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Duality

Lagrangian

std form problem

minimize  fo(x)
subject to fi(z) <0,1=1,...,m

e optimal value p*

e called primal problem (in context of duality)

(for now) we assume
e not necessarily convex

e no equality constraints

e dom f, = R"

Lagrangian L : R"™" — R
L(x, A) = folz) + Afi(®) + - + A fn()

e )\; called Lagrange multipliers or dual variables

e objective is augmented with weighted sum of
constraint fcts
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Lagrange dual function

(Lagrange) dual function g : R" — R U {—o0}

g(A) = inf L(z, \)
= f (fo(z) + Aufi(@) + - + A f(2))

® can be —oo for some A
e g is concave (even if f; not convex!)

e minimum augmented cost as fct of weights

example: LP

minimize clz

subject to alz —b; <0, i=1,...,m

Lz, \) = 'z + X \(ajz — b;)
= WA+ AN+l

—bIXN fATA A +¢=0

—00 otherwise

hence g(\) =
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Lower bound property

if A > 0 and x is primal feasible, then
g(A) < folz)

proof: if fi(z) <0 and \; > 0,
folz) > folz) ‘1‘%:)\2'][@'(37)
> inf (fol2) + £ A(2)

zZ

= g(A)

N—

fo(z) — g(A) is called the duality gap of (primal feasible)
x and A > 0

minimize over primal feasible x to get, for any A > 0,

g(A) < p”

A € R"™ is dual feasible if A = 0 and g(\) > —o0

dual feasible points yield lower bounds on optimal value!
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Lagrange dual problem

let’s find best lower bound on p*:

maximize ¢g(\)
subject to A >~ 0

e called (Lagrange) dual problem
(associated with primal problem)

e always a convex problem, even if primal isn't!
e optimal value denoted d*

o d* < p* (called weak duality)
e p* — d* is optimal duality gap

strong duality: for convex problems we (usually) have
d* — p*

e hence, duality is especially important and useful in
convex optimization

e strong duality does not hold, in general, for
nonconvex problems
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Implications of strong duality:

e dual optimal \* serves as certificate of optimality
for primal optimal point z*

e can solve constrained problem

minimize  fo(x)
subject to fi(x) <0, 1=1,...,m

by solving unconstrained problem

minimize fo(x) + Ajfi(x) + - + A5 fiu(2)

e can express strong duality in symmetric form

d* = supinf L(z, \) = inf sup L(x, \) = p”
A0 A=0

i.e., strong duality = can swap inf & sup

many conditions or constraint qualifications guarantee
strong duality for convex problems

Slater’s condition: if primal problem is strictly feasible
(and convex) then we have p* = d*
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Dual of LP

(primal) LP
minimize ¢!z

subject to Ax <b

e 1. vbles, m inequality constraints

dual of LP is

maximize b\
subject to AT\ 4+ ¢ =0
A= 0

e dual of LP is also an LP (indeed, in std LP format)

e m vbles, n equality constraints, m nonnegativity
contraints

for LP we have strong duality except in one
(pathological) case: primal and dual both infeasible
(p* = +o0, d* = —0)
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Dual of QP

(primal) QP
minimize z!Px
subject to Ax <b

we assume P > 0 for simplicity

Lagrangian is L(x, \) = ' Pz + A (Az — b)

V.L(z,\) = 0 yields z = —(1/2)P"1 AT\, hence dual

function is
g \) = —(1/HNAP AT N —b1A
e concave quadratic function

e all A > 0 are dual feasible

dual of QP is

maximize —(1/4HNAP7TATN — 1A
subject to A >~ 0

...another QP



Duality

Duality in algorithms

many algorithms produce at iteration k

e a primal feasible (k)

e and a dual feasible \(*¥)

with fo(z®)) — g(A®)) = 0 as k — oo

hence at iteration k£ we know p* € {Q(A(k)), fo(il?(k)>]

e useful for stopping criteria

e algorithms that use dual solution are often more
efficient (e.g., LP)
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Nonheuristic stopping criteria

absolute error = fy(z*)) — p* < ¢

stopping criterion:

until (fo(z™) — g(AW) < )

relative error =

stopping criterion:

achieve target value / or, prove / is unachievable (i.e.,
determine either p* < £ or p* > ()

stopping criterion:

until (fo(z®) < or g(AW) > ¢)
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Complementary slackness

suppose x*, A\* are primal, dual feasible with zero duality
gap (hence, they are primal, dual optimal)

folz™) = g(A")
— ira;lf (fo(ilﬁ) + igl )\:ﬁ'(x))
< fola?) + £ A fila)

hence we have _gjl ASfi(x*) =0, and so

Nz =0, i=1,...,m

e called complementary slackness condition
e ;th constraint inactive at optimum = \; =0

e \* > ( at optimum = ith constraint active at
optimum
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KKT optimality conditions

suppose f; are differentiable, z*, A* are primal, dual
optimal

then we have

fi(z*)

z

Vf0<$*> + %: )\Z(sz (ZC*>
A7 fi(@®)

the Karush-Kuhn-Tucker (KKT) optimality conditions

1V IA

o O o O

conversely, any x*, A\* that satisfy KK'T are primal, dual
optimal

for convex problems, KKT are necessary and sufficient
optimality conditions, provided

e strong duality holds

e primal & dual optima are attained
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Geometric interpretation of dual problem

consider set

A={(u,t) e R™ | 3z fi(x) <wi, folz) <t}

e A convex if f; are
V17
1

U
t

u

e g(\) = inf{ ;

4|
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(Idea of) proof

problem convex, strictly feasible =- strong duality

t

e (0,p") € 0A
e hence 3 supporting hyperplane to A at (0, p*):
(u,t) € A= po(t — p*) +plu >0

® pig >0, =0, (4, po) # 0

e strong duality <= d supp. hyperplane with py > 0:
for \* = u/ g, we have

pr < t+Xu V(tu) e A
Pt < g(\)
e Slater’s condition: there exists (u,t) € A with u < 0;

implies that all supporting hyperplanes at (0, p*) are
non-vertical (ug > 0)
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Sensitivity analysis via duality

define p*(u) as the optimal value of

minimize  fy(z)
subject to fi(z) <w;, t=1,....,m

o if \* large: u; < O greatly increases p*

o if A small: u; > 0 does not decrease p* too much

Op*(0)
8u,~

A7 is sensitivity of p* w.r.t. ¢th constraint

if p*(u) is differentiable, A7 = —
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Equality constraints

minimize  fo(x)
subject to fi(z) <

0,
gi(z) =0,

optimal value p*

define Lagrangian L : R"""""” — R as

Liz, A v) = fola) + £ Aifilx) + ¥ vigi(o)

dual function is g(\, ) = inf, L(x, A\, v)

(A, v) is dual feasible if A = 0 and g(\,v) > —o0

(no sign condition on v)

lower bound property: if x is primal feasible and
(A, v) is dual feasible, then g(\,v) < fo(x)

hence, g(\,v) < p*
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dual problem: find best lower bound

maximize g(\,v)
subject to A > 0

(note v unconstrained) optimal value d*

weak duality: d* < p* always

strong duality: if primal is convex then (usually)
d* — p*

Slater condition: if primal is strictly feasible (and

convex) then d* = p*

KKT conditions:
fi(Z)
9:(2)

7

| VAR I B VAN

8y & &
O O O OO

V fo(Z) + ? ANV fi(@) + %3 ;i V gi(
i fi(7)

example: opt cond. for equality constraints only

minimize  fo(x)
subject to Az =

x* optimal if and only if dv* s.t.

Vf()(a?*) + ATI/* =0
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Example: equality constrained
least-squares

minimize z'x
subject to Az =0

A is fat, full rank
(soln is z* = AT(AAT)~1b)

dual function is

1
g(v) = inf (x'x + v (Ax — b)) = —ZVTAATI/ — by

dual problem is

maximize —iVTAATV — by

(soln is ¥ = —2(AA") 1)

can check d* = p*
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Example: geometric programming

simple (unconstrained) case

primal problem:
minimize log gl exp(al z — b;)
dual fct is constant g = p*

(we have strong duality, but it's useless)

now rewrite primal problem as
] - - m

minimize log > expy;
i=1

subject to y = Az — b

e introduce m new vbles y1,...,Ym

e introduce m new equality constraints y = Az — b
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dual function
g(v) = inf (bg gl expy; + v (Ar —b— y))

e infimum is —oo if ATv #£ 0

e assuming A'v = 0, let's minimize over y:
n
expy; ) X expy; = v,
j:

solvable iff v, > 0, 1Tv =1
g(v) = = ylogy; — blv

dual problem

maximize —blv — > v; log v
1

subject to v > 0
17y =1
ATy =0

we have strong duality
connection between primal GP and dual entropy problem:
e useful

e not obvious

moral: apparently trivial reformulations of primal yield
different duals
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Generalized inequalities

minimize  fo(x)
subject to fi(z) <k, 0, i=1,...,L

]

where

e <k, are generalized inequalities on R™

o /i : R" — R"™ are K;-convex

Lagrangian L : R" x R™ x --- x R™ — R,
L(z, Ay -5 Am) = fo(@) + A fu(@) + -+ A, fin()

dual function

g1, Am) = inf (fol@) + A fule) + - + AL fo(w))

Ai dual feasible if \; =g 0, g(A1,...,AL) > —00
lower bound property: if © primal feasible and
(A1, ..., Am) is dual feasible, then

g(A1, .. A0) < folx)
(hence, g(Aq, ..., L) < p*)
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dual problem

maximize ¢g(A1,...,Ar)
subject to A; =g+ 0, 1 =1,...

weak duality: d* < p* always

strong duality: d* = p* usually

Slater condition: if primal is strictly feasible, i.e.,
dr: fi(z) <k, 0, i=1,...,L
then d* = p*
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Example: semidefinite programming

minimize clz

subject to Fy +x1F1+---+x,F, <0

Lagrangian
Lz, Z)=c'z+Te Z(Fy+ o1 F1 + - - + 2, F},)
Z =7z e R™M™

dual function
g(Z) = II:'Blf (CT$+TPZ<F0—|—$1F1+"'+£UnFn>
| TrkyZ it TrF5Z +¢;=0, t=1,...,n

—00 otherwise

dual problem

maximize Tr FyZ
subject to Tr F;Z +¢;=0, 1=1,...,n
Z=z'~0

strong duality holds if there exists x with

Fo+x b1+ +x,F, <0
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Theorem of alternatives

1. there exist = with fi(z) < 0,i=1,...,m
2. there exist A # 0 with A > 0,

g(A) =t (A fi(@) + -+ + Anfm(z)) 2 0

e exactly one of these is true
e called alternatives

® use in practice: )\ that satisfies 2nd condition proves
fi(x) < 0 is infeasible
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proof
1 = —2: by contradiction

filz) <0, 0 £ X > 0= Aifi(z)+ -+ Apfm(z) <O

define B={u e R" |dx: filzr) <u;}

U2

uy

e l<—=BnNn{u|u<0}=10
e hence, exists separating hyperplane: \ # 0,
weB= Nu>0
u<0= MMu<0
e implies A > 0 and
Afi(x)+ -+ Apfalz) >0

for all x



