{*} / f^{\prime}\left(i_{0}^{*}\right)=\lambda_{0}\left(c_{0}^{*}+i_{0}^{*}\right)
$$

- $c_{0}^{*}+i_{0}^{*}$ is the net national product
- Net national product is an approximation of the optimal welfare!
- national accounting system provides a way to measure welfare
- BUT: this is only in an idealized world
- What if the national accounting system is missing something (goods with no markets/prices)?
- find shadow prices! (e.g. green national accounting) (more)

Harvesting a Resource Stock

- Two period with consumptions c_{0} and c_{2}
- Objective function (NPV) $\sum_{t=0}^{1}\left[B\left(c_{t}\right)-C\left(c_{t}\right)\right] /(1+r)^{t}$
- Resoure constraint $c_{0}+c_{1}=S$
- FOCs:

$$
\begin{aligned}
B^{\prime}\left(c_{0}\right)-C^{\prime}\left(c_{0}\right)-\lambda & =0 \\
{\left[B^{\prime}\left(c_{1}\right)-C^{\prime}\left(c_{1}\right)\right] /(1+r)-\lambda } & =0 \\
c_{0}+c_{1} & =S
\end{aligned}
$$

- Observation 1: marginal wtp \neq marginal cost!
- Observation 2: present value of MWTP - MC is constant in each period
- note B^{\prime} can be interpreted as the market price (why?)
- the difference $B^{\prime}\left(c_{t}\right)-C^{\prime}\left(c_{t}\right)$ is the scarcity rent (which equals the shadow price)

A General Envelope Theorem

The following Proposition combines the envelope theorem and the interpretation of Lagrange multipliers

Proposition (Envelope Theorem for Constrained Problems)

Let f, h_{1}, \ldots, h_{m} be C^{1} functions on \mathbb{R}^{n}. Let $a \in \mathbb{R}$ be a parameter, and consider the problem of maximizing $f(\boldsymbol{x} ; a)$ w.r.t. \boldsymbol{x} subject to the constraints:

$$
h_{1}(\boldsymbol{x} ; a)=0, \ldots, h_{m}(\boldsymbol{x} ; a)=0
$$

Let $\left(x_{1}^{*}(a), \ldots, x_{n}^{*}(a)\right)$ be the solution to this problem, with corresponding Lagrange multipliers $\mu_{1}^{*}(a), \ldots, \mu_{m}^{*}(a)$.
Suppose further that all the x_{i}^{*} 's and μ_{i}^{*} 's are differentiable functions of a and that the NDCQ holds. Then,

$$
\frac{d}{d a} f\left(x_{1}^{*}(a), \ldots, x_{n}^{*}(a) ; a\right)=\frac{\partial \mathcal{L}}{\partial a}\left(x_{1}^{*}(a), \ldots, x_{n}^{*}(a), \mu_{1}^{*}(a), \ldots, \mu_{m}^{*}(a) ; a\right)
$$

where \mathcal{L} is the Lagrangian function for this problem.

Example

- Consider the utility maximization problem

$$
\begin{array}{rl}
\max _{x_{1}, x_{2}} & u\left(x_{1}, x_{2}\right) \\
\text { s.t. } & p_{1} x_{1}+p_{2} x_{2} \leq w
\end{array}
$$

where $p_{1}>0$ and $p_{2}>0$ are prices, and $w>0$ is income or wealth

- Notice that x_{1} and x_{2} are unknown variables, whereas p_{1}, p_{2} and w are parameters
- Suppose this problem has a unique solution, at which the budget constraint is binding:

$$
x_{1}^{*}\left(p_{1}, p_{2}, w\right), \quad x_{2}^{*}\left(p_{1}, p_{2}, w\right)
$$

Example

- Define the value function v of this problem:

$$
v\left(p_{1}, p_{2}, w\right):=u\left(x_{1}^{*}\left(p_{1}, p_{2}, w\right), x_{2}^{*}\left(p_{1}, p_{2}, w\right)\right)
$$

- The function v is called indirect utility function
- By using the envelope theorem, we can estimate how v changes when we change one of the problem's parameters
- Recall that the Lagrangian is

$$
\mathcal{L}\left(x_{1}, x_{2}, \mu ; p_{1}, p_{2}, w\right)=u\left(x_{1}, x_{2}\right)-\mu\left(p_{1} x_{1}+p_{2} x_{2}-w\right)
$$

Example

- Thus we have:

$$
\begin{aligned}
\frac{d v}{d p_{1}}\left(p_{1}, p_{2}, w\right) & =\frac{\partial \mathcal{L}}{\partial p_{1}}\left(x_{1}^{*}, x_{2}^{*}, \mu^{*} ; p_{1}, p_{2}, w\right)=-\mu^{*} x_{1}^{*} \\
\frac{d v}{d p_{2}}\left(p_{1}, p_{2}, w\right) & =\frac{\partial \mathcal{L}}{\partial p_{2}}\left(x_{1}^{*}, x_{2}^{*}, \mu^{*} ; p_{1}, p_{2}, w\right)=-\mu^{*} x_{2}^{*} \\
\frac{d v}{d w}\left(p_{1}, p_{2}, w\right) & =\frac{\partial \mathcal{L}}{\partial w}\left(x_{1}^{*}, x_{2}^{*}, \mu^{*} ; p_{1}, p_{2}, w\right)=\mu^{*}
\end{aligned}
$$

