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Recap of the situation
Modern supercomputer

Interconnect network

Core

Shared 
memory

Caches

Multiprocessor node
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Current “software” landscape
- MPI (developed since 1991, standardized in 1994, now at MPI-3, 
MPI-4 soon coming): several implementations - OpenMPI, MPICH, 
MPAVICH…

• Libraries that provide message passing functions
• API to provide bindings to higher-level programming languages 

(Co-array Fortran, …, Python, R, Matlab, Java/Scala, Julia, 
Chapel, …)

- Big data programming models: MapReduce; Hadoop, Spark, …
- Instead of (only) passing messages, a distributed file system 

providing data locality is used
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Low or high-level programming?
MPI: 

• Low level, difficult to program
• Fault tolerance is left to the user to take care about
• Available and supported at every HPC center
• Standardized

Higher-level languages:
• Easier to program
• Fault tolerance might be readily  implemented
• Might not be provided everywhere
• You do not have to so much care, 

but also do not learn, about the internal 
workings of the distributed programming model

During this course we use MPI
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How to decide in practise?
1. I am lacking understanding of distributed memory 

programming, and will find the easiest way out with the high-
level programming languages.

2. What is available in the system accessible for you now/near 
future?

3. I want to write portable code, and parallelize it only once, and 
keep on maintaining it with minimal effort
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Distributed memory programming model
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Process 0 Process 1

int X(100); ...
X(10)=my_rank*10;
printf(”My value at index 10 %d”,X(10));

X(10)

int X(100); …
X(10)=my_rank*10;
printf(”My value at index 10 %d”,X(10);

X(10)

Address space

SPMD SPMD



Distributed memory programming model
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Process 0 Process 1

int X(100); ...
X(10)=my_rank*10;
printf(”My value at index 10 %d”,X(10));

X(10)

int X(100); …
X(10)=my_rank*10;
printf(”My value at index 10 %d”,X(10);

X(10)

Address space
This is my 
value of 
X(10) Oh, thanks!

MPI calls



Fundamental idea
MPI libraries implement a message passing model, in which the 
sending and receiving of messages combines both data 
movement and synchronization. Processes have separate address 
spaces. 

Collective 
operations

Point-to-point 
communication

Two high-level modes of 
operation; during this lecture, we 

start with point-to-point
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But, how to arrange
• How many others are there, and where amongst them am I?
• Identification of sender and receiver
• Communication about what is going to be sent and received 

(prescription of data)
• Identification of the message (which data belongs where), if 

many are constantly sent?
• What is supposed to happen when the transmission is 

complete?
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Communicator (def. MPI_COMM_WORLD)

Group
Context

Process 1

Process 2

Process n

Message 1

Message 2

Message n
… …

Communicator

Tag

Rank

Envelope Data
Type, 
size
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C code in practise
#include “mpi.h”
int main(int argc, char *argv[]) { 
int rank, size; 
MPI_Init (&argc, &argv); /* Communicator set up */
MPI_Comm_size(MPI_COMM_WORLD, &size); 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
printf(“My rank %d of %d\n”, rank, size); 
MPI_Finalize(); /* Communicator deallocated */
} 
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#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2

scripts/job_CPU_example.sh



Type, 
size Tag

More detailed functionality

SendX(data_description,destination,tag,comm)

ReceiveX(data_description,source,tag,comm,stat)

data

Rank of the sender=source Rank of the receiver=destination

Within ‘comm’ group of processes

Function type determines

Rank Rank

acknowledgement

EnvelopeData

Data Envelope
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Two operation modes
Co-operative communication

One-sided communication (RMA ops)

Blocking

Non-blocking

MPI_Send
MPI_Recv
MPI_SendRecv
MPI_Bsend
…

MPI_Isend
MPI_Irecv…

MPI_Get
MPI_Put …

Collective communications

MPI_BCast

MPI_Scatter …

Point-to-point (P2P) communications

Lecture 3 Lecture 4

Lecture 4
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Blocking communication

Intercon
nect 

network

Yellow: communication
Green: computation
Grey: Idling

Rank 0

Rank 1

Infinite-
sized 
buffer
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Blocking communication

Intercon
nect 

network

Yellow: communication
Green: computation
Grey: Idling

Rank 0

Rank 1

Infinite-
sized 
buffer
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Blocking communication

Intercon
nect 

network

Yellow: communication
Green: computation
Grey: Idling

Rank 0

Rank 1

Rank 0

Rank 1
MPI_Send

MPI_Recv

Sending call blocks until the receiving process has started.
Problem: If the receive cannot start for some reason, the 
system goes into a halt, called deadlock.  

Buffers
Infinite-
sized 
buffer

Normal 
“rendezvous” 
mode



Blocking communication
• Exception: many MPI implementations optimize the non-

blocking send with an eager protocol for short messages.
• The eager protocol keeps on sending the fully packed 

messages including the data and the envelope, assuming 
that the receiver can keep on receiving the full package. 

• Problem: your code may work for with small system 
sizes, and deadlock with large system size. 



Blocking communication

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, 
int dest,int tag, MPI_Comm comm)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, 
int source,int tag, MPI_Comm comm, 

MPI_Status *status)MPI_ANY_SOURCE
MPI_ANY_TAG

UNIQUE dest and tag
Push 

communication 
mechanism

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,int *count)

Structure 
containing source, 

tag, error, and 
length

Note: MPI_Recv can receive messages sent in any mode. 
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Elementary data types
MPI datatype C equivalent

MPI_SHORT short int
MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int
MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float
MPI_DOUBLE double

MPI_LONG_DOUBLE long double
MPI_BYTE char

User defined data types can be useful, will be dealt with 
during the next lecture
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Errors
• Virtually all function calls return an error. In C, the returned MPI 

function value is the error, 0 indicating success.
• Implementation specific; refer to the documentation of your MPI 

library
• If a MPI function call causes an error, it, as a thumb rule, aborts 

by itself (relatively safe not to handle errors).
• Programmer can also inspect the error and abort the code 

using the default error handle MPI_ERRORS_RETURN.
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Questions: what would these codes do?

2)
…
your_id=1-my_id
MPI_Recv(&recvbuf,1,MPI_INT,your_id,0,comm,&status); 
MPI_Send(&sendbuf,1,MPI_INT,your_id,0,comm); 
…

1)
…
your_id=1-my_id
MPI_Send(&sendbuf,1,MPI_INT,your_id,0,comm); 
MPI_Recv(&recvbuf,1,MPI_INT,your_id,0,comm,&status);
…

3)
Case 1) if you would send larger messages? What is happening 
here?

MPI/MPI_SR_1.c – MPI/MPI_SR_3.c code examples are 
related to these questions
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What would happen if you used MPI_Rsend function?



Deadlock

Processes wait for each other to do something, and the code 
hangs.

0

1

2

3

MPI_Send

MPI_Send

MPI_SendMPI_Send

Cycles in waiting-for-graphs indicate deadlocks.
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Question
Will the following pseudocode deadlock with MPI_Send and 
MPI_Recv?
…
next_id = my_id+1; prev_id = my_id-1; 
if ( /* I am not the last processor */ ) send(target=next_id); 
if ( /* I am not the first processor */ ) receive(source=prev_id)
…
Would you call this efficient parallel execution? What actually happens? 
Why are the results very difficult to interpret?

MPI/MPI_SR_4.c code example is related to these 
questions
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Pair-wise co-operative MPI_Sendrecv
• How the prevent deadlocks? 1. Avoid unsafe operations; one 

alternative is to use…
• Use MPI_Sendrecv( ....from... ...to... ); with the right choice of source 

and destination. 
• For example:
MPI_Comm_rank(comm,&nproc); ….
MPI_Sendrecv( .... /* from: */ nproc-1 ... ... /* to: */ nproc+1 ... );
• Then you always need a “pair” to communicate with
• If not, then you need to use “MPI_PROC_NULL” 
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Question
Will the efficiency of this code be any better with MPI_Sendrecv?
…
next_id = my_id+1; prev_id = my_id-1; 
if ( /* I am not the last processor */ ) send(target=next_id); 
if ( /* I am not the first processor */ ) receive(source=prev_id)
…

MPI/MPI_SR_5.c code example is related to this question
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Synchronous blocking send MPI_Ssend

• Another alternative is to use…
• MPI_Ssend(); 
• ”S” for “Synchronous”, meaning that the receiver is always 

forced to send an acknowledge.
• It will not avoid deadlocks.
• In this case, all unsafe operations should always deadlock, 

helping you out to debug and write “safer” code.
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Buffered blocking communication
MPI_Bsend “Buffered”

int bufsize; /* Size of data + MPI_BSEND_OVERHEAD 
*/
char *buf = malloc( bufsize ); 
MPI_Buffer_attach( buf, bufsize ); 
... 
MPI_Bsend( ... same as MPI_Send ... ); 
... 
MPI_Buffer_detach( &buf, &bufsize );
…

3. Force 
buffering

User is responsible for allocating large enough buffers.
Question: is this more efficient? You can try it out.

MPI/MPI_SR_6.c code example is related to this question
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Blocking communication
Pros

Programmer has full control about 
where the data is: if the send call returns, 
the data has been successfully received, 
and the send buffer can be used for 
other purposes or de-allocated.

Buffering possible, so programmer can 
collect small messages into larger ones.

Cons

Unsafe operations cause deadlocks – one 
needs to be careful in ordering the calls.

Overlapping computation and 
communication is challenging.
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Non-blocking communication
Immediate or Incomplete
MPI_Isend and 
MPI_Irecv: they tell the 
runtime system 
“Here is my data, please 
send it forward as I instruct” 
or 
“I am expecting certain type 
of data to come to this 
provided buffer space”.

MPI_Isend

MPI_Irecv

“Posting”

28

Rank 0

Rank 1

Buffers



Non-blocking communication

Non-blocking routines yield an MPI_Request object. This request can then 
be used to query whether the operation has completed. MPI_Irecv routine 
does not yield an MPI_Status object. This is because the status object 
describes the actually received data, and at the completion of 
the MPI_Irecv call there is no received data yet.

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int 
tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest, 
int tag, MPI_Comm comm, MPI_Request *request)
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Non-blocking communication
Int MPI_Wait(MPI_Request *request, MPI_Status *status);
int MPI_Waitall(int count, MPI_Request array_of_requests[], 

MPI_Status array_of_statuses[])
One needs to wait for the completion of the non-blocking routines. There 
are various functions for that. They pass the MPI_Request object as a 
reference and return an MPI_status. If you are not interested in the status, 
then you can specify MPI_STATUS(ES)_IGNORE instead. These calls 
deallocate the handle after and set it to MPI_REQUEST_NULL. Waitall
waits for multiple messages, and hence works with arrays of requests 
and statuses.

MPI_STATUS_IGNORE

MPI_STATUSES_IGNORE
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Non-blocking communication
int MPI_Waitany(int count, MPI_Request array_of_requests[], int 

*index, MPI_Status *status) 
int MPI_Waitsome(int incount, MPI_Request array_of_requests[], 

int *outcount, int array_of_indices[], MPI_Status
array_of_statuses[])

If one wishes to wait for one or some messages separately, then Waitany
and Waitsome functions can be used. NB! Only after the corresponding 
wait call it is safe to use the buffer that has been sent, or has received its 
contents. To send multiple messages with non-blocking calls you 
therefore have to allocate multiple buffers (unlike in the blocking case).

MPI_STATUS_IGNORE

MPI_STATUSES_IGNORE

MPI/MPI_SR_7.c code gives a simple example of non-blocking 
send+recv.
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MPI_Testx
• For every “Wait” there is a corresponding “Test”.
• While “Waits” are blocking, “Tests” are non-blocking, and can 

be used for polling if communication is completed.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

• Flag is set to true if the communication described by the 
specified handle has completed.
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Useful reading:

MPI 4 standard: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-
report.pdf
MPI 3 (version 3.1) standard: https://www.mpi-forum.org/docs/mpi-
3.1/mpi31-report.pdf
OpenMPI documentation: https://www.open-mpi.org/doc/
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