Optimal Filters: Wiener and Kalman Filters




Optimal Filtering

* Estimation of signals: dynamic, time varying parameter

* |n state or signal estimation, 3 situations are possible depending
upon the relationship of current time index & and and the sample
size N. Let y(INV) be the last available measurement and % is the

present time point.

- If N < k we are estimating a future value. A predicted estimate.

— If N = k we are using all past measurements and the most
recent one to estimate the state. A filtered estimate.

— When N > k we are estimating an earlier value. A smoothed
estimate.

* Predicting and filtering can be done in real time whereas smoothing
can never be done in real time.

* Any estimate based on finite number of observations is expected to =
contain some error (noise, distortions). 0.2022
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Optimal Filtering

* Index of performance: the mean square error. The error
e(k) = s(k) — y(k) is the difference between the filter output y(n)
and desired filter output s(k) (signal) and the expected value of the
squared error is minimized.

* Such error criterion is mathematically tractable, single unique
minimum exists for the error surface. Mean Square calculus.

* Principle of orthogonality E[e,p:(k)xz(k —m)| =0
* Geometrical interpretation for it, error is orthogonal to the observed
signal

* The desired output is determined by the signal component we are
interested in, i.e., the assumed signal model.

* Other performance indeces: mean absolute error.

* Applications include equalization, noise cancellation, spatial
filtering, channel estimation, deconvolution 18.10.2022



Commonly used Optimal Filters

Wiener Filter: optimal filter for scalar signals in wide sense stationary
(WSS) scenarios.

* Minimizes the Mean Square Error (expected value of squared error)
 FIR Wiener Filter, Causal 1R Wiener Filters, non-causal IR Wiener Filter

Kalman Filter (KF) extends optimal filters to multichannel signals,
multidimensional states and nonstationary scenarios

» Linear model and Gaussian probability distributions are assumed

» Optimal Bayesian filter in minimum mean square error (MMSE) sense
 Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and
Particle Filter extend KF for nonlinear and non-Gaussian (PF) filtering
problems.

 Optimality may be lost because of linearization/approximation in EKF
and UKF. They work very well in many applications anyway.

Aalto University
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Optimal Filtering

e Causality in an important topic if we are doing real time processing.
However, in case of we have spatial parameter instead of time
parameter e.g., in array and image processing, causality is not an
important issue.

* Often (in particular in communications) signals are presented as
follows

s(k) = sr(k) + jsq(k)
where s; (k) is in-phase (real) component and jsq (k) is quadrature
(imaginary) component.

» Magnitude-phase angle form s(k) = |s(k)|e’“(*) is used as well.

* Filters for real signals are special cases of filters for complex
signals.

* |n real form the operation of complex conjugation is removed and
conjugate transposition is replaced by ordinary transposition. 18.10.2022
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Optimal Filtering

* We will study Wiener filtering (FIR, IIR, causal/noncausal) and
Kalman Filtering here

Aalto University
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Optimal Filtering: filtering, predicting, smoothing
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Filtering of
signal in noise

Form of

x(n) = s(n)+w(n)

Desired

. Problem Observations Signal

dn) = s(n)

Prediction of

x(n) = s(n)+w(n)

d(n) = s(n+p);

signal in noise p>0
Smoothing of x(n) = s(n)+w(n) d(n) = s(n—q);
signal in noise qg>0
Linear x(n) = s(n—1) d(n) = s(n)
prediction
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Wiener Filters

Estimation of a signal from another

Applies to wide sense stationary (WSS) processes
Discrete time formulation is given here

Model for noisy observations z(k) = s(k) + v(k)

xz(k) and s(k) are jointly WSS and their autocorrelations
re«(l) = Elz(k)x*(k —1)] and

res(l) = Els(k)s*(k —1)] as well as cross-correlation
rsz(l) = E[s(k)x*(k — 1)] are known.

Autocorrelation matrix of z is R,...

If the data are available to infinite past, the optimum filter has
infinite impulse response (lIR)

If only finite number of observations are available, the optimum filter
is FIR.

Input-output relationship using convolution § = y = h * .

18.10.2022
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Wiener Filters

* The observed data is input sequence {z(k)} which passes through
a Linear Time-Invariant (LTI) system producing an output sequence
{y(k)}. {h(k)} is the impulse response of the LTl-system.

* We will design a filter & that filters (k) and produces an estimate
5(k) of desired signal s(k).

* The error is defined e(k) = s(k) — 5(k)
* The performance index in Wiener filtering is the mean square error
J = Ele(k)[*] = E[(3(k) — s(k))]

* By plotting J = E][|e(k)|?] as a function of filter coefficients {h} a
parabolic surface with single unique minimum is obtained.

Aalto University
School of Engineering

18.10.2022
315



Wiener Filters

* |In order to find optimal coefficients » we need to differentiate .J with
respect to filter coefficients and set the derivatives to zero

0J  Ele(k)e* (k)]

Oh*(m)  Oh*(m) =1

forallm =0,...,p — 1 in the case of FIR filter and for infinite number
of coefficients in the case of IR filter.

* A necessary and sufficient condition for the cost function to attain
its minimum is that the estimation error is orthogonal to each input
observation in the estimation at time k.

Aalto University
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Wiener Filters

* |n case of noncausal filtering we need to have all the data available
and the processing cannot be real time. In case of spatial
processing (array and image processing) causality is less important
iIssue.

* The goal is to find the impuse response h(k) of the IIR filter with
transfer function

Hizl = Z klm)z ™

M= —C

such than mean square error
J = El|e(k)|’]
IS minimized.
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Wiener Filters

* Error ¢(k) is defined here as

e(k) = s(k) — 3(k) = s(k) — Z h(m)z(k — m)

M —=—00

* From orthogonality principle, best i satisfies

Z h(m)re.(k —m) = re.(k),

m=—0oC

where r,...() is autocorrelation of = and () is cross correlation of s
and z. The expression on the LHS is in the familiar form of
convolution sum and it can be written as h(k) * r,. (k)

* |n terms of z-transforms of time sequences (k = —oc. ..., o0) and we
have

H(z)q)r:c (3) — @sm (,Zf) 18.10.2022
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Wiener Filters

* The transfer function of the filter is

_ P, (2)
D, (2)

* The frequency response is obtained by substituting z = /%

H(z)

Py (e??)
L (ij) '

H(eY) =
* |In many applications the desired output is forward predicted a time
units. The transfer function is then
D, (2)2"
b, (2)

which differs from (??) by = caused by the forward prediction.

Hz)=

0.2022
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Wiener Filters
+ ~

signal s(n) ®_|_ x() filter . d(n)

Loise

w(n)

Typical Wiener Filtering Problems

Form of Desired
d(n) Problem Observations Signal
4 X A/
{ / /| , Filtering of x(n) = s(n)+w(n) d(n) = s(n)
ny " An) signal in noise
P ] / e o
; Z d(;: Lo per > | Prediction of x(n) = s(n)+w(n) d(n) = s(n+p);
v \ p 5 : :
V7 7X77/7 },l' . signal in noise p>0
"ci — 1 q ) S_moothing Qf x(n) = s(n)+w(n) dm) = s(n—);
» | signal in noise qg>0
n, n n+1
! Linear x(n) = s(n—1) dn) = s(n)
prediction
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Wiener Filters

* Filter coefficients i can the be obtained from the frequency
response H(e’*) by inverse Fourier transform.

* Recall that autocorrelation and power spectra are a Fourier
transform pair, so @, (¢’*) is the power spectrum of z and @, (e’¥)
is the cross power spectrum between x and s.

* The minimum mean square error

..

Jriin = 'rss([}) — Z h(?R)T;I (’TH-)

m=—00
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EX: Smoothing Wiener Filter

* Observation model is z(k) = s(k) + v(k).

* Signal and noise are assumed to be uncorrelated and zero mean.
The autocorrelation of = can then be expressed as
rez(m) = rss(m) 4+ ryy(m).

* Power spectra were obtained by applying Fourier transform to

autocorrelations. As a re;sult | |
B () =B, (" )+ By (%)

* The cross correlation is
rsz(m) = E[s(m)z*(k—m)] = E[s(m)s*(k—m)|+ E[s(m)v" (k—m)]

where the latter term on the RHS is zero based on orthogonality
and we get ;. (m) = rgs(m)

* The corresponding power spectra are: —
(I)gm(ﬁ‘?w) — (I’SS(E“}M) 10.2022
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EX: Smoothing Wiener Filter

* The frequency response of a Wiener filter for smoothing is
Py, (e??)
Do (€19) 4 Dy (eI¥)

H(e%) =

» The quotient above and consequently the filter gain |H(e’“)| ~ 1 for
frequencies where the noise power is small compared to the signal
power whereas gain are close to zero and the noise is attenuated in
those frequencies where the noise power is large compared to the
signal power.

* The mean square error of smoothing filter is

1 [T | | |
Foni = e / (B3 (9) — H(e7) By ()] dus

7. g -

1 T -
Tor ) P55 (e’)[1 — H(e’*)]dw 15102022



EX: noisy image smoothing using Wiener Filter

Observed
noisy image

Ideal noise-free
image

Aalto University
School of Engineering 7.11.2022
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Causal FIR Wiener Filter

* |In this case the error is
p—1

e(k) = s(k) — 8(k) = s(k) — Y _h(i)z(k — i)

1—40

p linear equations
and p unknowns h(l)
= in Matrix form:
> hopt(Draalk —1) =roa(k—1) | 'y
=0

xx ''opt = I'sx

* discrete time version of the Wiener-Hopf equation

where r,,, are autocorrelations, r,, cross-correlations and £,,; are
the coefficients of the optimum filter.

* Matrix form solution in case of finite number of observations.

—1
hfﬂpt = Rmm I:'PSI-"J

where r., = [re,(0) 745 (1) ... 7o (p — 1)]F

mwm 325



Causal FIR Wiener Filter

Autocorrelation matrix has Toeplitz structure for WSS signals. Such
matrix is easier to invert. Autocorrelation sequence is conjugate
symmetric, i.e. r (k) = r,*(k) for complex-valued data

 EX: (p+l) x (p+1) dimensional Rx for complex data x
C 1(0) i) o orp=1)

re(1) @0 - ri(p-2)
r:(2) r(ly - ri(p-3)

| np=1) n(p-2 - rO

Large Toeplitz matrices can be well approximated with circulant
matrices that are diagonalized using DFT

Aalto University
School of Engineering 7.11.2022
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Causal FIR Wiener Filter

* Minimum mean square error

p—1

J = Elle(k)|?) = Ele(k){s(k) = ¥ _ h(i)z(k —i)}"]

=0

and rerranging by changing the order of summation and
expectation and using the orthogonality property
Eleopt(k)x(k — )] = 0 for Wiener solution we get

Jmin i E[Eopt(-‘z‘:)S* (k)] — E[{S(k) - i hcrpt (E)I(k A E)}S*(k)]

= rss(0) — ?‘wa;a,lrm

~* Causal FIR Wiener filtering, using data upto and including current ——
observation 810.2022
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EX: Causal FIR Wiener Filter

* Signal s(k) is assumed to be corrupted by additive noise and we

observe
x(k) = s(k) 4+ v(k)

the cross correlation is now
rsz(l) = Els(k)z" (k—1)] = E[s(k)s™(k—1)]|+E|[s(k)v" (k—1)] = rss(I)

where E|[s(k)v*(k — )] = 0 based on orthogonality. The
autocorrelation is

rea(l) = Elx(k)z*(k — )] = El{s(k) + v* (k) {s(k — 1) +v"(k = 1) }"]
* |f signal and noise are uncorrelated
T:c;t(g) — gy ('{) + Ty (I)
and the Wiener-Hopf equations may be presented by
hopt = [Rss 3 va]_lrss 2022
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EX: Causal FIR Wiener Filter

 Linear predition of future values using current and past
observations.

z(k+a) = Zh( Jx(k — 1)

* We will address the future value of the signal as the desired signal,

l.e., s(k) = z(k + «), where « is the number of time units forward
predicted. The cross correlation between s(k) and z(k):

rsx(l) = Els(k)z”(k — )] = Elz(k + o)™ (k — )] = rye(a +1)
* Wiener-Hopf equations are now in matrix form
hopt — R;;;};]'_rmﬂf

Where Yea = [T:r:rr(ﬂf) Tm:l?(ﬂf _I_ 1) s Tz (Cl:‘ _I_p = 1)]T

22
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EX: Causal FIR Wiener Filter

* The minimum mean square error is then
p—1
Tmin = Els(k) — )~ hopt(i)z(k — i)s™ (k)]
=

= r(0) — -rik -

Aalto University
School of Engineering 18.10.2022
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EX: Causal FIR Wiener Filter as noise canceller

; :: signal source

primary @

5:11507

‘i::..'( noise source
\ v, (1) vi(n) _ ¥ i e(n)

secondary ® 5 Wi(z) ’O >

SCsOor

x(n)=d(n)+v(n)

W(z) is FIR Wiener Filter

Aalto University
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EX: Spatial filtering

+» Application to Spatial Filtering

\\ Reference  d(n)=s(n)
\ Y signal o e(n)

Y
— P
s(n) ! ) )

— s v,(n) ) 3(’7)
A Y x,(n)

+1 —»EPX\’(") I
BPSK ))) Filtering

V() Noisy *(n)

received
signals

srapshot infime gf received  pops mpios wssviliite oise received signal
signal retrieved at two RPs independent of each
antennas & reference signal other and of s(n).

Aalto University
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EX2: Causal FIR Wiener Filter

* Noise Cancellation using FIR Wiener filter
* Let us assume that our desired signal is sinusoidal

d(n) = cos(nwgy + @)

where frequency wy = 0.057

* The noise sequences v;(n) and vy (n) (signal from reference
sensor) are AR(1) processes obtained by the following difference

equations
v1(n) =0.8vi(n—1) + g(n)

va(n) = —0.6vy(n — 1) + g(n)

where g(n) are zero mean white noise sequences uncorrelated with
the desired signal d(n)



EX2: Causal FIR Wiener Filter

* The observed signal is

y(n) = d(n) +vi(n)

and reference signal v2(n) is used to estimate v (n) and cancel its
effect.

* Autocorrelation for v, (n)

?ﬁugug (k) — E Z Uz(ﬂ)'vg(n st k‘)

and cross-correlation

1 N—-1
Fyoa (K) = > y(n)va(n — k) —
n={

10.2022
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EX2: Causal FIR Wiener Filter

* The Wiener filter £ is obtained by solving Wiener-Hopf equation
R

» Obtained filter is used to estimate v, (n) which is subtracted from
observations y(n) in order to obtain the desired sinusoidal d(n).

Aalto University
School of Engineering 18.10.2022
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Sketch of Causal IIR Wiener Filter

* Now the goal is to find a stable and causal linear filter witha a stable
and causal inverse filter that will convert the input sequence {z(k)}
into white sequence {z(k)}.

* The combination of the causal whitening filter and the best causal
estimate on filter acting on {z(k)} will form the best causal filter

acting on {z(k)}.
* Let us assume that ﬁéz—} is the transfer function of such a causal,
stable, linear invertible whitening filter.
1

(20} > gy = {20}
The autocorrelation for the white sequence is rzz(n) = d(n) and its
z-transform 1 —_—

G(z)G* (1/2‘* ) = 18.10.2022
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Sketch of Causal IIR Wiener Filter

* The overall optimum causal filter is the combination of the
whitening filter and the optimum filter for {z(k)}, i.e.,

H(z) = Gég) [G’%Ei}i)L

/

Causal part of filter

which means that the impulse response truncated at m = 0 and
m < 0 values are set to zero.

Aalto University
School of Engineering 18.10.2022
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EX: Causal IIR Wiener Filter noise canceller

Whitening filter

Causal Wiener filter acting
P07 e e on {z(k)} (ouput of whitening filter)
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Steepest Descent and Adaptive Filtering

o Steepest descentis an old, deterministic optimization method.
« Stochastic gradient-based methods are based on it.

* Itisanapproach that finds the minimum of the error
performance surface such as Mean Square Error

J(n)=E{|e(n)[}
e Errorsurface must be known
« Adaptive approach that finds the optimal filter
Wo =R XX r dx
without inverting matrix R. Here d denotes the desired signal and
X observed signal

Aalto University
School of Engineering 7.11.2022
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EX: Error surface for 2 coefficients wy, w,

A J(w)

N

If we would drop a ball to this bowl shaped error surface, it would reach
the minimum following the path of steepest descent.
We will move in the direction of negative gradient until the optimum is

reached

Aalto University
School of Engineering 7.11.2022
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Steepest Descent and Adaptive Filtering

e Ateach time instance n, we are taking a step in the direction of
negative gradient until the optimum coefficients w are found

w(n+1)=w(n)+ % ul—vJn)j

 The stepsize is denoted by u

» Since the method uses feedback, the step size must be chosen
appropriately to guarantee stability

 The eigenvalues of autocorrelation matrix R can be used to
ensure stability

Aalto University
School of Engineering 7.11.2022
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Steepest Descent and Adaptive Filtering

« Safe choice (Widrow) based on maximum eigenvalue of R:

)
O<u<?
“<2

max

A

max

* Eigenvalue spread impacts the convergence:

][ ﬂ'min
1 5 =0
avd i ne
n=1 n=2
ﬂ-2 ﬁ
A%3
% 03

» Large eigenvalue spread leads to slower convergence

Aalto University
School of Engineering 7.11.2022
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SD convergence when large ratio of eigenvalues (eigenvalue spread)

Wy

Aalto University
School of Engineering 7.11.2022
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Least Mean Square (LMS) adaptive filter

* |n practise we are often dealing with time varying systems and the
signal properties may change as a function of time. Hence, the

assumption on WS Stationarity used in Wiener filtering does not
hold.

* |n order to perform filtering somehow in optimal manner the filter
transfer function H(z) and consequently filter coefficients must vary
based on changing signal characteristics.

* Consequently, the coefficients are data dependent and the
superposition principle does not hold. Hence, we can say that
adaptive filter is a nonlinear device (although the filter itself may
perform linear combination of input values)

* Adaptive filter consists of two elements: a discrete time filter and an
adaptive algorithm for changing the coefficients of H(z).
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LMS adaptive filter

W

Algriinm

+ | oy
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A
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LMS adaptive filter

» Similarly to Wiener filtering adaptive algorithms use the difference
between the true response y(k) = s(k) and the desired signal s(k)
of the system to modify the coefficients h,. The error is defined as

e(n) = s(k) —y(k) = s(k) — s(k).
* FIR LMS filter with p coefficients

* Least Mean Square algorithm is widely used and simplest adapive
filtering algorithm. Let the input-output relationship be

k)= i hy(m)x(k —m),

i.e., the system is a time variant FIR-filter where h,(i)’s are p
varying filter coefficients, k is a time index, x and y are the filter
input and output, respectively.



LMS adaptive filter

e The error is defined as follows

e =s(k) — s(k) =s(k) — th?n)rk m)

m=0

and the filter coefficients are changed for each sample such that
mean square error (MSE) is minimized:

J = Elle(k)[?].

» Similarly to Wiener filtering: In order to find optimal coefficients, the
error function J is differentiated with respect to the filter coefficients
h;. As a result we get the surface gradient with respect to the
coefficients h;..

0J  Ele(k)e* (k)]
oht  Oh;

Vid = where hf = [h(0) hi(1) --- hi(p—1)]t

18.10.2022
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LMS adaptive filter

* The gradient may be evaluated
ViJ(k) = —Ele(k)x" (k)]

* LMS is a steepest descent method which iteratively looks for the
minimum. Steepest descent direction is the direction of negative
gradient.

* No matrix inversion is required.
* The coefficients are updated at the arrival of new observation as
follows x
hit1 =hg — pViJ(k) = hy + pEle(k)z™ (k)]
where 1 is a parameter that controls the rate of convergence.

* The update of the coefficients is proportional to the negative
gradient of the error surface. MSE gets smaller on each step and
the gradient equals zero at the optimum. This solution would —
correspond to the Wiener filtering solution.

18.10.2022
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LMS adaptive filter

* In the Wiener filtering derivation we were minimizing the expected
value of the squared error. However, this expecteted value and
consequently the gradient are usually unknown and have to be
estimated.

* The coefficient update is rewritten using the instanteneous estimate
of the error instead of expected error

hir1 = he — pViJ (k) = by + pe(k)z* (k)

i.e., —FEle(k)z* (k)] is replaced by —e(k)z* (k). The error (k) is
given in vector form y(k) — hl z(k)

* If we have the input sequence {z(k)} and the desired signal {s(k)},
only the parameter p controlling the convergence have to be
chosen.

* If 1 is very small the filter adapts very slowly. 18.10.2022
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EX: LMS adaptive channel estimation, steepest descent

: Example for the Unknown Channel of 2 order

Initial guess

Desired Combination of taps

Aalto University
School of Engineering 18.10.2022
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LMS adaptive filter

* On the other hand, if . is large the update may contain a significant
error and the adaptive filter does not converge to the optimum.

* Typically the optimal (Wiener) solution is not obtained and the
actual solution fluctuates in the vicinity of the optimal solution.

* A general condition for the convergence is given by
2

Amam .

) <p<

where )\, .. IS the largest eigenvalue of the autocorrelation matrix
R, of data =.

* A commonly used condition for ;. may be given as follows

2 2
Dz i = ,
& Tr(R.,) total signal power’

where Tr(R,,) is the trace of the autocorrelation matrix.

022
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Least Mean Square (LMS) adaptive filter

* Such step-size guarantees convergence in the Mean Square sense.

* Haykin: The mean square error .J converges to a steady-state
which exceeds the minimum mean square error .J,,,;,, because we
are estimating the gradient based on one observation (high

variance in estimates). The excess error is denoted by .J..,. and the
mean square error is given as follows:

1
1—#2,&, 0 =3¢ }.L

* The misadjustment is the ratio of the steady state excess MS error
to the minimum mean square error

J_-“LIS — Jm?ln =pe Jf'.l(oc) = Jm.zn

T} 553
M =
Jmin



Least Mean Square (LMS) adaptive filter

* |t can be approximated by

1
M = SH i Has):

* By using the estimate 57 for the total signal power, the LMS
coefficient update may be rewritten
2ue(k)z* (k)

hxi1 = hg + e and 62 = ox?(k) 4+ (1 — a)éi_,,
Pay

where 0 < a < 1 is a forgetting factor which decreases the the
influence of the past observations to the current estimate. This is
necesary since we are dealing with time varying systems.

* There are quite a few modifications of the basic LMS algorithm
including Normalized LMS, Leaky LMS, etc and the convergence
parameter may vary, etc. 18.10.2022
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EX: LMS adaptive noise canceller

E' 1 Primary Signal a’fjr;} .em}l Output
i (5 )—>r—>
SOUICe +
x(m) 4 -
| i
i
_ Reference Signal ,/ i)
Noise Adaptive
. pO——p P
oM ! . Filter |
/ |
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EX: LMS linear prediction

&l

> 0w

X

Adapt e
Efor

¥in)

@)

A
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EX: LMS linear prediction

» Second order AR-model is defined by the difference equation
y(n) =1.2728y(n — 1) — 0.81y(n — 2) + v(n)

where v(n) is white noise with unit variance.

* The optimum coefficients (1) = 1.2728, h(2) = —0.81 can be
directly estimated if autocorrelation sequence of y(n) is known.

* The input to the adaptive filter is a delayed version of the observed
signal.

Aalto University
School of Engineering 18.10.2022
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EX: LMS linear prediction

* The adaptive linear predictor for estimation of the coefficients
B 1) hs 2N IS

g(n) = hn(Dy(n — 1) + hn(2)y(n — 2)
* The LMS-update for the coefficients is
hni1(k) = hn(k) + pe(n)x*(n — k)

* |n order to converge towards Wiener solution, the value of i have to
be chosen sufficiently small such as ;. = 0.004.

Aalto University
School of Engineering 18.10.2022
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EX: LMS adaptive line enhancement

* The task at hand is adaptive noise cancellation from

y(n) = d(n) +v(n)

where v(n) is the noise to be cancelled, d(n) is desired signal
uncorrelated with the noise and y(n) is the measured signal.

* Unfortunately, no secondary reference signal that could be used to
cancel v(n) is available

* Therefore, a delayed version of the input signal is used a reference
signal.

* Noise are assumed to be uncorrelated over time and desired signal
Is correlated over time.

Aalto University
School of Engineering 18.10.2022
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EX: LMS adaptive line enhancement

* Time delay makes reference signal correlated with the desired
signal component d(n) but the noise components are uncorrelated.

* The output of the adaptive filter is an estimate of the desired signal
and the difference between the measured signal and adaptive filter
output is an estimate of the noise to be cancelled.

* The method can be used for spectrum estimation as well. The
amplitude response of the adaptive filter is proportional to the
frequency content of input data.
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EX: LMS adaptive line enhancement
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Kalman Filters

* R.E. Kalman 1960, Swerling/Rand corporation memo has also
claimed the results.

* Gaussian assumption is crucial for optimality (Gaussian thermal
noise in sensors), random inputs to the system (e.g., due to
turbulence)

¢ Kalman filters extend the Wiener filter to nonconstant coefficient,
multivariate systems and nonstationary signal/noise, nonlinear
models and gives a sequential solution

* Kalman filter is derived here as an optimal mean square error filter
using the Bayesian approach. (no linearity needs to be assumed
but it follows from the Bayesian approach that the optimal filter will
be linear)

Aalto University
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Kalman Filters

* Recall conditional mean E[z|y|: Suppose that = and y are jointly
Gaussian with means /.., 11, (and covariances...) then E|z|y| is
Gaussian with mean

E[z|y] = pta + CayCy} (y — y)
and covariance

Cov(zly) = El(x — Elely))(x — Elzly)] = Cuz — CryCi Cy

where (' is a covariance matrix.

* The computation of conditional mean at arrival of each new
observation is time consuming.

* The amount of memory required would grow.

* |n order to do real time estimation it would be convenient to have
recursive formula for E[z|y| = FElz(k)|y(k), ..., y(0)]

18.10.2022
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Kalman Filters

» Kalman filter is a collection of recursive formulas for computing the
conditional mean for linear system with Gaussian noises and initial
state.

* |t avoids growing memory problem.

Aalto University
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Kalman Filters: state variable model

* A necessary model in state estimation problems

* Allows for describing nonstationary time varying systems. The
model is given as follows:

z(k) = F(klk — Da(k — 1) + B(k|k — 1)u(k — 1)

+G(k|k — Dw(k — 1)
y(k) = H(k)x(k) + v(k),

where w and v are mutually uncorrelated, jointly Gaussian white
noise sequences and u is a known input vector (e.g. control input,
sensor platform motion), y is the measurement.

* From here on, the known input « is assumed to be zero here
without any loss of generality.



Kalman Filters: state variable model
* The following assumptions are made

Elw(iyw” ()] = Q(0)5,
Elo(i)e” (j)] = R(i)3y

E[w(i)v? (j)] = 0 forall 4, j

w IS the state noise term, and contains modeling errors, errors in
control input and other uncertainties in the system.

* » is the measurement noise term and models sensor noise.

This model does not cover all situations: w and » may be
correlated, noises may be colored, measurements may be “too”
accurate (practically no measurement noise), ...

* Noises are typically assumed to be Gaussian (filter is optimal then)
otherwise the filter is best linear estimator. 2022
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Kalman Filters: state variable model

* If 2(0), w(k) and v(k) are jointly Gaussian, so is y(k).

* WWe may have: Scalar state and scalar measurements; scalar

measurements and vector state; or vector measurements and
vector state.

* F.G, B, H are known sequences of matrices.

Aalto University
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Kalman Filtering Equations

* We group the equations comprising the Kalman Filter into two
groups: prediction (time update) and correction (measurement
update) equations; and the computation is then done in two stages.

* The Kalman Filter is defined by:
(1) Prediction equations (prediction of the state of the system at
time £ using the measurements up to time £ — 1). The predicted

state z(k|k — 1) = E|x(k)|y(k — 1), ...,y(0)] is given
z(klk—1)=F(klk —1)z(k — 1|k — 1)
and prediction error covariance
P(k|b—1)=Fklk— D P{k—1|k—=1)F" (k|k—1)

+G(k|k — 1)Q(k — 1)GT (k|k —1)



Kalman Filtering Equations

* (k) is the state noise covariance matrix, and w(k) is zero mean
Gaussian sequence, P(k|k — 1) is prediction error covariance
matrix and P(k — 1|k — 1) is estimation error covariance matrix.

* (2) Correction equations use the new measurement to update the
predicted state estimate to filtered state estimate
i(k|k) = Elz(k)|y(k), ..., y(0)] is given
2 (k|k) = 2(k|k — 1) + K(k)[y(k) — H(k)2(k|k — 1)
and covariance matrix of filtered estimate of the state

P(k|k) = P(k|k — 1) — K(k)H (k)P(k|k — 1)

where Kalman gain

K(k) = P(klk — 1)HT (k) x [H(k)P(k|k — )HT (k) + R(k)] ™" 0o
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Kalman Filtering Equations

* K(k) is the Kalman gain which specifies the amount the
measurement prediction residual or innovation
y(k|lk —1) =y(k) — H(k)z(k|k — 1) have to be multiplied to get the
correction which updates the predicted state z(k|k — 1) of z(k) to
new filtered state estimate z(k|k).

* Two stage computation in Kalman Filtering

* A filtered estimate of state is obtained from a predicted value
z(k|k — 1) by performing a correction step K (k)y(k) when new
measurement is obtained. The measurement residual y(k) is

y(k) = y(k) — H(k)z(k|k —1).

* The prediction step uses our previous estimate and our state model
to predict the new state. The correction step uses the difference
between predicted measurement j(k|k — 1) = H(k)z(k|k — 1) and
actual new measurement y(k). 8.10.2022
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Kalman Filtering Equations
k-1 k k+1

prediction R(K[k-1) x(k+1]k)

x(k-1[k-1) x(k[k)

updating  }
y(k)
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Kalman Filtering Equations
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Kalman Filtering Equations
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Kalman Filtering Equations

* Prediction (a priori) error e(k|k — 1) = z(k) — (k|k — 1) where
z(k|k — 1) means that estimate of state at time £ is produced using
data upto time & — 1. Covariance matrix of prediction error is
P(Elk — 1) = Ele(klk-—1)el (k|k— 1)].

» filtering (a posteriori) error is e(k|k) = x(k) — x(k|k) Covariance
matrix of filtering error is P(k|k) = Ele(k|k)e! (k|k)]

* We can obtain a prediction of the next measurement by using the
measurement equation g(k|k — 1) = H(k)z(k|k — 1).

Aalto University
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Prediction Equations Proof

* Proofs are based on the assumption that state and measurement
noises and initial state are Gaussian. This will lead to an optimal
estimator. Otherwise we will end up with best linear estimator.

* Proofs for the prediction equations
Z(k|k — 1) = Elz(k)|y(k — 1), ...,y(0)]

= E[{F(k|k — D)z(k — 1) + G(k|k — Dw(k — 1)}y(k — 1), ...,y(0)]
= F(k|k—1)Ez(k—1)|y(k—1), ..., y(0)] + G(k|k — 1) E[w(k—1)|y(k—1), ..., y(0)]
= F(k|k— 1)a&(k — 1Jk — 1) + G(k|k — 1) E[w(k — 1)|y(k — 1), ..., y(0)]
* I"and G can be moved in front of the expectation operation based
on the linearity of expectation and

2(k—1lk —1) = Elz(k — 1)|y(k — 1), ...,y(0)] is the other original
definition.

Aalto University
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Prediction Equations Proof

.E[u"(k_l)‘y( ) ()]_ [ _1)]20 Leti:]_“”.,k‘-—l
so y(i)’s are determmed by z(i)’s and v(i)’s that are independent of
w(k — 1) so the conditioning can be removed. Moreover w(n) were
assumed to be zero mean and Gaussian. Hence, we get the
original equation

z(klk —1) = F(klk — 1)a(k — 1|k — 1)

» The proof for the prediction error covariance matrix
P(klk — 1) = Cov(z(k)|y(k — 1),...,4(0)) =
= Cov({F(klk —D)a(k—1) +G(klk —1)w(k—1)}y(k—1), .., y(0)) =
= Cov(F(k|k — D (k — 1)|y(k — 1), ...,5(0))
+Cov(G(klk — Dw(k —1)|y(k — 1), ..., (0))
= Cov(F(klk—1)z(k—1)|ly(k—1),...,y(0))+Cov(G(k|k—1)w(k—1))



Prediction Equations Proof

* The same independence property as earlier is used to remove the
conditioning for w. We use the property of covariance matrices:

Cov(UX) = UCou(X)U" to rewrite prediction error covariance
P(klk — 1) = F(k|k — 1)Cov(z(k — 1)|y(k — 1), ..., y(0))FT (k|k — 1)
+G(k|k —1)Cov(w(k —1))GT (k|k — 1)

— F(klk —1)P(k — 1|k — 1)FT (k|k — 1)
+G(k|lk —1)Q(k — 1)GT (k|k —1)

Aalto University
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Correction Equations Proof

* |In the measurement equation
y(k) = H(k)z(k) +v(k)

y and x are jointly Gaussian and v is Gaussian and independent
from x and y.

* The proofs for the correction equations are based on induction.
First let us show that the equations hold for £ = 0. The same
assumptions for noises are used again: x is distributed as
N(u(0),%(0)), and v is distributed as N (0, R(0)). Find conditional
expectation E[z(0)|y(0)]:

2(0[0) = E[z(0)|y(0)]

= p(0) + P(0)H" (0)(H(0)P(0)H" (0) + R(0))~" (y(0) — H(0)1(0))

— 2(0] — 1) + K(0)(y(0) — H(0)&(0] — 1)) -
where K (0) = P(0)HT (0)(H(0)P(0)HT (0) + R(0))""
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Correction Equations Proof
* The filtering error covariance is
P(0[0) = P(0) — P(0)H" (0)(H(0)P(0)H" (0) + R(0))~" H(0)P(0)

= P(0[0 — 1) — K(0)H(0)P(0[0 — 1)

* Assume that the correction equations are valid for £ = m — 1 where
m > 1. xz(m) and y(0), ..., y(m — 1) may be obtained by linear
transformations of Gaussians =(0) and w(0), ..., w(m — 1) and
v(0),...,v(m —1). As aresult, z(m) and y(0),...,y(m — 1) are jointly
Gaussian.

* z(m) given y(m —1),...,y(0) is Gaussian (z(m|m — 1), P(m|m — 1))
and v(m) is independent of y(m — 1), ...,y(0). v(m) and xz(m) are
conditionally independent given y(m — 1), ..., y(0)

Aalto University
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Correction Equations Proof

* Given y(m — 1), ...,y(0) equation y(m) = H(m)z(m) + v(m) is of
same form as the measurement equation for & = 0. Using this we
can easily show that update in correction equation hold for all
b=0172 ..

 Find conditional expectation of z(m) given y(m), we will get
z(m|m), given y(0), .., y(m — 1) which is the conditional expectation
of z(m) given y(0), .., y(m)
z(m|m) = Elx(m)|y(m)] = &(m|m — 1)

+P(m|m — 1)HT (m)(H(m)P(m|m — 1)H! (m) + R(m))™!
x[y(m) — H(m)z(m|m — 1)
= z(m|m — 1) + K(m)[y(m) — H(m)z(m|m — 1)]
~* Using similar arguments, for P(m|m) we obtained: —
P(m|m) = P(m|m — 1) — K(m)H(m)P(m|m — 1) 02022
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Innovations

* The measurement residual or prediction error is called Innovation
y(klk —1) = y(k) — 9(klk — 1) = y(k) — H(k)Z(k|k — 1)

(innovations sequence/process)

* The innovations are a zero mean Gaussian white noise process
with covariance

Elj(klk — 1)7" (k|k — 1)].

Gaussianity is obtained from the fact that linear transformations of
Gaussians y(k), z(k|k — 1) are Gaussians.

* The mean of the innovation sequence is

Ely(k)| = Ely(k) — Ely(k)|y(0), ..., y(k = 1)]] = Ely(k)| — Ely(k)] = 0



Innovations

* The covariance of the innovation sequence is:
Elg(k)g" ()] = Pygon

l.e., they are mutually uncorrelated and they are also independent
because they are jointly Gaussian.

* As a result Kalman filter producs white innovations sequence which
is equivalent to the original observation sequence in a sense that it
contains the same statistical information.

* Innovations can be written y(k) = y(k|k — 1) + y(k|k — 1) where the
first term on RHS is the part of y(k) that can be predicted from the
past and the second term (innovation) is the part that cannot be
predicted. Therefore, innovations are the new information brought
into system.

Aalto University
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EX: wireless comms channel tracking using KF

 Communication channels are often characterized being linear but
not necessary time invariant (e.g., fading multipath channel).

* The medium can be treated as a linear filter which alters an impulse
at the input to a appear as a continuous waveform at the output.

* An appropriate channel model is a tapped delay line model. The
input-output relationship may be expressed by

u(k) = 0 for k < 0. Here u(k) could be known training symbols (e.g.
mid-amble in GSM) or decisions fed back by the receiver.

Aalto University
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EX: wireless comms channel tracking using KF

* We have an FIR filter with time varying tap coefficients and we want
to estimate h.(n) based on noisy measurements.

E:hk n)u(k —n) + v(k),

where v(k) is observation noise.

* Suppose we have 2 taps, i.e., p = 2. The observations are
time instant k£ = 0:
y(0) = ho(0)u(0) + ho(L)u(—1) + v(0) = ho(0)u(0) + v(0)
time k£ = 1: y(1) = h1(0)u(1) + h1(1)u(0) + v(1)
and time k£ = 2: y(2) = ha(0)u(2) + ha(1)u(l) + v(2)



EX: wireless comms channel tracking using KF

e so for each discrete time index £ we have two new unknowns
hi.(0), hg (1) which makes the determination of the channel tap
weights a nasty job.

* The tap coefficients do not change rapidly in subsequent time steps
(coherence time).

* We will exploit the correlation between subsequent values of the
same tap weight.

* The tap weights are RV's that can be described employing
Gauss-Markov model and the problem formulated using
state-variable model.

* The tap weights are assumed to be mutually uncorrelated and
consequently independent due to Gaussianity.

Aalto University
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EX: wireless comms channel tracking using KF

* Consequently, the state vector (channel) evolves as:
h(k) = Fh(k —1) +w(k).

where F'is a known p x p matrix, h(n) = [hx(0), ..., hx(p — 1)] and
w (k) is vector white Gaussian noise with covariance @ (p x p).

* The measurement equation is given by
y(k) = u’ (k)h(k) +v(k),

where ul (k) = [u(k) u(k — 1) u(k — p + 1)] and v(k) is WGN with
variance 2.

* Now we will estimate the tap coefficients using the Kalman filter.
Our measurements are scalars and our state is a vector.



EX: wireless comms channel tracking using KF
* The prediction equations are
h(k|lk —1) = F(k|k — 1)h(k — 1|k — 1)
and
P(klk —1) = F(klk — D)P(k — 1|k — DFT(k|k — 1) + Q(k)

where Q(k) = E[w(k)w! (k)] (known control input is zero!).

* The correction (update) equations are
h(k|k) = h(k|k — 1) + K (k)[y(k) — u” (k)h(k|k — 1)]

and
P(klk) = P(klk—1) — K(k)uT(k)P(klk —1)

2022
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EX: wireless comms channel tracking using KF
* and the Kalman gain

K(k) = P(k|lk — 1)u(k)[u? (k)P(k|k — 1)u(k) + 0%~
* Now this system is initialized by h(—1| — 1) = pp, and

P(_H o ]‘) = Hr-

* In our model we had p = 2, i.e., a 2 tap FIR filter and the matrices
we know in our state equation are

099 0 0— 0.0001 0
0 0.999 1o 0.0001

* We will use starting values h(—1| — 1) = 0 and P(—1| — 1) = 1001.
Large initial P is chosen in order to avoid trusting too much on the
initial state estimate which may have arbitrary value. 18.10.2022
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Kalman Predictor

* One-step Kalman Predictor equation:
#(k + 1|k) = F(k + 1|k)&(k|k — 1) + K(k)[y(k) — H(k)z(k|k — 1)]
Predictor gain K (k):
K(k) = F(k+1|k)P(k|k—1)HT (k) x[H(k)P(k|k—1)HT (k)+R(k)] !
and Prediction error covariance:

P(k+1lk) = [F(k+ 1|k)K (k)H (k)| P(k|k — 1) FT (k + 1|k) 4+ Q(k)

Aalto University
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Remarks on Kalman Filter Performance

Filter performance can be analyzed before actually making

measurements.

The gain matrix K (k) can be considered to minimize
Trace(P(k|k)), I.e. estimation variance

Intuitive interpretation for the gain is that the gain is large if the
state prediction is inaccurate and the measurement is accurate
(R(k) in the matrix to be inverted is close to zero then,
measurement is trusted and system model bad) and the gain is
small if the state prediction is accurate and the the measurement is
inaccurate (good system model and bad measurement, P(k|k — 1)
close to zero, R(k) is larger).

Initial estimates: based on measurements: measurement error
covariance and mean are pretty easy whereas state error
covariance is more difficult (contains the modeling uncertainty).
Sometimes one can use a poor model by using large state noise
covariance matrix. R



Remarks on Kalman Filter Performance

* If the noise covariance matrices are constant the equations for
covariances are independent of measurements, hence they can be
iterated before any measurements are obtained or processed.

* Riccatti difference equations written as a pair of coupled equations:
The prediction error covariance matrix is

P(k + 1|k)
= F(k+ 1|k)P(k|k)FL(k + 1|k) + G(k + 1|k)Q(k)GT (k + 1|k)
where the estimation error covariance matrix P(k|k) is given by
P(k|k)

= P(klk—1) — K(k)H(k)P(k|k — 1) = [ — K(k)H(k)|P(k|k — 1)



Remarks on Kalman Filter Performance

* The matrix Riccatti equation for P(k + 1|k) allows for computing
directly the updated value P(k + 1|k) given the old value P(k|k — 1):

P(k + 1|k) = [F(k + 1|k) — K (k)H(k)|P(k|k — 1)

x[F(k+1lk) — K(k)H(K)]" + Q(k) + K(k)R(k)K” (k)
= F(k + 1|k)P(k|k — 1)[I — H(k)T[H(k)P(k|k — 1)H(K)T + R(k)] !
xH(k)P(k|k — 1)|F(k +1|k) + G(k + 1|k)Q(k)GT (k + 1|k)

* Matrix inversion in the gain computation is in general not a problem
since the dimension of the matrix to be inverted depends on the
dimension of the measurement vector y(k). If it is a probem,
applying matrix inversion lemma should be considered (Covariance
vs. Information form of KF).



Remarks on Kalman Filter Performance

* Two forms: Information and covariance form. The covariance form
propagates the covariance matrix whereas the information form
propagates the inverse of the covariance matrix which is related to
Fisher Information Matrix. Information form is hence suitable for
studying the performance using information theoretical tools.

* |t is a sufficient and necessary condition for Kalman filter to be
optimal that the innovations are zero mean and white sequence.

* |f the assumption on zero mean Gaussian noises hold, Kalman
filter is the Minimum Mean Square Error estimator. Otherwise it is

the best linear estimator (Linear MMSE) (when only 2 moments are
known).

* Relation to RLS, (Sayed and Kailath 1994, IEEE Signal Processing
Magazine)



Square-Root Kalman Filter

* In expression for P(k|k) one subtracts two non-negative definite
matrices and the result may not be non-negative definite
covariance matrix. Hence P(k|k) may be presented as a product of
its square root matrices. Square root matrices are updated and the
product of two square root matrices (product of a square matrix and
its hermite transpose) is always non-negative definite. As a result a
numerically more stable algorithm is obtained.

* Square roots may be computed using Cholesky decomposition
P = LLT where L = P'/? or UD factorization.

* |n addition, Givens rotations are needed.
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Extended Kalman Filter (EKF)

* |f the process is nonlinear or the obervations are nonlinearly related
to the state, the Kalman filter may not be used anymore.

* In state equation =(k) = F(k|k — 1)z(k — 1) is replaced by nonlinear
model z(k) = F(k,z(k — 1)) and in measurement equation
y(k) = H(k)x(k) is replaced by y(k) = H(k, z(k))

* The extended Kalman filter algorithm is used in such cases. It

linearizes the model (about the new estimate) and applies the
linear Kalman filter then.

* As aresult it is not optimal filtering anymore and the performance of
the filter may not be determined in advantage. No convergence can
be established either, hence EKF have to be considered an ad hoc
estimation technique.

* The quality of the linearization (about the current estimate) is an —
important factor in obtaining a good performance. 0.2022
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Extended Kalman Filter (EKF)

* The linearization is similar to Taylor series approach. Partial
derivatives of the state and measurement equations are used

* The equations appear as follows:
xz(k) = F(klk —1)z(k—1)
+[F(k,&(k — 1|k — 1)) — F(k|k — D& (k — 1|k — 1)]
y(k) = H(k)x(k) + [H(k, &(k[k — 1)) — H(k)Z(k|]k —1)]
where F and H are Jacobian matrices
OF OH

F o= . and respectively H = =
where derivatives are evaluated at #(k — 1|k — 1) and z(k|k — 1)
respectively.
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Extended Kalman Filter (EKF)

* Now the Extended Kalman Filtering equations in prediction stage
appear as

2(klk —1) = F(k,2(k — 1|k — 1)) = F(k|k — 1)&(k — 1|k — 1)

+[F(k,2(k— 1|k —1)) — F(klk —1)z(k — 1|k —1)]
and the prediction error covariance matrix

P(klk —1) = F(k|k —1)P(k — 1|k — 1) F' (k|k — 1)

+G(k|k —1)Q(k)GT (k|k —1)

The equations in the correction stage are as follows: the updated
state estimate is

(k|k) = @(k|k —1) + K(k)[y(k) — H(k, &(k|k —1))]



Extended Kalman Filter (EKF)

* The estimation error covariance matrix
P(k|k) = P(k|k — 1) — K(k)H(k)P(k|k — 1)
where the Kalman gain (k) is
K(k) = P(klk — DYHT (k) x [H(k)P(k|k — 1)HT (k) + R(k)] L.

* This is a linear Kalman filter for the model and it operates similarly
to the Kalman filter. Th linear terms in the Kalman filter are
replaced by approximate terms in the EKF.

Aalto University
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Extended Kalman Filter (EKF)

* Application examples include, delay tracking in CDMA, frequency
offset tracking in OFDM systems, maneuvering target tracking in
radar.

» Let the state equation be

[ za(k 4+ 1)

+

| za(k)+0.9z;(k)
| kap(k) — 0.8z, (k)xy(k)

wq (k) }
wyp (k)

and measurement equation
y(k) = za(k)zy (k) + v(k)

I.e., the model is nonlinear and EKF have to be used.
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Extended Kalman Filter (EKF)

* Therefore we have

zq (k) + 0.922 (k)

Flk z(k)) = kay(k) — 0.8z (k) (k)

and
H(k,2(k)) = zq(k)xj (k)
* Construct the Jacobian matrices

_OF OF (k,z)
F_%_ ox

where evaluation is performed at = = z(k|k)

Aalto University
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Extended Kalman Filter (EKF)

* For H()

oH
Lo

where evaluation takes place at = = z(k|k — 1).
* Consequently

F=—=

—0.82, k — 0.8z,

1 1.8z, ]

which is then evaluated yielding

1 1.82 (k|k)
Fll+ 1|k) =
et 1K) lO.Bﬁib(Mk) ko.&%a(kk)]

Aalto University
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Extended Kalman Filter (EKF)

» Similarly for the measurement equation

?{:%Lj:[xg 2:.3&:1:5;}

* |t gives
H(k) = [ #2(klk —1) 28, (k|k — 1)d,(k|k — 1) ]
* Now the first order Taylor series approximations about the current
estimates appear as
F(k,z(k)) ~ F(k, 2(k|k)) + F(k + 1|k)(z(k) — &(k|k))
and

H(k,z(k)) ~ H(k,&(k|k — 1)) + H(k)(x(k) — 2(k|k — 1))

Aalto University
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EX: MIMO channel and carrier offset tracking with EKF
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Divergence of Kalman Filter

* The actual estimation error variance significantly exceeds the

values theoretically predicted by v. The error may become
unbounded even if the error variance in Kalman algorithm is
vanishingly small.

* Main reasons for divergence:

— Inaccuracies in the modeling process used in determining state
and measurement models;

— failure of linearization; lack of knowledge of physical problem;
— too simplifying assumptions for mathematical tractability;
— errors in modeling noise variances and mean;

— round-off errors = error covariance matrix may loose its positive
definitiveness or symmetry.
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Divergence of Kalman Filter

* Raise the order of the problem, i.e., take into account unaccounted
input. This is OK, if computational complexity is not a problem.

* Square root filtering when round-off errors cause divergence

Aalto University
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Recent advances in sequential estimation

A

Mainly for nonlinear systems, non-Gaussian noises and cases
where the a posteriori distribution is not necessarily a symmetric
unimodal distribution

Particle filters also known as Sequential Monte Carlo methods
(SMC), are sophisticated model estimation techniques based on
simulation.

Unscented Kalman Filter (UKF): The Kalman Filter propagates a
Gaussian rv. through the system dynamics. In the EKF, the state
distribution is approximated by a Gaussian rv, which is then
propagated analytically through the first-order (Taylor series)
linearization of the nonlinear system. This can introduce large
errors in the true posterior mean and covariance of the transformed
rv, which may lead to degraded performance and sometimes
divergence.

Aalto University
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Unscented Kalman Filter (UKF) idea

UKEF is based on the idea that it is easier to approximate a probability
distribution that it is to approximate an arbitrary nonlinear function or
transformation

The unscented transformation is a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation

This problem is solved by using a deterministic sampling approach.

The state distribution is represented using a minimal set of carefully
chosen sample points, called sigma points.

Each sigma point is then propagated through the nonlinearity yielding in
the end a cloud of transformed points.

The new estimates of mean and covariance are computed for the
transformed points using their weighted mean and covariance

Aalto University
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Unscented Kalman Filter (UKF)...

* The UKF addresses this problem by using a deterministic sampling
approach. The state distribution is again approximated by a
Gaussian rv, but is now represented using a minimal set of carefully
chosen sample points. These sample points completely capture the
true mean and covariance of the rv, and when propagated through
the true non-linear system, captures the posterior mean and
covariance accurately to the 3rd order (Taylor series expansion) for
any nonlinearity. The EKF, in contrast, only achieves first-order
accuracy. The computational complexity of the UKF is the same

. order as that of the EKF.

« Selected 2L points X; are called Sigma points that are propagated through
the true nonlinear transform g() to get a-posterior sigma points Y

« Their weighted mean and covariance are computed

e (Gaussian assumption is crucial!

* No need to calculate Jacobians as in EKF

Aalto University
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Actual (sampling) Linearized (EKF) uT

Unscented Transform

. . covariance s \\'0
2L+1 sigma points X and 9 \}9@
. . o]
thelr WelghtS W Ith rOW Of matrIX Sql’t mean ol
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UT covariance

Figure 1: Example of the UT for mean and covariance prop-

o ) . agation. a) actual, b) first-order linearization (EKF), c) UT.

A = o?(L + k) — L is a scaling parameter.
Mean and covariance

. 2L
Vi = Q(Xé) t=0,...,2L ¥ o~ ng(m)y‘i of posterior sigma
: . : =0 points
a is the spread of sigma points, oL
S contains prior knowledge of distribution of x P, ~ E Wé(c) i -7 -7}
Kk is secondary scaling parameter i=0 18.10.2022
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