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d Decision alternatives cannot always be listed
(e.g., design problems with continuous parameters)

O Preference elicitation can be time-consuming or fraught with some
difficulties in the initial stages

O Conditions for using the additive value function as a representation
of preferences may not hold or cannot be validated

O There may be an interest to produce some results quickly in order
to better understand the problem
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Multi-objective optimization: concepts

= 2
Q Set of feasible solutions X = {(x1,%2) € R?|

X = {x € R™|g(x) < 0} 3?2: : x=21,x,=21,x;,+x,<7}
O Objective functions N
f=0, fu): X >R
O Preference modeling on trade-offs
between objectives X
—  Value functions
max V(f () = V(i (), -, fu () L N
— Pareto approaches I X1

v=max V(F()) = (i (), -, fu () .
— Interactive approaches (not covered in detail here)
f =1 f2) = (g + 2x5 —x,)

, , Aalto University
School of Science 16.11.2022

4



X = {(x1,x2) € R?|
x,=21L,x,=21,x;,+x, <7}

Multi-objective Si
optimization: concepts

O Objective functions f map the feasible
solutions X to f(X) in the solution
space:

fX)={y eR*3Ix € Xsothaty = f(x)}

1! \3-1 S
fX) = {(fu. ) € R?| '--"jv:\———?zg:———-
fao<—=1f,<7—fn,2f,=1—f} A .
fZ 1 S \
| N \\
N
: \\\ 16.11.202;
\\
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[
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O In multi-objective optimization (MOOQO), each objective is assumed
preferentially independent of the others

O Definition (cf. Lecture 5): Preferences between values on a given
objective function i do not depend on the values of the other
objective functions

—  Without loss of generality, we can assume all objectives to be
maximized

— MIN can be transformed to MAX: mm fi(x) = —max[ f: 0]
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Which feasible solution(s) to prefer?

d y! cannot be ‘
recommended @ —ob NN ___
S

because

Better than y! on

have both objectives

higher £, and f,

— Focus on
Pareto-optimal
solutions
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Pareto-optimality

Definition. x*eX is Pareto-optimal iff there
does not exist xe X such that

fi(x) = f;(x*) foralli € {1, ...,n}
fi(x) > fi(x*) forsomei € {1, ...,n}

Set of all Pareto-optimal solutions: Xp,

Definition. Objective vector y € f(X) is Pareto-

optimal iff there exists a Pareto-optimal x*e X s.t.

f(x*)=y
- Set of Pareto-optimal objective vectors: f{Xp.)
- Notation f(Xpp) = v-—max f(x)
X

, , Aalto University
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Example: Markowitz model

a

Optimal asset portfolio selection

— How to allocate funds to m assets based on
o Expected asset returns 7}, i=1,...,m
o Covariances of asset returns o, i,j=1,...,m

Y
Set of feasible solutions

— Decision variables x,,...,x,),
o Allocate x;*100% of funds to j-th asset

— Portfoliox € X = {x e R"|x; = 0,212, x; = 1} 2]
Objective functions c
1. Maximize expected return of portfolio f,(x) = Y}/, 7ix; %
2. Minimize variance (risk) of portfolio f; (x) = =

1om m
S i=1 Zj=1 0;jXiXj .
risk f,
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Pareto-optimality iIn Markowitz model

O Portfolio x is Pareto-optimal if no other

portfolio yields greater or equal expected

return with less risk
O One possibility for computation:

- Choose d = max number of solutions computed

- Solve p, =max f,, yy=minf,

- For all k=2,...,d-1 set  s.t. > w> 1y and solve
(1-dimensional) quadratic programming problem

min 10;ix;x; such that Ti X
xeXZZ 12 ijAitj Zl 1 liti

- Discard solutions which are not PO
- Not a very viable approach when n>2

= Uk

return

f”

My
Ha
M3

Hat

M7
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Algorithms for solving Pareto-optimal
solutions (1/2)

O Exact algorithms
- Guaranteed to find all PO-solutions X,

- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear
Programming (MOMILP)

O Use of single-objective optimization algorithms

- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a
subset of all PO-solutions, Xpoq

- Performance guarantee: Xp,scXpp

o Solutions may not be “evenly” distributed in the sense that majority of the obtained solutions
can be very “close” to each other

- Methods:

o Weighted sum approach, weighted max-norm approach, e-constraint approach

, , Aalto University
School of Science
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Algorithms for solving Pareto-optimal
solutions (2/2)

L Approximation algorithms

Obtain an approximation X, of Xp, in polynomial time
Performance guarantee: For every x eXp, exists y eXppu

such that | |f(x)-f(y)||< €

Only for very few problem types, e.g.,
MO knapsack problems (i.e., packing problems)

J Metaheuristics

A metaheuristic is a high-level framework that provides
a set of guidelines or strategies to develop heuristic
optimization algorithms
No performance guarantees, but can handle problems with
» Alarge number of variables and constraints
* Non-linear or non-continuous objective functions/constraints
Evolutionary algorithms (e.g., genetic algorithms)

Stochastic search algorithms (e.g., simulated annealing)

Metaheuristics
/ Population

Evolutionary
algorithm
( Genetic algorithm |

urally inspired

Nat
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Example: Multiobjective integer linear
programming (MOILP)

O Riikka is at an amusement park that offers 2 different rides:
O Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
O Tickets to ride 2 are for one ride and cost 3 €

4 Riikka has a total of 20 euros to spend on tickets to ride 1 (x,eN) and
ride 2 (X, € N) — constraint 2x; + 3x, < 20

O Each time Riikka takes ride 2, his grandfather cheers for her

O Riikka maximizes the number of (i) rides taken and (ii) cheers
— objective functions f = (f, f,) = (2x; + x5, x;)

16.11.2022
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Feasible solutions X

X, = tickets valid for ride 2

"Riikka has 20 euros. She is

choosing the number of tickets to
| ride 1 (x, € N) and ride 2 (x, € N)

— Constraint 2x, + 3x, < 20”

~
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N 2x,+ 3x, =20
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X, = tickets valid for ride 1




Example: MOILP (cont’d)

L Blue points are feasible solutions; the 7 PO solutions are circled

Aalto Uni
A” School of Sci 16.11.2022
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Welghted sum approach

Q Algorithm f,r .
At=(0.2,0.8)"
1. Generate A~UNI({A € [0,1]"| X1, 4; = 1} ¢ | .. T
2. Solve max Yici A fi(x) = (07,0.3)
3. Solution is Pareto-optimal \ f;

Repeat 1-3 until enough PO-solutions have been found

+ Easy to implement

— Cannot find all PO solutions if the problem is non-convex
(if PO solutions are not in the border of the convex hull of f{X))

,, Aalto University
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x2 = tickets valid for ride 2

max
x,,%,EN
2x,+3x,=20

[24:x1 + (A1 + A,)x;]

4

6

x, = tickets valid for ride 1

1

| |
8 10




max  [24;x; + (4, + 4,)x,]

/
/
/
/
2 valid for ride 2

= ticke

%

x,,X,EN
2x,+3x,520
(xl’ xZ) = A —
9 ’,?A'S (0.2,0.8) =
Fareto- | e |
optimal maximize
I G 2 0.4x; + x, |
R
- S 1= (1/3,2/3 :
~ ~ \\ ( / ’ / ) -
- - 8 N 1 =(05,0.
S o N
I RN > N (x4, %) =
+ x, constant (xy,x,) = ~ o (10.0) is
. |(:,4'42 S SR ~ :\ Pareto- |
! Ao .~ N optimal
=~ ~ Optlmal (xl; xz) = ~ : «
‘ eSS~ - (7,2) 1s | . \@ il
=~ .« Pareto- *\\ '
2 4 optimal 8 10

X | = tickets valid for ride 1



number of cheers

f

f(X) and Pareto-optimal solutions

7

6

5

@ Only 4 of the 7 Pareto-optima

solutions can be found with
@ the weighted sum approach -

@ |

8 10 12 14 16 18 20
f1 = number of rides taken



Weighted max-norm approach
f,t

O Idea: define a utopian vector of objective function values
and find a solution such that the distance from this utopian

vector is minimized £
Q Utopian vector: f* = [f{, ... fal.fif > fix) VxeX,i=1,..,n ]
O Distance is measured with weighted max-norm max A;d;,
i=1,..n

where d; is the distance between f;" and f;(x), and 4; > 0 is
the weight of objective i such that ., 1; = 1.

L The solutions that minimize the distance of f(x) from f* are
found by solving:

fl

[
»

Contours of [[f"— f (X)Hiax

glel?”f* - f(x)”%nax = min max 4 (fl* - fl(x))
when 4 =(0.9,0.1)"

x€X i=1,..,n

= xel’)rfl’lAIleRA st (ff—fix))<AVi=1,.,n

,, Aalto University
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Welighted max-norm approach (2/2)

 Algorithm A'=(05,05)" )
1. Generate A~NUNI({A € [0,1]* X114, = 1)) f
2. Solve r}pei)r(lllf " — () hax f2 ®

3. At least one of the solutions of Step 2 is PO e o 42=(0.9,0.1)T
Repeat 1-3 until enough PO solutions have been found ®

+ Easy to implement f
+ Can find all PO-solutions 1
— n additional constraints, one additional variable

— It can be difficult to ascertain if all PO-solutions have been
generated

, , Aalto University
School of Science
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Example: MOILP (cont’d)

Q Find a utopian vector f* A=0.1, A,=0.9:
- max f = 2x,+x, s.t. 2x,+3%, < 20, X,,X, = O
o x=(10,0); f,=20

- maxf, = X, s.t. 2X,+3X, < 20, X,X, = O Telﬂr&} A s.t.
o x=(0,20/3); f,=20/3 2.1—-0.2x; —0.1x, <A
- Let f*=(21,7) 6.3 —09x, <A
d Mlnlr_nlze the dllstance from the 2x1 + 3x, < 20
utopian vector: X1, %X, €N
minA s.t.
AERA (21— 2x; +x2)) <A
- 1 2 — .
%) <4 Solution: A=1.3, x=(1,6) =
2%1 + 3%, < 20,x1,x, EN X:(1,6), f:(8,6) Is PO

, , Aalto University
School of Science 16.11.2022
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Example: MOILP revisited

1.\,=0.1; solution: {A=1.3, x=(1,6)} = — 1'{' ——TTTTT®

x=(1,6), f=(8,6) is PO o~ O U
H """"" S

2.\=0.2; 3 solutions x=(2,5), x=(3,4),

x=(4,4). Only x=(2,5), f=(9,5) and x=(4,4), =+ """"" R I S S
=(12,4) are PO A ‘ ----- e e e
3.A,=0.35; x=(5,3); f=(13,3) is PO R _________ O T N .

4.A,=0.4; 2 solutions x=(6,2) and x=(7,2); |, | . . _____ _________ n

x=(7,2), f=(16,2) is PO

5.A,=0.55; x=(8,1); f=(17,1) is PO IR A """"" ]
6.A,=0.70; 2 solutions x=(9,0) and x=(10,0):]
X:(]'O’O)’ f:(Z0,0) is PO fls ; ili Ja 1L) 1i1 1L 1i3 1L 1i5 1i6 1L 1|s 1L 2|0 2
A” B ey 1611 2007
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Value function methods (1/2)

O Use value function V:R" - R to f2“
transform the MOO problem into a
single-objective problem

— E.g., the additive value function

V(f(0) = Ly wivi (fi (X))

d Theorem: Feasible solution x* with
the highest value V(x*) is Pareto-
optimal

V(f(X))

,, Aalto University
School of Science 16.11.2022
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O Consider the additive value function V(f(x)) = X, w;v; (f; (x))
with incomplete weight information
weScS'={w=wwy,.w)|XE,w; =1,w, >0}

O Set of Pareto-optimal solutions Xp,= set of non-dominated
solutions with no weight information Xy (S9)

O Preference statements on weights shrink the set of feasible
weights to § € SY — focus on preferred PO-solutions

Xnp(S) € Xnp(S?) = Xpo

A’, Aalto University



Example: MOILP revisited

4 Choose v,(fi(x))=f(x)/C*, normalization constants C;*=20, C,*=6
§ w; (2x; + x5)
20

V(f(x),w) = z wv;(f(x)) = W1v1(f1(x)) + (1 - W1)v2(f2(x)) = + (1 —wy)(x2/6)
i=1

_

r r r r r r r r r
6 7 8 9 10 . 1 12 13 14 15 16 17 18 19 20 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Zq
| = number of rides



Example: Bridge repair program (1/7)

O Total of 313 bridges calling for repair

O Which bridges should be included in the repair program under the next three
years?

 Budget of 9,000,000€

O Program can contain maximum of 90 bridges
- Proxy for limited availability of equipment and personnel etc.

0 Program must repair the total sum of damages by at least 15,000 units

16.11.2022
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A” Aalto University P. Mild, J. Liesi6 and A. Salo (2015): Selecting Infrastructure Maintenance



Example: Bridge repair program (2/7)

L Set of feasible solutions X defined by linear constraints and binary
decision variables:

313 ¢jx; — 9000000]
X ={x€{0,1}33|g(x) <0}, glx) = Y3 x —90

313
I 15000 _Zj=1 d].X'] |

x; = a decision variable: x; =1 repair bridge j

x=[x,,...,X5;,] 1 a repair program
¢; = repair cost of bridge j

d; = sum of damages of bridge j

16.11.2022
28

, , Aalto University
School of Science



Example: Bridge repair program (3/7)

O Six objective indexes measuring urgency for repair

Sum of Damages (“SumDam”)
Repair Index (“RepInd”)
Functional Deficiencies (“FunDef”)
Average Daily Traffic (“ADTraf”)
Road Salt usage (“RSalt”)

Outward Appearance (“OutwApp”)

oGP P

O All objectives additive over bridges: f;(x) = ;-

where vij IS the score of bridge j with regard to objective i:

,, Aalto University
School of Science 16.11.2022
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Example: Bridge repair program (4/7)

O A multi-objective zero-one linear programming (MOZOLP) problem
313 313

V— E?é’;?‘(z vl Xj ) o Z v6x])

O Pareto-optimal repair programs Xpo generated using the weighted
max-norm approach

min A
x€X,AER

A>A(fl 2% )Vl—l ,6

, , Aalto University
School of Science 16.11.2022
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Example: Bridge repair program (5/7)

O Additive value function applied for modeling preferences between the

313 ).
j=1Vi %

O Incomplete ordinal information about objective weights:
{SumDam,Replnd} 2{FunDef, ADTraf} = {RSalt,OutwApp}

S={weSw; =w; =w,,Vi=12;j =34k = 5,6}
0 Non-dominated repair programs

objectives: V(x,w) = X2, w;fi(x) = X5, w;

Vix',w) =V(x,w) forallw € S }

Xnp(S) = {x € X|Ax" € X sit. {V(x’, w) > V(x,w) forsomew € S

Xpo = Xnp(SY) 2 Xyp(S)

,, Aalto University
School of Science 16.11.2022
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Example: Bridge repair program (6/7)

d Ca. 10,000 non-dominated bridge repair programs
O Bridge-specific decision recommendations can be

obtained through a concept of core index: |
[{x € Xnp(S)|x; = 1}
| Xnp (S)] E
O Of the 313 bridges: i =
. . : : A G
— 39 were included in all non-dominated repair programs
(CI=1)
— 112 were included in some but not all non-dominated E

programs (0<CI<1)

— 162 were included in none of the non-dominated programs
(CI=0)

o Liesio, Mild and Salo, Preference Programming for Robust Portfolio Modeling and Project
A” Aalto University Selection, European Journal of Operational Research 181/3 (2007) 1488—1505.

School of Science
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Example: Bridge repair program (7/7)

BRIDEGES' SCORES

Bridge number and name Core Index | DamSum Repind  FunDef  ADTraf Rsalt  OutwApp| Cost

O Bridges listed in
decreasing order of core
i n d i CeS 257 Villikkalan silta 0.81 1.97 1.96 5

1 1 1.8 20000
1743 Huuman silta Il 0.76 1.64 153 1 5 5 18 140000

_ T entative but n Ot bin din g 730 Malkian itdinen risteyssilta 0.63 1.33 1.58 15 5 5 1 120000,
2804 Raikuun kanavan silta 0.60 3.93 1.12 25 1 1 1 20000

. . . 856 Ojaraitin alikulkukaytava | 0.54 1.46 1.46 1 5 5 1 20000
prlOrlty llst 2703 Grahnin alikulkukaytava 0.43 1.70 1.23 1 5 5 1 60000

817 Petéjasuon risteyssilta 0.39 1.52 1.37 1 5 5] 1 50000

_ C O St S an d Oth er 725 MusFoIar\ siItaA 0.29 1.98 1.93 2 1.8 1 42 190000
2189 Reitunjoen silta 0.24 1.90 1.63 3 18 1 18 10000

. . . 2606 Haukivuoren pohjoinen ylikulkusilta 0.15 1.84 2.09 15 2.6 1 1 70000
characteristics displayed 125 Telatapalee i ou | 1w 12 1 s s 1s | oo
608 Jalkosalmen silta 0.03 154 1.50 3 1.8 1 26 10000

 The list was found useful
by the program managers

, , Aalto University
School of Science




J MOO differs from MAVT Iin that

— Alternatives are not explicit but defined implicitly through constraints
— MOO problems are computationally much harder

O MOO problems are solved by

— Computing the set of all Pareto-optimal solutions — or at least a subset or
an approximation

— Introducing preference information about trade-offs between objectives to
support the selection of one of the PO-solutions

A’, Aalto University



