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Intended Learning Outcomes

After this lecture, you will be able to:
@ construct nonlinear continuous-time state-space models,
@ distinguish continuous-time and discrete-time models,

@ construct discrete-time linear and non-linear state-space
models.
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Recap

@ Higher order ODEs and SDEs can be transformed to a
first-order vector-valued equation system
@ The deterministic linear state-space model is

x(t) = Ax(t) + Byu(t)
Yn = GXp+1p

@ The stochastic linear state-space model with stochastic
input process w(t) is

x(1) = Ax(t) + B,w(t)

Yn=GXp+rp
@ The 2D Wiener velocity model is
0 010 0 0
. |0 0 0 1 0 Of [wi(t)
X=1o 00 o[*"|1 0 L@uﬂ
0 00O 0 1
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Example: Dynamic Model for a Spacecraft (1/2)

F @ Gravitational
P

0 W acceleration:
Y p* Frg e \2
/p(t) g ”g°(|p<t)|> |

’
’
’
— e T S TTToTTTI T T T TN T B TP YR < Ty Ta T v e
Aalto University Nonlinear Continuous-Time Models and Discrete-Time Dynamic Models
A School of Electrical Simo Sérkka
Engineering 7129



Example: Dynamic Model for a Spacecraft (2/2)

@ Gravitational pull: Fg = —mgor§ |:((tt))\3
. — t
@ Propulsion: Fp = Fp“)g_m { pe}gg))]

@ Differential equation:

e 1 [P
ma(t) = ~mao'e [y e (o) [p*(t) } u(t).

@ State vector:

x(t)= [p(t) (1) V() v

Can not be written as x(t) = Ax(t) + Byu(t).
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Nonlinear Differential Equation Systems
@ Nonlinear ordinary differential equation system (b; may
depend on x,(1)):
X (t) =fi (X1 (t), Xg(t), - ,de(t)) + by1uy (t) + ... b1duudu(t)
X2(t) = fa(x1 (1), X2(1), - ., Xa (1)) + b2y ur (1) + . .. bog, Ug, (1)

X (1) = fa, (X1 (1), x2(2), - . ., X, (1)) + b1 U1 (t) + - .. b, Ug, ()

e State vector: x(t) = [x(t) Xxa(t) ... xdx(z‘)]T

@ In vector form:
x1(1) f(x(1)) bi1(x(t)) ... big,(x(1))
XZ:(t) _ fz()(:(f)) L | i (x(1) : u(t).
Xa, (1) o, (X(1)) bdx1(.x(t)) N ba,q,(X(1))
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Nonlinear Continuous-Time State-Space Models

@ Deterministic nonlinear dynamic model:
X(t) = f(x(1)) + Bu(x(t))u(t)
@ Stochastic nonlinear dynamic model:
x(t) = f(x(t)) + Bw(x(t))w(t)
@ Nonlinear measurement model:
Yn=9(Xn) +n
@ Stochastic nonlinear state-space model:

x(t) = f(x(t)) + Bw(x(t))w(t)
Yn=9(Xn) +Fn
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Example: Dynamic Model for a Spacecraft (2)

@ Differential equation:
L
(1)

> P(1)

- -p/(1)
EASETGE

p(1)

ma(t) +

@ State vector:
x(t) = [pX(1) p/(t) v¥(r) w(D)].

@ Vector form:

R RNE
vV (1) v
= 2 P | + ) | wi(t
a (1) —gofew ~ oy |
4 t *
FO] [-gorE iy mlp(D)]
ol | o
> (X(t
= + | 2o | w(t),
f3(x(1)) ~ mip(0)] (1)
| fa(x(1)) ,,ﬂp((?)l
_A As\:::gol.llr;i' EI "tyrical Nonlinear Continuous-Time Models and Di

] w(t).
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Example: Robot Navigation in 2D (1/4)

@ Quasi-constant turn model:

p(t) = v(t) cos(p(1))
P (1) = v(t)sin((t))
v(t) = wi(t)

p(t) = wa(t)

@ The state is
X(t) = [p*(1) p(1) v(t) ()]
@ Position measurement: picks p*(t) and
P (1)
@ Speed measurements (odometry): v(t)
@ Magnetometer (compass): ¢(1).
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Example: Robot Navigation in 2D (2/4)

@ Gyroscope measures ¢(t).
@ Accelerometer measures v(t).
o Word of warning: accelerometers are
usually not accurate enough for this.

@ Putting these into the equations we get

the model
p*(t) = v(t) cos((t))
P (t) = v(t)sin(¢(1))
V(t) = @acc(t) + wi(t)
(1) = wgyro(t) + wa(t).

@ The state is still

x(t) = [pX(t) p(t) v(t) ()]
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Example: Robot Navigation in 2D (3/4)

@ Often we have the speed v(t) directly
available (e.g., from wheels)

@ Then we can reduce the model to

p(t) = v(1) cos(e(1))
P (1) = v(t)sin((1))
(1) = wayro(t) + w(t).

@ The state is now
x(t) = [p*(t) P'(1) ()]
@ This is a typical model used in 2D
tracking.
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Example: Robot Navigation in 2D (4/4)

@ Finally, the speed measurement is often
not accurate.

@ Thus it is beneficial to include additional
noises to the dynamic model:

p*(t) = v(t) cos(i(t)) + wy(t)
P (t) = v(t)sin(p(t)) + wa(t)
P(t) = wgyro(t) + wa(1).

@ The state is stil .
x(t) = [pX(t) p'(t) ()] -

@ This model would be a good candidate
for the dynamic model in the project
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Discrete-Time Processes and Difference Equations

@ Some processes are only defined at discrete time points
t, b, ...

@ The discrete-time equivalent of differential equations are
difference equations

@ The difference of two discrete points in time takes the role
of the derivative
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Vector Form of Difference Equation Systems
@ Equation system of dy linear difference equations:

Xi.n = @11 X1 n—1 + - + &1g Xdy,n—1 + B11Us n + - - + b1g,Ug, n

Xo.n = @1X1 n—1 + -+ g Xay,n—1 + Po1 Uy n + - - + bog,Ug, n

Xdy.n = dy1 X1,n—1 + -+ + Adyd Xdy,n—1 + BPay1Ui p + - - + ba,d,Uay n
@ Vector form:

X1,n ait ... &g, | | X1,n-1 bi1 ... big, | | Ui
N e R : : + : :

Xdy,n adt .- dede| [Xdy,n—1 ba,1 ... bded,| |Udn
@ Compact notation:

Xp = FXp_1 + Byup
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Deterministic Discrete-Time State-Space Model

@ Linear discrete-time dynamic model:
Xp = FXp_1 + Byup
@ Deterministic, linear discrete-time state-space model:

Xp = FXp_1 + Byup
Yn = GXp +Fp.

with E{r,} = 0, Cov{r,} = Ry, Cov{ry,rm} =0 (n+# m)
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Conversion of Lth Order Difference Equation (1/2)

@ Lth order difference equation (with single input uy):
Zn=C1Zn_1+CoZn_o+ -+ CZn_y +diup

@ ltis easier to choose x,,_1 on the RHS
(c.f. continuous case)

@ A possible choice:

X1,n—1 = Zn—1, Xon—1 = Zp-2, ..., Xdyn—1 = Zn—L-
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Conversion of Lth Order Difference Equation (2/2)
o Difference equation system:

X1,n = C1X1,n—1+ CaXop1 + -+ + CLXdy,n—1 + Q1Un
X2,n = Zn—1 = X1,n—1

Xde,n = Zn—L1+1 = Xdy+1,n—1

@ Vector form:

cf G ... C
X1,n 1 G L X1,n—1 a
Xo.n 1 0 X2 n—1 0
B = . + Un»
Xdb,n 0 ... 1 0 Xd,n—1 0
School of Electrical Simo Sarkka
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Stochastic Linear State-Space Model (1/2)

@ Dynamics are not entirely deterministic and inputs may not
always be known

@ Let the process noise q, (random variable) take the place
of the input u, (or in addition to up)

@ Stochastic linear discrete-time dynamic model:

Xn = FXp_1 + Bgdn
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Stochastic Linear State-Space Model (2/2)

@ Stochastic linear discrete-time dynamic model:
Xp = FXp_1 +BgQn
@ The process noise follows

dn ~ p(dn)

with E{q,} = 0, Cov{qn} = Qp, and Cov{qm,qn} =0
(m#n)

@ Stochastic linear discrete-time state-space model:

Xn = FXp_1 + Bgdn
Yn = GXp +rp
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Nonlinear Discrete-Time Dynamic Model
@ Difference equations may also be nonlinear

@ Nonlinear difference equation system (with process noise
inputs):

X1,n=H(X1,n-1, X201, -+, Xdy,n—1) + bP11G1,n + - + b14,Qdg,n
Xon = B(X1,n-1, X201, -, Xdy,n—1) + D21Q1,n + - + b2q,Qag,n

Xdy,n = fa (X1,n—1, X2.n—1, - s Xden—1) + Bg1Q1.n + - - - + g dy Qg

@ Vector form:

X1n f (X1 n—1,X2.n—1, - - s Xde.n—1) b1 ... big, | | %1

: = : +1| ) : :
Xdy,n fa (X1,n—1, X2,n—15 - -+ » Xdy,n—1) bg,1 - baa,| [Qdun
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Nonlinear Discrete-Time State-Space Model

@ Compact notation of the dynamic model:
Xp =f(Xp_1) + BoQn
@ Nonlinear discrete-time state-space model:

Xp = f(Xp_1) + Bgln
Yn=9d(Xn) +rn

where:

® qn ~ p(dn), E{dn} = 0, Cov{qn} = Qs
o r,~ p(ty), E{rp} =0, Cov{r,} =R,

— e T S TTToTTTI T T T TN T B TP YR < Ty Ta T v e
Aalto University Nonlinear Continuous-Time Models and Discrete-Time Dynamic Models
School of Electrical Simo Sérkka
Engineering 27/29



Summary

@ Nonlinear continuous-time state-space model:

x(t) = f(x(t)) + Bw(x(t))w(t)
Yn=9(Xn) +Fn

@ Linear discrete-time state-space model:

Xn = FXp_1 +BgQn
Yn=GXp +1p

@ Nonlinear discrete-time state-space model:

Xn = f(Xp—1) + Bg(Xp—1)dn
Yn=9(Xn) +1n
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