
Designing and Building 
Scalable Web Applications

Lecture 3 / 7.11.2022



The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

scratching today 



Agenda

● Rendering Approaches
● Web Application Archetypes
● Client-Side Web Development (continued)
● Measuring Performance (continued)
● Second Course Project



Rendering Approaches



Rendering Approaches



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)
Loads full HTML (and linked 
resources) on each request.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)
Loads full HTML (and linked 
resources) on each request.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

Loads full HTML (and linked 
resources) on each request.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

No need to reload full HTML on 

each request → typically 

improved user experience.

Loads full HTML (and linked 
resources) on each request.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

No need to reload full HTML on 

each request → typically 

improved user experience.

Loads full HTML (and linked 
resources) on each request.

Needs client-side logic.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

Multiple requests made before page is shown.

No need to reload full HTML on 

each request → typically 

improved user experience.

Loads full HTML (and linked 
resources) on each request.

Needs client-side logic.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

● Hybrid approaches
○ E.g. some HTML content is produced on the server. 

Server sends HTML and JavaScript. Additional 
content retrieved based on JavaScript.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

Multiple requests made before page is shown.

No need to reload full HTML on 

each request → typically 

improved user experience.

Loads full HTML (and linked 
resources) on each request.

Needs client-side logic.



Rendering Approaches

● Server-side rendering
○ Data injected to a template on the server producing 

HTML. Produced HTML is sent to client.

● Client-side rendering
○ Server sends HTML with JavaScript to the client. 

Client retrieves data based on JavaScript. Data 
rendered using JavaScript on the client.

● Hybrid approaches
○ E.g. some HTML content is produced on the server. 

Server sends HTML and JavaScript. Additional 
content retrieved based on JavaScript.

The classic approach from e.g. 

Web Software Development 

(CS-C3170)

Allows storing HTML and 

JavaScript on a CDN. Role of 

“main server” is to serve data.

Multiple requests made before page is shown.

No need to reload full HTML on 

each request → typically 

improved user experience.

Loads full HTML (and linked 
resources) on each request.

Needs client-side logic.

Best of both worlds?



Rendering Approaches



Rendering Approaches

● Server-side rendering:
○ Data injected to a template on server to produce HTML. 
○ Effectively uses some resources for rendering.



Rendering Approaches

● Server-side rendering:
○ Data injected to a template on server to produce HTML. 
○ Effectively uses some resources for rendering.

● Client-side rendering and hybrid approaches:
○ Shown content created using JavaScript (on client).
○ Server-side rendering (hybrid approaches) typically done 

when application is built.
○ Fewer resources required for rendering (from the 

application point of view).



Hybrid Approach Example



Hybrid Approach Example

Our course site at https://fitech101.aalto.fi/designing-and-building-scalable-web-applications/ – 

content written using MDX, components written with React, site built using Gatsby

https://mdxjs.com/ 

https://reactjs.org/ 

https://www.gatsbyjs.com/ 

https://fitech101.aalto.fi/designing-and-building-scalable-web-applications/
https://mdxjs.com/
https://reactjs.org/
https://www.gatsbyjs.com/


Application Archetypes



Application Archetypes

● Archetype (dictionary.com)

○ the original pattern or model from which all 
things of the same kind are copied or on 
which they are based; a model or first form; 
prototype



Application Archetypes

● Archetype (dictionary.com)

○ the original pattern or model from which all 
things of the same kind are copied or on 
which they are based; a model or first form; 
prototype

● Microsoft Application Architecture 
Guide (2009):

○ Common application archetypes include 
mobile applications, rich client applications, 
rich internet applications, service 
applications, web applications

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10) 

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10)


Application Archetypes

● Archetype (dictionary.com)

○ the original pattern or model from which all 
things of the same kind are copied or on 
which they are based; a model or first form; 
prototype

● Microsoft Application Architecture 
Guide (2009):

○ Common application archetypes include 
mobile applications, rich client applications, 
rich internet applications, service 
applications, web applications

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10) 

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10)


Application Archetypes

● Archetype (dictionary.com)

○ the original pattern or model from which all 
things of the same kind are copied or on 
which they are based; a model or first form; 
prototype

● Microsoft Application Architecture 
Guide (2009):

○ Common application archetypes include 
mobile applications, rich client applications, 
rich internet applications, service 
applications, web applications

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10) 

Macromedia 2002 ~ Web applications with features and functionality normally associated with desktop applications

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v=pandp.10)


Application Archetypes



Application Archetypes

● Mequoda Research Team (2013) – 16 primary website archetypes inferred 
from > 2000 websites.

○ Membership sites, newsletter websites, reference websites, periodical websites, magazine 
websites, application websites, community websites, portal websites, blog websites, 
cart-based store sites, event-based store sites, solo-based store sites, lead generation sites, 
search engines, classified sites, directory sites. 

https://www.mequoda.com/articles/subscription-websites/website-design-samples-of-our-16-archetypes/ 

https://www.mequoda.com/articles/subscription-websites/website-design-samples-of-our-16-archetypes/


Application Archetypes



Application Archetypes

● Community websites (e.g. Facebook, LinkedIn)
● Streaming websites (e.g. Netflix, HBO Max)
● Media websites (e.g. Instagram, Pinterest)
● Online shops (e.g. Amazon, Ebay)
● Instant messaging (e.g. WhatsApp, Telegram)
● Discussion boards (e.g. Reddit, Stackoverflow)
● Blog websites (e.g. Blogger, Medium)



Application Archetypes

● Community websites (e.g. Facebook, LinkedIn)
● Streaming websites (e.g. Netflix, HBO Max)
● Media websites (e.g. Instagram, Pinterest)
● Online shops (e.g. Amazon, Ebay)
● Instant messaging (e.g. WhatsApp, Telegram)
● Discussion boards (e.g. Reddit, Stackoverflow)
● Blog websites (e.g. Blogger, Medium)

Starting to identify differences in applications 
relevant to understand the underlying 

technologies. Needs differ between apps.



Application Archetypes

● Community websites (e.g. Facebook, LinkedIn)
● Streaming websites (e.g. Netflix, HBO Max)
● Media websites (e.g. Instagram, Pinterest)
● Online shops (e.g. Amazon, Ebay)
● Instant messaging (e.g. WhatsApp, Telegram)
● Discussion boards (e.g. Reddit, Stackoverflow)
● Blog websites (e.g. Blogger, Medium)

Starting to identify differences in applications 
relevant to understand the underlying 

technologies. Needs differ between apps.

Big applications may feature multi-purpose 

content (e.g. blogging functionality on LinkedIn)



Sample Archetype: Blog



Sample Archetype: Blog



Sample Archetype: Blog

● Static content written by an author and 
published to the web

○ Content can be stored on a CDN



Sample Archetype: Blog

● Static content written by an author and 
published to the web

○ Content can be stored on a CDN

● Possibility for commenting / reacting to 
blog posts / subscribing

○ Some dynamic functionality needed



Client-Side Development (Continued)



Client-Side Development

● Key points from Lecture 2:

○ Most client-side frameworks are component-based
○ Client-side applications compile into a bundle that 

can be deployed online (also into a CDN)
○ A plethora of frameworks (and new ones popping 

up every now and then)



Previously very briefly looked 
into Svelte, let’s peek at Astro

https://astro.build/



Demo: a Blog with Astro



Demo: a Blog with Astro
Create project template:

npm create astro@latest

→ choose “a personal website starter kit”



Demo: a Blog with Astro
Create project template:

npm create astro@latest

→ choose “a personal website starter kit”

Add Svelte support: 

npx astro add svelte



Demo: a Blog with Astro
Create project template:

npm create astro@latest

→ choose “a personal website starter kit”

Add Svelte support: 

npx astro add svelte

Some magic when using a 

component – client:only



Demo: a Blog with Astro
Create project template:

npm create astro@latest

→ choose “a personal website starter kit”

Add Svelte support: 

npx astro add svelte

Build static site: 

npm run build
→ now site in folder “dist”

Some magic when using a 

component – client:only



Measuring Performance



Measuring Performance



Measuring Performance

● In the first course project, we learned to measure time it takes to retrieve a resource, 
contrasting frameworks and programming languages.



Measuring Performance

● In the first course project, we learned to measure time it takes to retrieve a resource, 
contrasting frameworks and programming languages.

○ Considerable differences between some frameworks within the same programming language, smaller 
differences between some other.

○ Considerable differences between some programming languages, smaller differences between some 
other.

○ Endpoints that use a database typically perform less well when compared to endpoints that simply 
serve static content. 



Measuring Performance

● In the first course project, we learned to measure time it takes to retrieve a resource, 
contrasting frameworks and programming languages.

○ Considerable differences between some frameworks within the same programming language, smaller 
differences between some other.

○ Considerable differences between some programming languages, smaller differences between some 
other.

○ Endpoints that use a database typically perform less well when compared to endpoints that simply 
serve static content. 

● The project measured time it takes to retrieve a resource. This may not, however, 
reflect the time that showing a resource to the user would take.



Measuring Performance

● In the first course project, we learned to measure time it takes to retrieve a resource, 
contrasting frameworks and programming languages.

○ Considerable differences between some frameworks within the same programming language, smaller 
differences between some other.

○ Considerable differences between some programming languages, smaller differences between some 
other.

○ Endpoints that use a database typically perform less well when compared to endpoints that simply 
serve static content. 

● The project measured time it takes to retrieve a resource. This may not, however, 
reflect the time that showing a resource to the user would take.

○ E.g. Resource with links to other resources that are retrieved before content is shown.



Measuring Performance



Measuring Performance

● Core Web Vitals

https://web.dev/learn-core-web-vitals/ 

https://web.dev/learn-core-web-vitals/


Measuring Performance

● Core Web Vitals

○ Largest Contentful Paint
○ First Input Delay
○ Cumulative Layout Shift

https://web.dev/learn-core-web-vitals/ 

https://web.dev/learn-core-web-vitals/


Measuring Performance

● Core Web Vitals

○ Largest Contentful Paint
○ First Input Delay
○ Cumulative Layout Shift

https://web.dev/learn-core-web-vitals/ 

The time it takes for the largest element 

of a page (e.g. an image, paragraph) to be 

rendered (shown) to the user.

https://web.dev/learn-core-web-vitals/


Measuring Performance

● Core Web Vitals

○ Largest Contentful Paint
○ First Input Delay
○ Cumulative Layout Shift

https://web.dev/learn-core-web-vitals/ 

The time it takes for the largest element 

of a page (e.g. an image, paragraph) to be 

rendered (shown) to the user.

The time it takes for the application to 
react to an input event from the user (e.g. 

clicking on a link or a button, …). 

https://web.dev/learn-core-web-vitals/


Measuring Performance

● Core Web Vitals

○ Largest Contentful Paint
○ First Input Delay
○ Cumulative Layout Shift

https://web.dev/learn-core-web-vitals/ 

The time it takes for the largest element 

of a page (e.g. an image, paragraph) to be 

rendered (shown) to the user.

The time it takes for the application to 
react to an input event from the user (e.g. 

clicking on a link or a button, …). 

A value describing stability of the user interface – used in efforts to minimize unnecessary moving of layout components.

https://web.dev/learn-core-web-vitals/


Measuring Performance

● Core Web Vitals

○ Largest Contentful Paint
○ First Input Delay
○ Cumulative Layout Shift

● Also a part of Google 
Lighthouse performance 
scoring

https://web.dev/learn-core-web-vitals/ 

The time it takes for the largest element 

of a page (e.g. an image, paragraph) to be 

rendered (shown) to the user.

The time it takes for the application to 
react to an input event from the user (e.g. 

clicking on a link or a button, …). 

A value describing stability of the user interface – used in efforts to minimize unnecessary moving of layout components.

https://web.dev/learn-core-web-vitals/


Demo: Google Lighthouse

Note! Run in incognito mode to avoid 

influence from browser plugins.



Demo: Performance Insights



Second Course Project



Second Course Project

● In the second course project, your task is to create a Jamstack-like web 
application used for practicing programming.

● The web application should feature:

○ A main page with a list of programming exercises (we’ll provide these). Opening an 
exercise shows a handout, a textarea into which a solution (code) can be written, and 
a button that can be used to submit the solution for grading.

○ Randomly created user token on opening the application for the first time. The user 
token is stored in localstorage and is used to identify the user in the future.

○ Grading of submissions using a Docker image (we’ll provide the image). When a 
solution has been submitted for grading, the user is shown the result once the grading 
has finished.

○ A database for storing user-specific submissions and grading results.

○ Handling submission peaks consisting of thousands of code submissions within a 
minute by storing submissions into a queue that is processed whenever resources are 
available.

○ A way visually distinguish user’s completed exercises from non-completed exercises.



Second Course Project

● In the second course project, your task is to create a Jamstack-like web 
application used for practicing programming.

● The web application should feature:

○ A main page with a list of programming exercises (we’ll provide these). Opening an 
exercise shows a handout, a textarea into which a solution (code) can be written, and 
a button that can be used to submit the solution for grading.

○ Randomly created user token on opening the application for the first time. The user 
token is stored in localstorage and is used to identify the user in the future.

○ Grading of submissions using a Docker image (we’ll provide the image). When a 
solution has been submitted for grading, the user is shown the result once the grading 
has finished.

○ A database for storing user-specific submissions and grading results.

○ Handling submission peaks consisting of thousands of code submissions within a 
minute by storing submissions into a queue that is processed whenever resources are 
available.

○ A way visually distinguish user’s completed exercises from non-completed exercises.

Possible user flow:

1. User opens the application
a. If the user has previously 

opened the application, 
token is retrieved from 
localstorage

b. If the user has not 
previously opened the 
application, a token is 
created and stored to 
localstorage

2. User is shown a list of programming 
exercises

3. User clicks on a programming 
exercise

4. User is shown the handout for the 
exercise, a textarea for writing a 
solution, and a button for submitting 
the solution

5. User types in a solution and submits 
it

6. User sees solution correctness (can 
take a while)

7. User navigates back to main page 
(goto 2)



Second Course Project - Passing Requirements

● A working Jamstack-like implementation returned in a format that allows running it 
easily locally on Windows, Linux and Mac (i.e. a docker-compose configuration or 
similar for running the application).

○ Recommended: Separate docker services for client and server. Can have more services (and 
should have as e.g. a database is needed).

● Core Web Vitals tests for the application (e.g. using Google Lighthouse).

● Performance tests (e.g. with K6) for the main page and the API endpoint used for 
submitting exercises. In the tests, record the average requests per second and the 
median, 95th percentile, and 99th percentile HTTP request duration. Run the tests 
with a sensible number of concurrent users for 10 seconds.

● Lighthouse Performance score of at least 70/100 for the main page and the exercise 
page.

● Summary report.

We will provide a starter template for the 

project, including a Docker image used for 

“grading” programming exercises.



Second Course Project - Passing Requirements / Report

We will provide a starter template for the 

project, including a Docker image used for 

“grading” programming exercises.

● A markdown-formatted document (no binary 
content) with:

○ Brief guidelines for running the application (and 
performance tests if they have been ran with scripts).

○ Core web vitals and performance test results.

○ A brief reflection (5-10 sentences) on the present 
performance of the application.

○ A brief list of suggestions (5-10 sentences) for improving the 
performance of the application.



Second Course Project - Passing With Merits

We will provide a starter template for the 

project, including a Docker image used for 

“grading” programming exercises.

● In addition to fulfilling the passing requirements:

○ The exercise list on the main page shows which exercises the user has 
completed.

○ The main page lists always at most three non-completed exercises (and 
all completed exercises).

○ The application features a cache of exercise submissions and the 
corresponding grading results. The cache is used to avoid unnecessary 
grading of submissions that match submitted codes already present in the 
cache (you can use exact string matching when checking whether a code 
is already in the cache – do account for different exercises!).

○ Lighthouse Performance score at least 80/100 for the main page and the 
exercise page.


