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Learning goals

• Understand how to execute actions that allow us to learn 
the best action



 

Exploration vs. exploitation

• Exploration: try out actions to learn good policies

• Exploitation: use actions that seem high performance

Have we already done something like this?



 

Multi-armed bandit

• Multi-armed bandit has K arms

• Pulling bandit arm   corresponds 
to action

• Pulling an arm yields a reward 
from an unknown probability 
distribution

• Special case of an MDP without 
states

• How to get maximum total 
reward?

How to select arms so that we get maximum reward?

P(r |a)

a=k
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Greedy approach in the multi-armed 
bandit setting

• For each arm, we estimate mean action value 

• Greedy approach chooses action with highest action 
value estimate:

• Do we find the best action? Why / why not?

â=argmaxaQ (a)

Q (a)=
1

N (a)
∑n=1

N (a)
r n(a)

Finding best action: example on 
blackboard



 

Epsilon-greedy in the multi-armed bandit 
setting
• Epsilon greedy chooses action with highest value 

estimate          with fixed probability

• and uniformly randomly chosen action with

probability 
• Tries out every action approximately at least

times

• Do we find the best action? Is epsilon-greedy sample 
efficient?

• How to improve?

ϵ

Q (a)

ϵN /| A |

1−ϵ

# actions

Total number of samples

Sample efficiency: example on blackboard



 

Trading off exploration vs. exploitation in 
the multi-armed bandit setting
• Goal: find best action using only few tries / samples

• Try out actions if they can be optimal but not otherwise: 
how to quantify this?

• The more we try out an action     the more certain we 
are about our estimate

• We will discuss two approaches:
– Upper confidence bound (UCB) approach
– Thompson sampling

Q (a)
a



 

Upper confidence bound

• Estimate additional upper confidence term          for 
each action based on N(a), number of tries of action a 

• When N(a) is low,           should be high

• When N(a) is high,           should be low
• Select action that maximizes the sum

• → tries out actions where we are uncertain about the 
current value estimate

• How to compute           ?

Q̂ (a)=Q(a)+U (a)

U (a)

U (a )
U (a)

U (a)

ExplorationExploitation



 

Computing upper confidence bound

• For selecting          , let’s use Hoeffding’s Inequality:

For i.i.d. random variables                  in 

where the mean estimate after M samples is

                               , it is true that

• Let’s apply the inequality to the bandit action a :

U (a)
X 1 , ... , X M

P(E [X ]> X̄ M+u)≤e−2M u
2

X̄ M=
1
M∑m=1

M
Xm

[0,1]

P(E [Q(a)]>Q (a)+U (a))≤e−2N (a)U (a)2

P(E [X ]> X̄ M+u)≤e−2M u
2

True expected action value Q(a)

Estimate of action value Q(a) using N(a) samples



 

Computing upper confidence bound

• Limit probability of true value to exceed upper bound:

• Choosing               yields

• This is the UCB1 formula. When N goes to infinity, 
maximum value error is 

P(E [Q(a)]>Q (a)+U (a))≤e−2N (a)U (a )2
= p

→U (a)=√−1 /2 log p /N (a)

p=N−4

Q̂ (a)=Q(a)+U (a)=Q (a)+√2 log N /N (a)

( log N /N )const

[Auer et al. Finite-time analysis of the 
multiarmed bandit problem, 2002]



 

Thompson sampling

• Idea: sample each action according to the probability of 
the action to be the best

• Requires computing for every action the probability of 
being the best action based on the history of all 
observed rewards

• Can utilize prior knowledge



 

Thompson sampling: Bernoulli bandits

• Each Bernoulli bandit produces a 1 with probability     
and a 0 with probability 

• Keep counts of 1s and 0s,      and      , for each arm k

• Algorithm main loop:
– For each arm k sample      from Beta(      ,     )
–

– Sample r from 
– Update counts: 

• if r = 1: 

• If r = 0: 

αk

αkθk

1−θk

θk

βk

βk
a=argmax kθk

P(r |a)

αk=αk+1
βk=βk+1

How to incorporate prior 
knowledge about the bandits?



 

From multi-armed bandits to MDPs

• Can we utilize the insights in multi-armed bandits for 
exploration in MDPs?

• In an MDP, instead of Q(a) find Q(s,a)
– Use multi-armed bandit to choose action
– Evaluate Q(s,a) using Monte Carlo value estimation

– How to generate a sequence of states and actions in Monte 
Carlo value estimation of Q(s,a)? What policy to use? How to 
simulate state transitions?



 

From multi-armed bandits to MDPs

• Can we utilize the insights in multi-armed bandits for 
exploration in MDPs?

• In an MDP, instead of Q(a) find Q(s,a)
– Use multi-armed bandit to choose action
– Evaluate Q(s,a) using Monte Carlo value estimation

– In Monte Carlo value estimation, use a multi-armed bandit 
approach such as UCB1 as the policy!

– Assume a known dynamics model such as 
– Leads to Monte Carlo tree search (MCTS)

s t+1= f (st ,a t)



 

Reminder: spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● CEM
● ...

Simulate
environment
● DYNA
● Latent state 

models
● ...

Assist
learning
● Policy backprop
● ...



 

Monte Carlo tree search

• Search method for optimal decision making

• State-of-the-art for playing games (e.g. Alpha Go)

• Iteratively builds a search tree
– Each search tree node is a multi-armed bandit

• Phases:
– Selection: Choose a promising node to expand

– Expansion: Add a new node

– Simulation: Simulate value for new node

– Backup: Back-up value to root (update values for parents)

Using e.g. UCB1

Monte Carlo value 
estimation

Blackboard: example tree. Each 
node corresponds to a state.



 

MCTS operation

• From start node S choose actions 
to walk down tree until reaching a 
leaf node.

• Choose an action and create a 
child node for that action.

• Perform a random roll-out (take 
random actions) until end of 
episode (or for a fixed horizon).

• Record returns as value for child 
node and back up value to root.



 

MCTS: Example search tree

• Value: number of won/simulated games



 

Node selection in MCTS

• Node selection in search has to balance between 
exploration and exploitation (note difference to RL, here 
exploration & exploitation only using simulation)

• Idea: Explore when uncertain of outcome

• Upper confidence bound 1 (UCB1) on trees (UCT)
– A bound for value of a node (Kocsis & Szepesvari, 2006)

Q̂ (s , a)=Q(s , a)+c√
2 log N (s)
N (s , a)

Exploration constant. Depends on the range of values. For 
guaranteed convergence, largest possible value minus 
smallest possible value.



 

MCTS simulation phase

• Perform one or several roll-outs from leaf node using 
random action selection

• Stop at terminal state or until a discount horizon is 
reached

• Estimate value of state as mean return of the N(s) 
simulations:

V (s )=
1
N (s)

∑i
Gi (s)



 

MCTS backpropagation

• After simulation phase backpropagate values to the root 
node

• Estimate value of state as mean return of the N(s) 
simulations:

Q (s , a)=Es ' ~ p (. | s ,a)[R(s , a)+V (s ' )]

V (s)=∑a

N (s ,a)
N (s)

Q (s , a)



 

MCTS extensions

• AlphaGo (2016)
– Learn initial policy from expert demonstrations
– Update policy using self-play and MCTS

• AlphaZero (2017, 2018)
– No expert demonstrations needed

• MuZero (2020)
– Similar to AlphaZero but interleaves model learning and MCTS
– Does not require a known model



 

Example: Alpha Go (2016)

• Policy learned initially to imitate human players
• Updated through policy gradient and self-play

π(a |s)πr (a | s) πSL(a | s) V (s)



 

Example: Alpha Go (2016)

• Action chosen by bandit using Q(s,a) and policy
• Leaf-node value: estimated value V(s) plus roll-out value



 

Summary

• Balancing exploration and exploitation important for 
sample efficient reinforcement learning

• There are efficient approaches such as UCB and 
Thompson sampling for multi-armed bandit problems

• Monte Carlo tree search (MCTS) extends multi-armed 
bandits to model-based reinforcement learning

• Allows trading off between exploration and exploitation 
with proofs of convergence to an optimal solution



 

Next: Model-based reinforcement learning 
under uncertainty: the importance of 
knowing what you don't know
• Next week: Guest lecture on model-based reinforcement 

learning under uncertainty by Aidan Scannell, top expert
• No quiz for next week

– There will be a quiz for the lecture in two weeks. Quiz will open 
in one week and deadline is in two weeks
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