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Commonly used Optimal Filters

• Wiener Filter: optimal filter for scalar signals in wide sense stationary
(WSS) scenarios.
• Minimizes the Mean Square Error (expected value of squared error)
• FIR Wiener Filter, Causal IIR Wiener Filters, non-causal IIR Wiener Filter

• Kalman Filter (KF) extends optimal filters to multichannel signals,
multidimensional states and nonstationary scenarios
• Linear model and Gaussian probability distributions are assumed
• Optimal Bayesian filter in minimum mean square error (MMSE) sense

• Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and
Particle Filter extend KF for nonlinear and non-Gaussian (PF) filtering
problems.

• Optimality may be lost because of linearization/approximation in EKF
and UKF. They work very well in many applications anyway.

7.11.2022
310



Optimal Filtering

18.10.2022
311



Optimal Filtering

18.10.2022
312



Optimal Filtering: filtering, predicting, smoothing
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EX: Smoothing Wiener Filter
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EX: Smoothing Wiener Filter
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Ex: noisy image smoothing using Wiener Filter
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Observed
noisy image

Wiener filter output

Ideal noise-free
image



Causal FIR Wiener Filter
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p linear equations
and p unknowns h(l)
in Matrix form:
Rxx hopt = rsx



Causal FIR Wiener Filter
Autocorrelation matrix has Toeplitz structure for WSS signals. Such
matrix is easier to invert. Autocorrelation sequence is conjugate
symmetric, i.e. rx(k) = rx*(k) for complex-valued data
• Ex: (p+1) x (p+1) dimensional Rx for complex data x

Large Toeplitz matrices can be well approximated with circulant
matrices that are diagonalized using DFT
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Causal FIR Wiener Filter
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EX: Causal FIR Wiener Filter
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EX: Causal FIR Wiener Filter
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EX: Causal FIR Wiener Filter
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EX: Causal FIR Wiener Filter as noise canceller
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W(z) is FIR Wiener Filter



EX: Spatial filtering
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W(z) is FIR Wiener Filter



EX2: Causal FIR Wiener Filter
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EX2: Causal FIR Wiener Filter
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EX2: Causal FIR Wiener Filter
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Sketch of Causal IIR Wiener Filter
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Sketch of Causal IIR Wiener Filter

18.10.2022
337

Causal part of filter



EX: Causal IIR Wiener Filter noise canceller
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Whitening filter
Causal Wiener filter acting
on             (ouput of whitening filter)



Steepest Descent and Adaptive Filtering

• Steepest descent is an old, deterministic optimization  method.
• Stochastic gradient-based methods are based on it.
• It is an approach that finds the  minimum of the error

performance surface such as Mean Square Error

• Error surface must be known
• Adaptive approach that finds the optimal filter

wo = R -1
xx r dx

without inverting matrix R. Here d denotes the desired signal and
x observed signal
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EX: Error surface for 2 coefficients w1, w2

• If we would drop a ball to this bowl shaped error surface, it would reach
the minimum following the path of steepest descent.

• We will move in the direction of negative gradient until the optimum is
reached
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Steepest Descent and Adaptive Filtering

• At each time instance n, we are taking a step in the direction of
negative gradient until the optimum coefficients w are found

• The stepsize is denoted by 
• Since the method uses feedback, the step size must be chosen

appropriately to guarantee stability
• The eigenvalues of autocorrelation matrix R can be used to

ensure stability
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Steepest Descent and Adaptive Filtering
• Safe choice (Widrow) based on maximum eigenvalue of R:

• Eigenvalue spread impacts the convergence:

• Large eigenvalue spread leads to slower convergence
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SD convergence when large ratio of eigenvalues (eigenvalue spread)
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Least Mean Square (LMS) adaptive filter
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LMS adaptive filter
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LMS adaptive filter
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LMS adaptive filter
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EX: LMS adaptive channel estimation, steepest descent
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LMS adaptive filter
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Least Mean Square (LMS) adaptive filter
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Least Mean Square (LMS) adaptive filter
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EX: LMS adaptive noise canceller
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EX: LMS linear prediction
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EX: LMS linear prediction
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EX: LMS linear prediction
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EX: LMS adaptive line enhancement
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EX: LMS adaptive line enhancement
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EX: LMS adaptive line enhancement
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Kalman Filters
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Kalman Filters: state variable model
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Kalman Filtering Equations

18.10.2022
367



Kalman Filtering Equations

18.10.2022
368



Kalman Filtering Equations

18.10.2022
369



Kalman Filtering Equations

18.10.2022
370



Kalman Filtering Equations
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Gaussian pdf
fully defined by
its mean and covariance



Kalman Filtering Equations
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Kalman Filtering Equations
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Prediction Equations Proof
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Correction Equations Proof
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Correction Equations Proof
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Innovations
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EX: wireless comms channel tracking using KF
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EX: wireless comms channel tracking using KF
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EX: wireless comms channel tracking using KF
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EX: wireless comms channel tracking using KF
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Kalman Predictor
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Remarks on Kalman Filter Performance
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Trace(P(k|k)), i.e. estimation variance



Remarks on Kalman Filter Performance
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Square-Root Kalman Filter
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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Extended Kalman Filter (EKF)
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EX: MIMO channel and carrier offset tracking with EKF
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Divergence of Kalman Filter
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Divergence of Kalman Filter
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Recent advances in sequential estimation
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Unscented Kalman Filter (UKF) idea
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• UKF is based on the idea that it is easier to approximate a probability
distribution that it is to approximate an arbitrary nonlinear function or
transformation

• The unscented transformation is a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation

• This problem is solved by using a deterministic sampling approach.
• The state distribution is represented using a minimal set of carefully

chosen sample points, called sigma points.
• Each sigma point is then propagated through the nonlinearity yielding in

the end a cloud of transformed points.
• The new estimates of mean and covariance are computed for the

transformed points using their weighted mean and covariance



Unscented Kalman Filter (UKF)…
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• Dimension of state x is L
• Selected 2L points Xi are called Sigma points that are propagated through

the true nonlinear transform g() to get a-posterior sigma points Yi
• Their weighted mean and covariance are computed
• Gaussian assumption is crucial!
• No need to calculate Jacobians as in EKF



Unscented Transform
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2L+1 sigma points X and
their weights W

Mean and covariance
of posterior sigma
points

ith row of matrix sqrt

 is the spread of sigma points,
 contains prior knowledge of distribution of x
 is secondary scaling parameter


