
ELEC-E8125 Reinforcement Learning
Exploration and exploitation

Joni Pajarinen

8.11.2022

Learning goals

• Understand how to execute actions that allow us to learn
the best action

Exploration vs. exploitation

• Exploration: try out actions to learn good policies

• Exploitation: use actions that seem high performance

Have we already done something like this?

Multi-armed bandit

• Multi-armed bandit has K arms

• Pulling bandit arm corresponds
to action

• Pulling an arm yields a reward
from an unknown probability
distribution

• Special case of an MDP without
states

• How to get maximum total
reward?

How to select arms so that we get maximum reward?

P(r |a)

a=k

Pyry Pajarinen

k

Greedy approach in the multi-armed
bandit setting

• For each arm, we estimate mean action value

• Greedy approach chooses action with highest action
value estimate:

• Do we find the best action? Why / why not?

â=argmaxaQ (a)

Q (a)=
1

N (a)
∑n=1

N (a)
r n(a)

Finding best action: example on
blackboard

Epsilon-greedy in the multi-armed bandit
setting
• Epsilon greedy chooses action with highest value

estimate with fixed probability

• and uniformly randomly chosen action with

probability
• Tries out every action approximately at least

times

• Do we find the best action? Is epsilon-greedy sample
efficient?

• How to improve?

ϵ

Q (a)

ϵN /| A |

1−ϵ

actions

Total number of samples

Sample efficiency: example on blackboard

Trading off exploration vs. exploitation in
the multi-armed bandit setting
• Goal: find best action using only few tries / samples

• Try out actions if they can be optimal but not otherwise:
how to quantify this?

• The more we try out an action the more certain we
are about our estimate

• We will discuss two approaches:
– Upper confidence bound (UCB) approach
– Thompson sampling

Q (a)
a

Upper confidence bound

• Estimate additional upper confidence term for
each action based on N(a), number of tries of action a

• When N(a) is low, should be high

• When N(a) is high, should be low
• Select action that maximizes the sum

• → tries out actions where we are uncertain about the
current value estimate

• How to compute ?

Q̂ (a)=Q(a)+U (a)

U (a)

U (a)
U (a)

U (a)

ExplorationExploitation

Computing upper confidence bound

• For selecting , let’s use Hoeffding’s Inequality:

For i.i.d. random variables in

where the mean estimate after M samples is

 , it is true that

• Let’s apply the inequality to the bandit action a :

U (a)
X 1 , ... , X M

P(E [X]> X̄ M+u)≤e−2M u
2

X̄ M=
1
M∑m=1

M
Xm

[0,1]

P(E [Q(a)]>Q (a)+U (a))≤e−2N (a)U (a)2

P(E [X]> X̄ M+u)≤e−2M u
2

True expected action value Q(a)

Estimate of action value Q(a) using N(a) samples

Computing upper confidence bound

• Limit probability of true value to exceed upper bound:

• Choosing yields

• This is the UCB1 formula. When N goes to infinity,
maximum value error is

P(E [Q(a)]>Q (a)+U (a))≤e−2N (a)U (a)2
= p

→U (a)=√−1 /2 log p /N (a)

p=N−4

Q̂ (a)=Q(a)+U (a)=Q (a)+√2 log N /N (a)

(log N /N)const

[Auer et al. Finite-time analysis of the
multiarmed bandit problem, 2002]

Thompson sampling

• Idea: sample each action according to the probability of
the action to be the best

• Requires computing for every action the probability of
being the best action based on the history of all
observed rewards

• Can utilize prior knowledge

Thompson sampling: Bernoulli bandits

• Each Bernoulli bandit produces a 1 with probability
and a 0 with probability

• Keep counts of 1s and 0s, and , for each arm k

• Algorithm main loop:
– For each arm k sample from Beta(,)
–

– Sample r from
– Update counts:

• if r = 1:

• If r = 0:

αk

αkθk

1−θk

θk

βk

βk
a=argmax kθk

P(r |a)

αk=αk+1
βk=βk+1

How to incorporate prior
knowledge about the bandits?

From multi-armed bandits to MDPs

• Can we utilize the insights in multi-armed bandits for
exploration in MDPs?

• In an MDP, instead of Q(a) find Q(s,a)
– Use multi-armed bandit to choose action
– Evaluate Q(s,a) using Monte Carlo value estimation

– How to generate a sequence of states and actions in Monte
Carlo value estimation of Q(s,a)? What policy to use? How to
simulate state transitions?

From multi-armed bandits to MDPs

• Can we utilize the insights in multi-armed bandits for
exploration in MDPs?

• In an MDP, instead of Q(a) find Q(s,a)
– Use multi-armed bandit to choose action
– Evaluate Q(s,a) using Monte Carlo value estimation

– In Monte Carlo value estimation, use a multi-armed bandit
approach such as UCB1 as the policy!

– Assume a known dynamics model such as
– Leads to Monte Carlo tree search (MCTS)

s t+1= f (st ,a t)

Reminder: spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Simulate
environment
● DYNA
● Latent state

models
● ...

Assist
learning
● Policy backprop
● ...

Monte Carlo tree search

• Search method for optimal decision making

• State-of-the-art for playing games (e.g. Alpha Go)

• Iteratively builds a search tree
– Each search tree node is a multi-armed bandit

• Phases:
– Selection: Choose a promising node to expand

– Expansion: Add a new node

– Simulation: Simulate value for new node

– Backup: Back-up value to root (update values for parents)

Using e.g. UCB1

Monte Carlo value
estimation

Blackboard: example tree. Each
node corresponds to a state.

MCTS operation

• From start node S choose actions
to walk down tree until reaching a
leaf node.

• Choose an action and create a
child node for that action.

• Perform a random roll-out (take
random actions) until end of
episode (or for a fixed horizon).

• Record returns as value for child
node and back up value to root.

MCTS: Example search tree

• Value: number of won/simulated games

Node selection in MCTS

• Node selection in search has to balance between
exploration and exploitation (note difference to RL, here
exploration & exploitation only using simulation)

• Idea: Explore when uncertain of outcome

• Upper confidence bound 1 (UCB1) on trees (UCT)
– A bound for value of a node (Kocsis & Szepesvari, 2006)

Q̂ (s , a)=Q(s , a)+c√
2 log N (s)
N (s , a)

Exploration constant. Depends on the range of values. For
guaranteed convergence, largest possible value minus
smallest possible value.

MCTS simulation phase

• Perform one or several roll-outs from leaf node using
random action selection

• Stop at terminal state or until a discount horizon is
reached

• Estimate value of state as mean return of the N(s)
simulations:

V (s)=
1
N (s)

∑i
Gi (s)

MCTS backpropagation

• After simulation phase backpropagate values to the root
node

• Estimate value of state as mean return of the N(s)
simulations:

Q (s , a)=Es ' ~ p (. | s ,a)[R(s , a)+V (s ')]

V (s)=∑a

N (s ,a)
N (s)

Q (s , a)

MCTS extensions

• AlphaGo (2016)
– Learn initial policy from expert demonstrations
– Update policy using self-play and MCTS

• AlphaZero (2017, 2018)
– No expert demonstrations needed

• MuZero (2020)
– Similar to AlphaZero but interleaves model learning and MCTS
– Does not require a known model

Example: Alpha Go (2016)

• Policy learned initially to imitate human players
• Updated through policy gradient and self-play

π(a |s)πr (a | s) πSL(a | s) V (s)

Example: Alpha Go (2016)

• Action chosen by bandit using Q(s,a) and policy
• Leaf-node value: estimated value V(s) plus roll-out value

Summary

• Balancing exploration and exploitation important for
sample efficient reinforcement learning

• There are efficient approaches such as UCB and
Thompson sampling for multi-armed bandit problems

• Monte Carlo tree search (MCTS) extends multi-armed
bandits to model-based reinforcement learning

• Allows trading off between exploration and exploitation
with proofs of convergence to an optimal solution

Next: Model-based reinforcement learning
under uncertainty: the importance of
knowing what you don't know
• Next week: Guest lecture on model-based reinforcement

learning under uncertainty by Aidan Scannell, top expert
• No quiz for next week

– There will be a quiz for the lecture in two weeks. Quiz will open
in one week and deadline is in two weeks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

