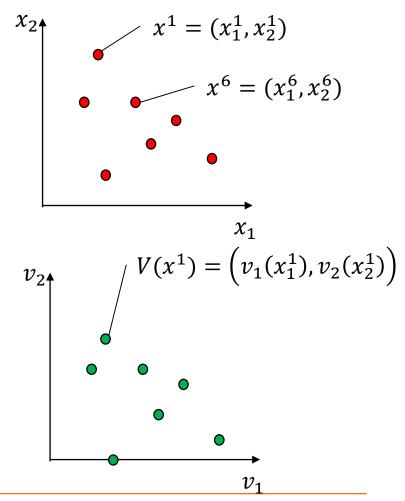


MS-E2135 Decision Analysis Lecture 8

- Multiobjective optimization (MOO)
- Pareto optimality (PO)
- Approaches to solving PO-solutions: weighted sum, weighted max-norm, and value function methods

Up until this lecture

- An explicit set of distinct alternatives $X = \{x^1, ..., x^m\}$ which are evaluated with regard to n criteria
- Evaluation of the *j*-th alternative w.r.t. to the *i*-th criterion $x_i^j: X \to \mathbb{R}^n$
- Preference modeling
 - Value functions $\max_{x^j \in X} V(x^j) = V(x_1^j, ..., x_n^j)$



Need for other approaches

- □ Decision alternatives cannot always be listed (e.g., design problems with continuous parameters)
- ☐ Preference elicitation can be time-consuming or fraught with some difficulties in the initial stages
- ☐ Conditions for using the additive value function as a representation of preferences may not hold or cannot be validated
- ☐ There may be an interest to produce some results quickly in order to better understand the problem

Multi-objective optimization: concepts

☐ Set of feasible solutions

$$X = \{x \in \mathbb{R}^m | g(x) \le 0\}$$

Objective functions

$$f = (f_1, \dots, f_n): X \to \mathbb{R}^n$$

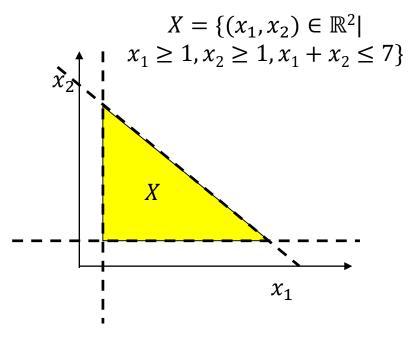
- Preference modeling on trade-offs between objectives
 - Value functions

$$\max_{x \in X} V(f(x)) = V(f_1(x), \dots, f_n(x))$$

Pareto approaches

$$v - \max_{x \in X} V(f(x)) = (f_1(x), \dots, f_n(x))$$

Interactive approaches (not covered in detail here)



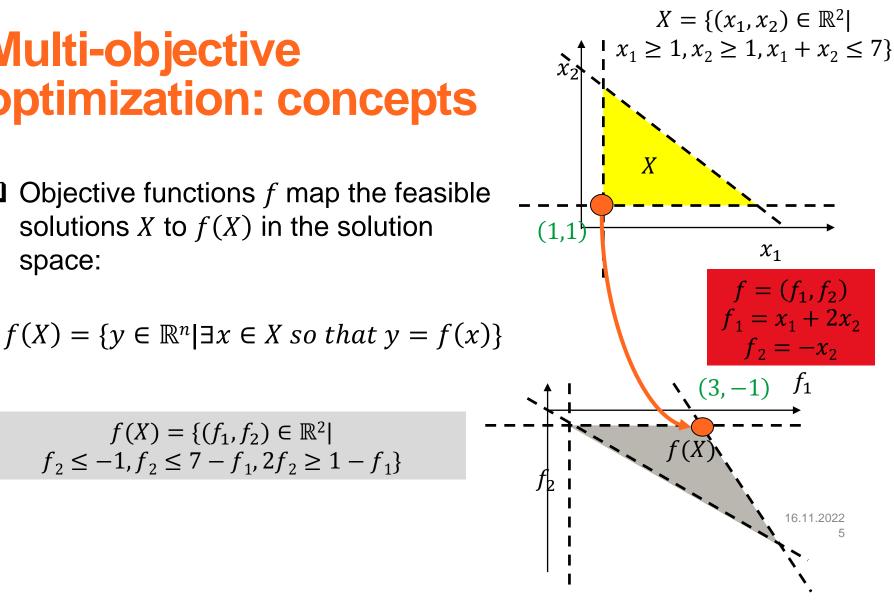
$$f = (f_1, f_2) = (x_1 + 2x_2, -x_2)$$

Multi-objective optimization: concepts

☐ Objective functions *f* map the feasible solutions X to f(X) in the solution space:

$$f(X) = \{ (f_1, f_2) \in \mathbb{R}^2 |$$

$$f_2 \le -1, f_2 \le 7 - f_1, 2f_2 \ge 1 - f_1 \}$$

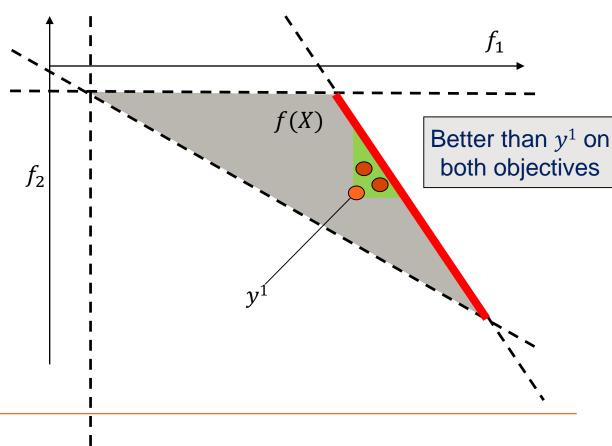


Preferential independence

- ☐ In multi-objective optimization (MOO), each objective is assumed preferentially independent of the others
- □ Definition (cf. Lecture 5): Preferences between values on a given objective function i do not depend on the values of the other objective functions
- → Without loss of generality, we can assume all objectives to be maximized
 - MIN can be transformed to MAX: $\min_{x \in X} f_i(x) = -\max_{x \in X} [-f_i(x)]$

Which feasible solution(s) to prefer?

- y^1 cannot be recommended because other solutions have higher f_1 and f_2
 - → Focus onPareto-optimalsolutions



Pareto-optimality

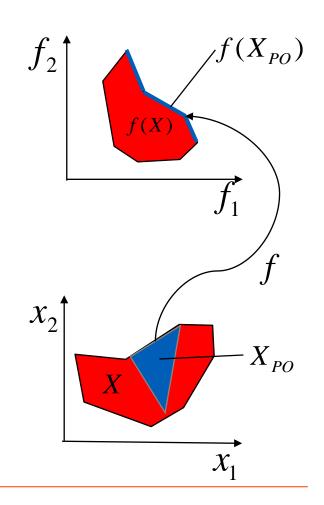
Definition. $x^* \in X$ is Pareto-optimal iff there does not exist $x \in X$ such that

$$\begin{cases} f_i(x) \ge f_i(x^*) & \text{for all } i \in \{1, ..., n\} \\ f_i(x) > f_i(x^*) & \text{for some } i \in \{1, ..., n\} \end{cases}$$

Set of all Pareto-optimal solutions: X_{PO}

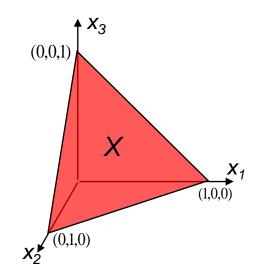
Definition. Objective vector $y \in f(X)$ is Pareto-optimal iff there exists a Pareto-optimal $x^* \in X$ s.t. $f(x^*)=y$

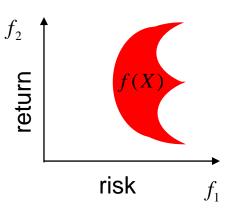
- Set of Pareto-optimal objective vectors: $f(X_{PO})$
- Notation $f(X_{PO}) = v \max_{x \in X} f(x)$



Example: Markowitz model

- Optimal asset portfolio selection
 - How to allocate funds to m assets based on
 - Expected asset returns \bar{r}_i , i=1,...,m
 - Covariances of asset returns σ_{ij} , i,j=1,...,m
- Set of feasible solutions
 - Decision variables $x_1,...,x_m$
 - O Allocate x_j *100% of funds to j-th asset
 - Portfolio $x \in X = \{x \in \mathbb{R}^m | x_i \ge 0, \sum_{i=1}^m x_i = 1\}$
- Objective functions
 - 1. Maximize expected return of portfolio $f_2(x) = \sum_{i=1}^m \bar{r}_i x_i$
 - 2. Minimize variance (risk) of portfolio $f_1(x) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \sigma_{ij} x_i x_j$



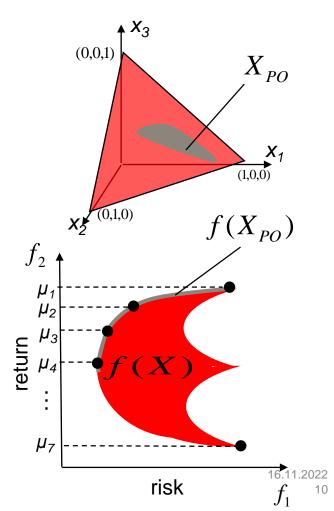


Pareto-optimality in Markowitz model

- □ Portfolio x is Pareto-optimal if no other portfolio yields greater or equal expected return with less risk
- One possibility for computation:
 - Choose d = max number of solutions computed
 - Solve $\mu_1 = \max f_2$, $\mu_d = \min f_2$
 - For all k=2,...,d-1 set μ_k s.t. μ_{k-1} > μ_k > μ_d and solve (1-dimensional) quadratic programming problem

$$\min_{x \in X} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{ij} x_i x_j \text{ such that } \sum_{i=1}^{n} \bar{r}_i x_i = \mu_k$$

- Discard solutions which are not PO
- Not a very viable approach when n>2



Algorithms for solving Pareto-optimal solutions (1/2)

■ Exact algorithms

- Guaranteed to find all PO-solutions X_{PO}
- Only for certain problem types, e.g., Multi-Objective Mixed Integer Linear Programming (MOMILP)

☐ Use of single-objective optimization algorithms

- Sequentially solve ordinary (i.e. 1-dimensional) optimization problems to obtain a subset of all PO-solutions, $X_{\rm POS}$
- Performance guarantee: $X_{POS} \subseteq X_{PO}$
 - Solutions may not be "evenly" distributed in the sense that majority of the obtained solutions can be very "close" to each other
- Methods:
 - ο Weighted sum approach, weighted max-norm approach, ε-constraint approach

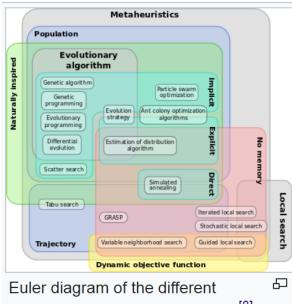
Algorithms for solving Pareto-optimal solutions (2/2)

■ Approximation algorithms

- Obtain an approximation X_{POA} of X_{PO} in polynomial time
- Performance guarantee: For every $x \in X_{PO}$ exists $y \in X_{POA}$ such that $||f(x)-f(y)|| < \varepsilon$
- Only for very few problem types, e.g., MO knapsack problems (i.e., packing problems)

Metaheuristics

- A metaheuristic is a high-level framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms
- No performance guarantees, but can handle problems with
 - A large number of variables and constraints
 - Non-linear or non-continuous objective functions/constraints
- Evolutionary algorithms (e.g., genetic algorithms)
- Stochastic search algorithms (e.g., simulated annealing)



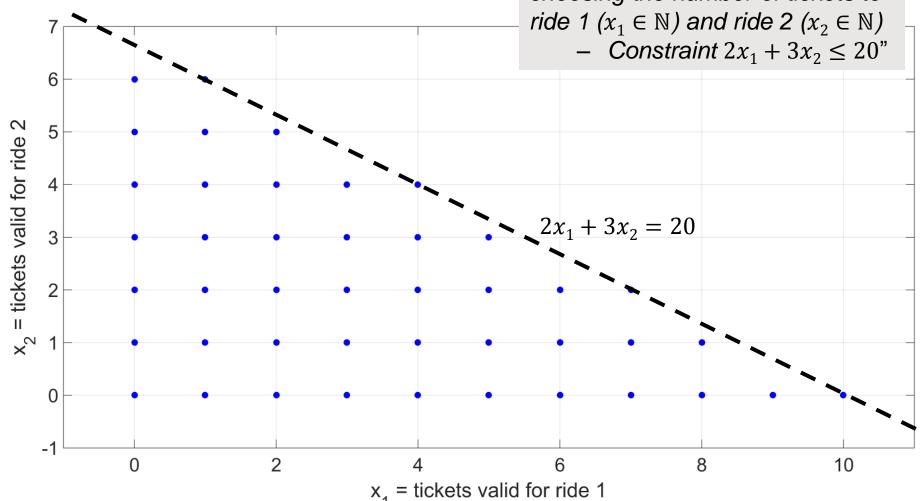
classifications of metaheuristics.[8]

Example: Multiobjective integer linear programming (MOILP)

- ☐ Riikka is at an amusement park that offers 2 different rides:
 - ☐ Tickets to ride 1 cost 2 €. Each ticket lets you take the ride twice
 - ☐ Tickets to ride 2 are **for one ride** and cost 3 €
- □ Riikka has a total of 20 euros to spend on tickets to ride 1 ($x_1 \in \mathbb{N}$) and ride 2 ($x_2 \in \mathbb{N}$) \rightarrow constraint $2x_1 + 3x_2 \le 20$
- ☐ Each time Riikka takes ride 2, his grandfather cheers for her
- ☐ Riikka maximizes the number of (i) rides taken and (ii) cheers
 - \rightarrow objective functions $f = (f_1, f_2) = (2x_1 + x_2, x_2)$

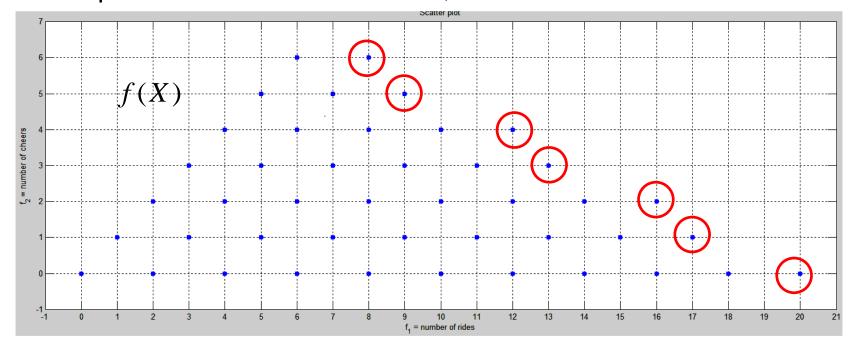
Feasible solutions X

"Riikka has 20 euros. She is choosing the number of tickets to



Example: MOILP (cont'd)

☐ Blue points are feasible solutions; the 7 PO solutions are circled

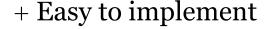


Weighted sum approach

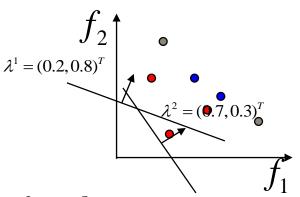
□ Algorithm

- 1. Generate $\lambda \sim UNI(\{\lambda \in [0,1]^n | \sum_{i=1}^n \lambda_i = 1\})$
- 2. Solve $\max_{x \in X} \sum_{i=1}^{n} \lambda_i f_i(x)$
- Solution is Pareto-optimal

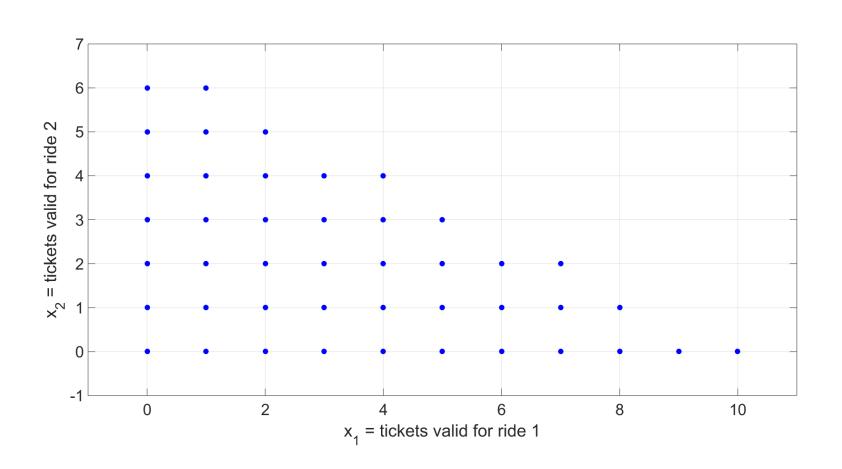
Repeat 1-3 until enough PO-solutions have been found

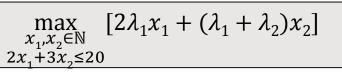


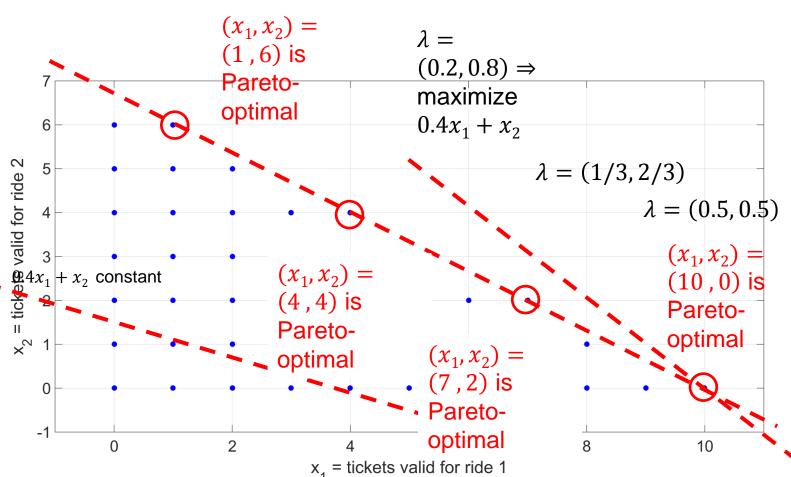
- Cannot find all PO solutions if the problem is non-convex (if PO solutions are not in the border of the convex hull of f(X))



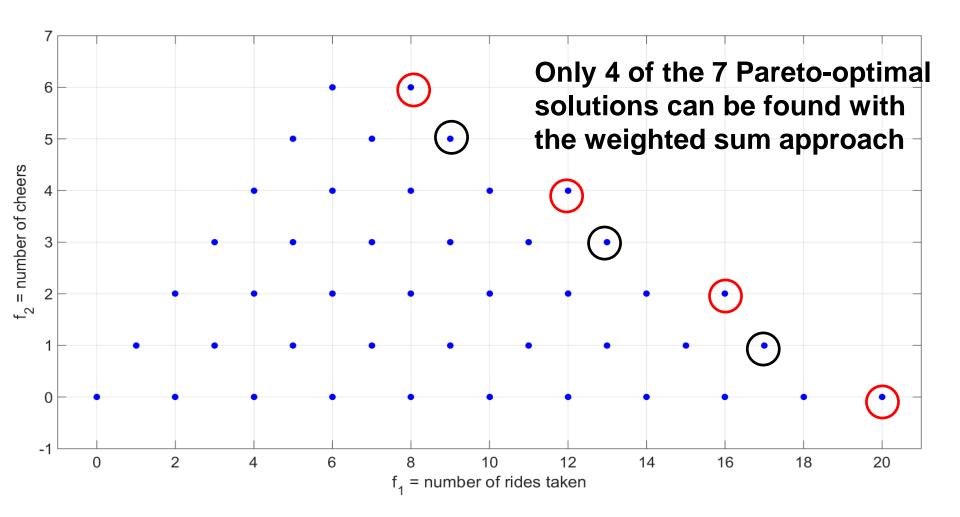
$$\max_{\substack{x_1, x_2 \in \mathbb{N} \\ 2x_1 + 3x_2 \le 20}} [2\lambda_1 x_1 + (\lambda_1 + \lambda_2) x_2]$$







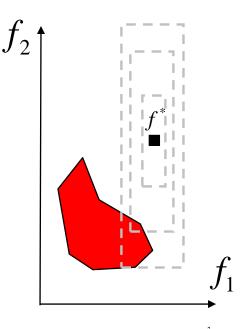
f(X) and Pareto-optimal solutions



Weighted max-norm approach

- Idea: define a utopian vector of objective function values and find a solution such that the distance from this utopian vector is minimized
- **□** Utopian vector: $f^* = [f_1^*, ..., f_n^*], f_i^* > f_i(x) \ \forall x \in X, i = 1, ..., n$
- Distance is measured with weighted max-norm $\max_{i=1,\dots,n} \lambda_i d_i$, where d_i is the distance between f_i^* and $f_i(x)$, and $\lambda_i > 0$ is the weight of objective i such that $\sum_{i=1}^n \lambda_i = 1$.
- ☐ The solutions that minimize the distance of f(x) from f^* are found by solving:

$$\begin{aligned} & \min_{x \in X} \|f^* - f(x)\|_{max}^{\lambda} = \min_{x \in X} \max_{i=1,\dots,n} \lambda_i \left(f_i^* - f_i(x) \right) \\ & = \min_{x \in X, \Delta \in \mathbb{R}} \Delta \quad s. \, t. \, \lambda_i \left(f_i^* - f_i(x) \right) \leq \Delta \quad \forall i = 1, \dots, n \end{aligned}$$



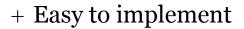
Contours of
$$\left\| f^* - f(x) \right\|_{\text{max}}^{\lambda}$$

when $\lambda = (0.9, 0.1)^T$

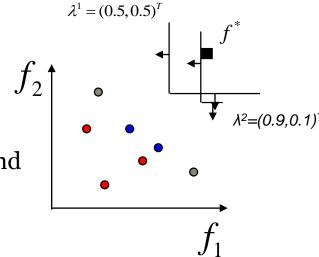
Weighted max-norm approach (2/2)

☐ Algorithm

- 1. Generate $\lambda \sim UNI(\{\lambda \in [0,1]^n | \sum_{i=1}^n \lambda_i = 1\})$
- 2. Solve $\min_{x \in X} ||f^* f(x)||_{max}^{\lambda}$
- 3. At least one of the solutions of Step 2 is PO Repeat 1-3 until enough PO solutions have been found



- + Can find all PO-solutions
- -n additional constraints, one additional variable
- It can be difficult to ascertain if all PO-solutions have been generated



Example: MOILP (cont'd)

- ☐ Find a utopian vector *f**
 - $\max f_1 = 2x_1 + x_2 \text{ s.t. } 2x_1 + 3x_2 \le 20, x_1, x_2 \ge 0$ $\circ x = (10,0); f_1 = 20$
 - $\max f_2 = x_2 \text{ s.t. } 2x_1 + 3x_2 \le 20, x_1, x_2 \ge 0$ $\circ x = (0, 20/3); f_2 = 20/3$
 - Let $f^*=(21,7)$
- Minimize the distance from the utopian vector:

$$\min_{\Delta \in \mathbb{R}} \Delta \text{ s.t.}$$

$$\lambda_1 \left(21 - (2x_1 + x_2) \right) \le \Delta$$

$$\lambda_2 (7 - x_2) \le \Delta$$

$$2x_1 + 3x_2 \le 20, x_1, x_2 \in \mathbb{N}$$

$$\lambda_1 = 0.1, \lambda_2 = 0.9$$
:

$$\min_{\Delta \in \mathbb{R}} \Delta \text{ s.t.}$$

$$2.1 - 0.2x_1 - 0.1x_2 \le \Delta$$

$$6.3 - 0.9x_2 \le \Delta$$

$$2x_1 + 3x_2 \le 20$$

$$x_1, x_2 \in \mathbb{N}$$

Solution:
$$\Delta$$
=1.3, x =(1,6) \Rightarrow x =(1,6), f =(8,6) is PO

Example: MOILP revisited

```
1.\lambda_1=0.1; solution: {\Delta=1.3, x=(1,6)} \Rightarrow x=(1,6), f=(8,6) is PO
```

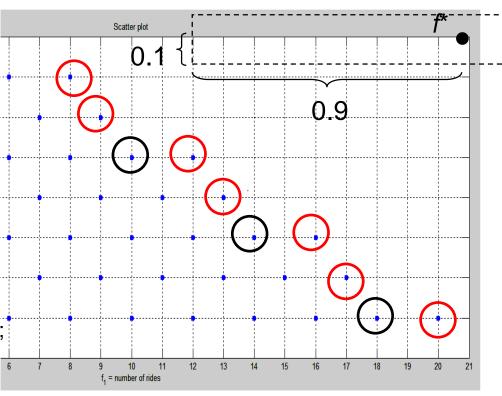
$$2.\lambda_1=0.2$$
; 3 solutions $x=(2,5)$, $x=(3,4)$, $x=(4,4)$. Only $x=(2,5)$, $f=(9,5)$ and $x=(4,4)$, $f=(12,4)$ are PO

$$3.\lambda_1=0.35$$
; $x=(5,3)$; $f=(13,3)$ is PO

$$4.\lambda_1=0.4$$
; 2 solutions $x=(6,2)$ and $x=(7,2)$; $x=(7,2)$, $f=(16,2)$ is PO

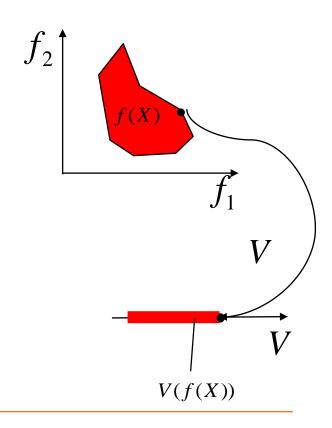
$$5.\lambda_1=0.55$$
; $x=(8,1)$; $f=(17,1)$ is PO

$$6.\lambda_1=0.70$$
; 2 solutions $x=(9,0)$ and $x=(10,0)$; $x=(10,0)$, $f=(20,0)$ is PO



Value function methods (1/2)

- ☐ Use value function $V: \mathbb{R}^n \to \mathbb{R}$ to transform the MOO problem into a single-objective problem
 - E.g., the additive value function $V(f(x)) = \sum_{i=1}^{n} w_i v_i(f_i(x))$
- ☐ **Theorem:** Feasible solution x^* with the highest value $V(x^*)$ is Paretooptimal



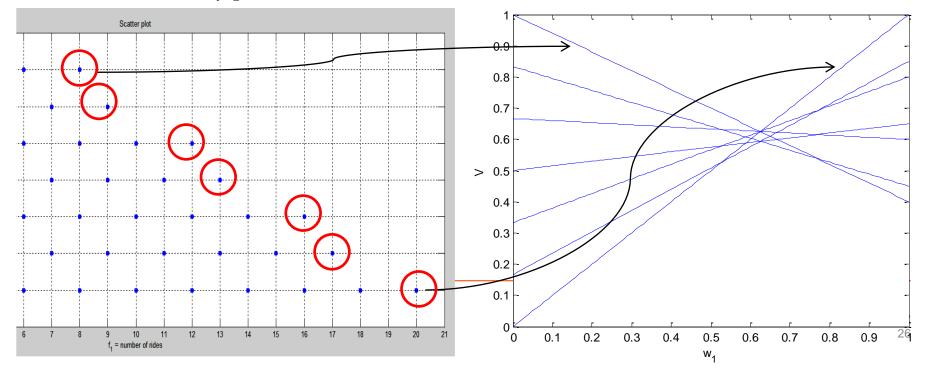
Value function methods (2/2)

- □ Consider the additive value function $V(f(x)) = \sum_{i=1}^{n} w_i v_i(f_i(x))$ with incomplete weight information $w \in S \subseteq S^0 = \{w = (w_1, ..., w_n) | \sum_{i=1}^{n} w_i = 1, w_i \ge 0\}$
- □ Set of Pareto-optimal solutions X_{PO} = set of non-dominated solutions with no weight information $X_{ND}(S^0)$
- □ Preference statements on weights shrink the set of feasible weights to $S \subseteq S^0 \to$ focus on preferred PO-solutions $X_{ND}(S) \subseteq X_{ND}(S^0) = X_{PO}$

Example: MOILP revisited

□ Choose $v_i(f_i(x))=f_i(x)/C_i^*$, normalization constants $C_1^*=20$, $C_2^*=6$

$$V(f(x), w) = \sum_{i=1}^{n} w_i v_i(f(x)) = w_1 v_1(f_1(x)) + (1 - w_1) v_2(f_2(x)) = \frac{w_1(2x_1 + x_2)}{20} + (1 - w_1)(x_2/6)$$



Example: Bridge repair program (1/7)

- ☐ Total of 313 bridges calling for repair
- Which bridges should be included in the repair program under the next three years?
- Budget of 9,000,000€
- ☐ Program can contain *maximum* of 90 bridges
 - Proxy for limited availability of equipment and personnel etc.
- ☐ Program must repair the total sum of damages by at least 15,000 units

Example: Bridge repair program (2/7)

☐ Set of feasible solutions *X* defined by linear constraints and binary decision variables:

$$X = \{x \in \{0,1\}^{313} | g(x) \le 0\}, \quad g(x) = \begin{bmatrix} \sum_{j=1}^{313} c_j x_j - 9000000 \\ \sum_{j=1}^{313} x_j - 90 \\ 15000 - \sum_{j=1}^{313} d_j x_j \end{bmatrix}$$

- x_i = a decision variable: x_j =1 repair bridge j
- $x = [x_1, ..., x_{313}]$ is a repair program
- c_i = repair cost of bridge j
- d_i = sum of damages of bridge j

Example: Bridge repair program (3/7)

- ☐ Six objective indexes measuring urgency for repair
 - 1. <u>Sum of Damages ("SumDam")</u>
 - 2. <u>Repair Index ("RepInd")</u>
 - 3. <u>Functional Deficiencies ("FunDef")</u>
 - 4. <u>Average Daily Traffic ("ADTraf")</u>
 - 5. Road Salt usage ("RSalt")
 - 6. <u>Outward Appearance ("OutwApp")</u>
- All objectives additive over bridges: $f_i(x) = \sum_{j=1}^{313} v_i^j x_j$, where v_i^j is the score of bridge j with regard to objective i:

Example: Bridge repair program (4/7)

☐ A multi-objective zero-one linear programming (MOZOLP) problem

$$v - \max_{x \in X} (\sum_{j=1}^{313} v_1^j x_j, ..., \sum_{j=1}^{313} v_6^j x_j)$$

 \square Pareto-optimal repair programs X_{PO} generated using the weighted max-norm approach

$$\min_{x \in X, \Delta \in \mathbb{R}} \Delta$$

$$\Delta \ge \lambda_i \left(f_i^* - \sum_{j=1}^{313} x_j v_i^j \right) \, \forall i = 1, \dots, 6$$

Example: Bridge repair program (5/7)

- Additive value function applied for modeling preferences between the objectives: $V(x, w) = \sum_{i=1}^{6} w_i f_i(x) = \sum_{i=1}^{6} w_i \sum_{j=1}^{313} v_i^j x_j$
- Incomplete ordinal information about objective weights: {SumDam,RepInd} \geq {FunDef, ADTraf} \geq {RSalt,OutwApp} $S = \{w \in S^0 | w_i \geq w_i \geq w_k, \forall i = 1,2; j = 3,4; k = 5,6\}$
- Non-dominated repair programs

$$X_{ND}(S) = \left\{ x \in X | \nexists x' \in X \text{ s.t. } \begin{cases} V(x', w) \ge V(x, w) \text{ for all } w \in S \\ V(x', w) > V(x, w) \text{ for some } w \in S \end{cases} \right\}$$

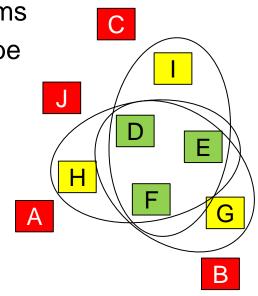
$$X_{PO} = X_{ND}(S^0) \supseteq X_{ND}(S)$$

Example: Bridge repair program (6/7)

- □ Ca. 10,000 non-dominated bridge repair programs
- ☐ Bridge-specific decision recommendations can be obtained through a concept of *core index*:

$$CI_j = \frac{|\{x \in X_{ND}(S) | x_j = 1\}|}{|X_{ND}(S)|}$$

- ☐ Of the 313 bridges:
 - 39 were included in **all** non-dominated repair programs (CI=1)
 - 112 were included in **some** but not all non-dominated programs (o<CI<1)
 - 162 were included in **none** of the non-dominated programs (CI=0)



Example: Bridge repair program (7/7)

- □ Bridges listed in decreasing order of core indices
 - Tentative but not binding priority list
 - Costs and other characteristics displayed
- □ The list was found useful by the program managers

Bridge number and name		BRIDEGES' SCORES						
	Core Index	DamSum	RepInd	FunDef	ADTraf	Rsalt	OutwApp	Cost
2109 Lavusjoen silta	1.00	5.00	1.65	4	2.6	1	2.6	50000
2218 Joroisvirran silta	1.00	5.00	5.00	2	5	5	2.6	180000
2217 Rautatieylikulkusilta	1.00	3.49	5.00	1.5	5	5	1.8	130000
763 Hurukselantien risteyssilta	1.00	2.27	2.33	1	3.4	5	1	280000
80 Suolammenojan silta	1.00	1.36	1.53	2	4.2	5	1.8	10000
257 Villikkalan silta	0.81	1.97	1.96	5	1	1	1.8	20000
1743 Huuman silta II	0.76	1.64	1.53	1	5	5	1.8	140000
730 Mälkiän itäinen risteyssilta	0.63	1.33	1.58	1.5	5	5	1	120000
2804 Raikuun kanavan silta	0.60	3.93	1.12	2.5	1	1	1	20000
856 Ojaraitin alikulkukäytävä I	0.54	1.46	1.46	1	5	5	1	20000
2703 Grahnin alikulkukäytävä	0.43	1.70	1.23	1	5	5	1	60000
817 Petäjäsuon risteyssilta	0.39	1.52	1.37	1	5	5	1	50000
725 Mustolan silta	0.29	1.98	1.93	2	1.8	1	4.2	190000
2189 Reitunjoen silta	0.24	1.90	1.63	3	1.8	1	1.8	10000
2606 Haukivuoren pohjoinen ylikulkusilta	0.15	1.84	2.09	1.5	2.6	1	1	70000
125 Telataipaleen silta	0.14	1.38	1.12	1	5	5	1.8	40000
608 Jalkosalmen silta	0.03	1.54	1.50	3	1.8	1	2.6	10000
556 Luotolan silta	0.00	1.74	1.26	3	1	1	1.8	10000
661 Raikan silta	0.00	1.95	1.58	2	1	1	1.8	10000
2613 Pitkänpohjanlahden silta	0.00	1.27	1.16	1	4.2	5	2.6	20000
738 Hyypiälän ylikulkusilta	0.00	1.72	1.79	1	3.4	1	1.8	90000
2549 Uitonsalmen silta	0.00	1.71	1.37	3	1	1	1	30000
703 Tokkolan silta	0.00	1.82	1.70	2	1.8	1	1	10000
870 Tiviän alikulkukäytävä	0.00	1.10	1.07	1	5	5	1	20000
377 Sudensalmen silta	0.00	1.88	1.66	1	2.6	1	1.8	20000
953 Sydänkylän silta	0.00	1.23	1.33	3.5	1	1	1.8	10000
700 Kirjavalan ylikulkusilta	0.00	1.42	1.98	1.5	1	1	1	60000
2142 Latikkojoen silta	0.00	1.43	1.58	2.5	2.6	1	1.8	20000
464 Jokisilta	0.00	1.19	1.25	3.5	1.8	1	1	20000
1025 Hartunsalmen silta	0.00	1.18	1.09	3.5	1.8	1	2.6	20000
95 Touksuon silta	0.00	1.83	1.18	2	2.6	1	2.6	20000
418 Laukassalmen silta	0.00	1.54	1.35	1.5	2.6	1	1.8	10000
420 Sillanmäenojan silta	0.00	1.20	1.07	1.5	2.6	1	1.8	10000

Summary

- MOO differs from MAVT in that
 - Alternatives are not explicit but defined implicitly through constraints
 - MOO problems are computationally much harder
- MOO problems are solved by
 - Computing the set of all Pareto-optimal solutions or at least a subset or an approximation
 - Introducing preference information about trade-offs between objectives to support the selection of one of the PO-solutions