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Intended Learning Outcomes

After this lecture, you will be able to:
construct nonlinear continuous-time state-space models,
distinguish continuous-time and discrete-time models,
construct discrete-time linear and non-linear state-space
models.
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Recap
Higher order ODEs and SDEs can be transformed to a
first-order vector-valued equation system
The deterministic linear state-space model is

ẋ(t) = Ax(t) + Buu(t)
yn = Gxn + rn

The stochastic linear state-space model with stochastic
input process w(t) is

ẋ(t) = Ax(t) + Bww(t)
yn = Gxn + rn

The 2D Wiener velocity model is

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x +


0 0
0 0
1 0
0 1

[w1(t)
w2(t)

]
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Example: Dynamic Model for a Spacecraft (1/2)

p(t)

px
py

Fg

Fp
Gravitational
acceleration:

g ≈ g0

(
re

|p(t)|

)2

,
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Example: Dynamic Model for a Spacecraft (2/2)
Gravitational pull: Fg = −mg0r2

e
p(t)
|p(t)|3

Propulsion: Fp = Fp
1
|p(t)|

[
−py (t)
px(t)

]
Differential equation:

ma(t) = −mg0r2
e

p(t)
|p(t)|3

+
1
|p(t)|

[
−py (t)
px(t)

]
u(t).

State vector:

x(t) =
[
px(t) py (t) vx(t) vy (t)

]T
.

Can not be written as ẋ(t) = Ax(t) + Buu(t).
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Nonlinear Differential Equation Systems
Nonlinear ordinary differential equation system (bij may
depend on xn(t)):

ẋ1(t) = f1(x1(t), x2(t), . . . , xdx (t)) + b11u1(t) + . . . b1du udu(t)
ẋ2(t) = f2(x1(t), x2(t), . . . , xdx (t)) + b21u1(t) + . . . b2du udu(t)

...
ẋdx (t) = fdx (x1(t), x2(t), . . . , xdx (t)) + bdx 1u1(t) + . . . bdx du udu(t)

State vector: x(t) =
[
x1(t) x2(t) . . . xdx (t)

]T
In vector form:

ẋ1(t)
ẋ2(t)

...
ẋdx (t)

 =


f1(x(t))
f2(x(t))

...
fdx (x(t))

+


b11(x(t)) . . . b1du(x(t))

b21(x(t))
...

...
. . .

bdx 1(x(t)) . . . bdx du(x(t))

u(t).
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Nonlinear Continuous-Time State-Space Models
Deterministic nonlinear dynamic model:

ẋ(t) = f(x(t)) + Bu(x(t))u(t)

Stochastic nonlinear dynamic model:

ẋ(t) = f(x(t)) + Bw (x(t))w(t)

Nonlinear measurement model:

yn = g(xn) + rn

Stochastic nonlinear state-space model:

ẋ(t) = f(x(t)) + Bw (x(t))w(t)
yn = g(xn) + rn
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Example: Dynamic Model for a Spacecraft (2)
Differential equation:

ma(t) = −mg0r2
e

p(t)
|p(t)|3

+
1
|p(t)|

[
−py (t)
px(t)

]
w(t).

State vector:

x(t) =
[
px(t) py (t) vx(t) vy (t)

]T
.

Vector form:
vx(t)
vy (t)
ax(t)
ay (t)

 =


vx(t)
vy (t)

−g0r2
e

px (t)
|p(t)|3

−g0r2
e

py (t)
|p(t)|3

+


0
0

− py (t)
m|p(t)|

px

m|p(t)|

w(t)

=


f1(x(t))
f2(x(t))
f3(x(t))
f4(x(t))

+


0
0

− py (t)
m|p(t)|
px (t)

m|p(t)|

w(t),
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Example: Robot Navigation in 2D (1/4)

Quasi-constant turn model:

ṗx(t) = v(t) cos(ϕ(t))
ṗy (t) = v(t) sin(ϕ(t))
v̇(t) = w1(t)
ϕ̇(t) = w2(t)

The state is
x(t) =

[
px(t) py (t) v(t) ϕ(t)

]T.
Position measurement: picks px(t) and
py (t)
Speed measurements (odometry): v(t)
Magnetometer (compass): ϕ(t).
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Example: Robot Navigation in 2D (2/4)

Gyroscope measures ϕ̇(t).
Accelerometer measures v̇(t).

Word of warning: accelerometers are
usually not accurate enough for this.

Putting these into the equations we get
the model

ṗx(t) = v(t) cos(ϕ(t))
ṗy (t) = v(t) sin(ϕ(t))
v̇(t) = aacc(t) + w1(t)
ϕ̇(t) = ωgyro(t) + w2(t).

The state is still
x(t) =

[
px(t) py (t) v(t) ϕ(t)

]T.
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Example: Robot Navigation in 2D (3/4)

Often we have the speed v(t) directly
available (e.g., from wheels)
Then we can reduce the model to

ṗx(t) = v(t) cos(ϕ(t))
ṗy (t) = v(t) sin(ϕ(t))
ϕ̇(t) = ωgyro(t) + w(t).

The state is now
x(t) =

[
px(t) py (t) ϕ(t)

]T.
This is a typical model used in 2D
tracking.
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Example: Robot Navigation in 2D (4/4)

Finally, the speed measurement is often
not accurate.
Thus it is beneficial to include additional
noises to the dynamic model:

ṗx(t) = v(t) cos(ϕ(t)) + w1(t)
ṗy (t) = v(t) sin(ϕ(t)) + w2(t)
ϕ̇(t) = ωgyro(t) + w3(t).

The state is stil
x(t) =

[
px(t) py (t) ϕ(t)

]T.
This model would be a good candidate
for the dynamic model in the project
work.
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Discrete-Time Processes and Difference Equations

Some processes are only defined at discrete time points
t1, t2, . . .
The discrete-time equivalent of differential equations are
difference equations
The difference of two discrete points in time takes the role
of the derivative
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Vector Form of Difference Equation Systems
Equation system of dx linear difference equations:

x1,n = a11x1,n−1 + · · ·+ a1dx xdx ,n−1 + b11u1,n + · · ·+ b1du udu ,n

x2,n = a21x1,n−1 + · · ·+ a2dx xdx ,n−1 + b21u1,n + · · ·+ b2du udu ,n

...
xdx ,n = adx 1x1,n−1 + · · ·+ adx dx xdx ,n−1 + bdx 1u1,n + · · ·+ bdx du udu ,n

Vector form: x1,n
...

xdx ,n

 =

 a11 . . . a1dx
...

. . .
...

adx 1 . . . adx dx


 x1,n−1

...
xdx ,n−1

+
 b11 . . . b1du

...
. . .

...
bdx 1 . . . bdx du


 u1,n

...
udx ,n


Compact notation:

xn = Fxn−1 + Buun
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Deterministic Discrete-Time State-Space Model

Linear discrete-time dynamic model:

xn = Fxn−1 + Buun

Deterministic, linear discrete-time state-space model:

xn = Fxn−1 + Buun

yn = Gxn + rn.

with E{rn} = 0, Cov{rn} = Rn, Cov{rn, rm} = 0 (n 6= m)
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Conversion of Lth Order Difference Equation (1/2)

Lth order difference equation (with single input un):

zn = c1zn−1 + c2zn−2 + · · ·+ cLzn−L + d1un

It is easier to choose xn−1 on the RHS
(c.f. continuous case)

A possible choice:

x1,n−1 = zn−1, x2,n−1 = zn−2, . . . , xdx ,n−1 = zn−L.



Nonlinear Continuous-Time Models and Discrete-Time Dynamic Models
Simo Särkkä

21 / 29

Conversion of Lth Order Difference Equation (2/2)
Difference equation system:

x1,n = c1x1,n−1 + c2x2,n−1 + · · ·+ cLxdx ,n−1 + d1un

x2,n = zn−1 = x1,n−1

...
xdx ,n = zn−L+1 = xdx+1,n−1

Vector form:
x1,n
x2,n

...
xdx ,n

 =


c1 c2 . . . cL

1 0
...

...
. . .

0 . . . 1 0




x1,n−1
x2,n−1

...
xdx ,n−1

+


d1
0
...
0

un,
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Stochastic Linear State-Space Model (1/2)

Dynamics are not entirely deterministic and inputs may not
always be known
Let the process noise qn (random variable) take the place
of the input un (or in addition to un)
Stochastic linear discrete-time dynamic model:

xn = Fxn−1 + Bqqn
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Stochastic Linear State-Space Model (2/2)
Stochastic linear discrete-time dynamic model:

xn = Fxn−1 + Bqqn

The process noise follows

qn ∼ p(qn)

with E{qn} = 0, Cov{qn} = Qn, and Cov{qm,qn} = 0
(m 6= n)
Stochastic linear discrete-time state-space model:

xn = Fxn−1 + Bqqn

yn = Gxn + rn
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Nonlinear Discrete-Time Dynamic Model
Difference equations may also be nonlinear
Nonlinear difference equation system (with process noise
inputs):

x1,n = f1(x1,n−1, x2,n−1, . . . , xdx ,n−1) + b11q1,n + · · ·+ b1dq qdq ,n

x2,n = f2(x1,n−1, x2,n−1, . . . , xdx ,n−1) + b21q1,n + · · ·+ b2dq qdq ,n

...
xdx ,n = fdx (x1,n−1, x2,n−1, . . . , xdx ,n−1) + bdx 1q1,n + · · ·+ bdx dq qdq ,n

Vector form: x1,n
...

xdx ,n

 =

 f1(x1,n−1, x2,n−1, . . . , xdx ,n−1)
...

fdx (x1,n−1, x2,n−1, . . . , xdx ,n−1)

+
 b11 . . . b1du

...
. . .

...
bdx 1 . . . bdx du


 q1,n

...
qdu ,n
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Nonlinear Discrete-Time State-Space Model

Compact notation of the dynamic model:

xn = f(xn−1) + Bqqn

Nonlinear discrete-time state-space model:

xn = f(xn−1) + Bqqn

yn = g(xn) + rn

where:
qn ∼ p(qn), E{qn} = 0, Cov{qn} = Qn
rn ∼ p(rn), E{rn} = 0, Cov{rn} = Rn
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Summary
Nonlinear continuous-time state-space model:

ẋ(t) = f(x(t)) + Bw (x(t))w(t)
yn = g(xn) + rn

Linear discrete-time state-space model:

xn = Fxn−1 + Bqqn

yn = Gxn + rn

Nonlinear discrete-time state-space model:

xn = f(xn−1) + Bq(xn−1)qn

yn = g(xn) + rn
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