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1. (a) We can solve for the p∗ that maximizes joint profits by thinking as if the pricing decision

was made by a profit-maximizing monopoly. The demand it would face is the sum of

the demands of both firms. Since the problem is symmetric, we know that p∗1 = p∗2 = p∗.

QD(p) = Q1(p, p) +Q2(p, p) = 2× (20− 2p+ p) = 40− 2p

Let’s then formulate the profit function:

Π(p) = QD(p)(p−MC)

= (40− 2p)(p− 5)

And differentiate wrt. p to get the optimal collusion price p∗:

∂Π(p)

∂p
= 40− 4p+ 10 = 0

=⇒ p∗ = 12.5 e/l

(b) We know that the Nash equilibrium price is the same that we solved for the stage-game

in PS 6.4a, pN = 10. Let’s then solve for pC from the best-response function we solved

in PS 6.4a:

BR1(p
∗) =

30 + p∗

4
=

30 + 12.5

4

= 10.625 e/l

Now that we have the three prices, let’s calculate the payoffs of different price combi-

nations for OneGulp (by symmetry, they will be the same for TwoSips) by using the

payoff function from PS 6.4a:

p1 p2 Π(p1, p2) = (p1 −MC)Q1(p1, p2)

10 10 (10− 5)(20− 20 + 10) = 50 ek

10 10.625 (10− 5)(20− 20 + 10.625) ≈ 53 ek

10 12.5 (10− 5)(20− 20 + 12.5) ≈ 63 ek

10.625 10 (10.625− 5)(20− 21.25 + 10) ≈ 49 ek

10.625 10.625 (10.625− 5)(20− 21.25 + 10.625) ≈ 53 ek

10.625 12.5 (10.625− 5)(20− 21.25 + 12.5) ≈ 63 ek

12.5 10 (12.5− 5)(20− 25 + 10) ≈ 38 ek

12.5 10.625 (12.5− 5)(20− 25 + 10.625) ≈ 42 ek

12.5 12.5 (12.5− 5)(20− 25 + 12.5) ≈ 56 ek

The payoff matrix becomes:
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TwoSips

ek PN PC P ∗

O
n
eG

u
lp PN 50,50 53,49 63,38

PC 49,53 53,53 63,42

P ∗ 38,63 42,63 56,56

(c) The best chance for sustaining collusion is the Grim strategy, where a player colludes

as long as the other player colludes but switches to playing ”the stage-game Nash” for

forever if the other player ever deviates from the collusion price. The ”punishment”

action is to choose PN , the collusion action is to choose P ∗ and the ”cheating” action

is to choose PC . There are three relevant payoffs: ΠN = 50, Π∗ = 56 and ΠC = 63. We

need to check that no player has an incentive to deviate from either the punishment

state {PN , PN} or the collusion state {P ∗,P ∗}. We know that no player has an incentive

to deviate from the punishment state, because it is the stage-game Nash equilibrium.

So we only need to verify that a player doesn’t have an incentive to deviate from the

collusion state.

56 +
56

0.05︸ ︷︷ ︸
Present value of cooperating

≥ 63 +
50

0.05︸ ︷︷ ︸
Present value of cheating

1176 ek ≥ 1063 ek

This verifies that collusion can be sustained with r = 5%.

(d) Let’s solve for the highest r that makes collusion sustainable:

56 +
56

r
≥ 63 +

50

r
6

r
≥ 7

r ≤ 6

7
≈ 86%

When r is below 86 %, collusion is sustainable.

2. (a) This is a Hotelling line problem, where the airlines choose their departure times and

passengers choose to fly with the airline that departs closest to their preferred departure

time. Let’s denote the departure time by t ∈ {0, 40}, where the 08:00 departure time

is t = 0 and and the last departure time 18:00 is t = 40. The consumer surplus for a

passenger whose preferred departure time is i is CSi = 400− 10× |i− t| − 200 dollars.

This means that if the departure time differs from consumer i ’s preferred departure

time by more than 20 time units (or five hours), she will choose not to fly. Note that in

this market, it is profitable to serve all customers since the additional revenue from a

second flight is 300 passengers× 200 dollars per ticket = $60 000 which is higher than
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the additional fixed cost and also efficient to serve all customers because each of the

800 potential passengers gets at least a weakly positive consumer surplus.

In equilibrium, AcmeAir (A) locates at t = 20 and BonkWings (B) either at t = 19 or t

= 21, which is shown graphically below. If A places somewhere else than in the middle,

B will want to locate in the middle and that would leave A with fewer passengers. B’s

best response to A locating in the middle is to locate as close to the middle as possible.

The red line shows the share of customers that choose A and the blue line those that

choose B.

0 20

A

21

B

40

410 passengers 390 passengers

The profits of the airlines are:

ΠA(tA = 20, tB = 21) = 410× 200− 40 000 = $42 000

ΠB(tA = 20, tB = 21) = 390× 200− 40 000 = $38 000

To see why A wants to locate in the middle, let’s consider a case where A would locate

at t = 0. In this case, B would choose its position so that it gets the maximum capacity

of 500 passengers, which is achieved by locating eg. at t = 20.

0

A

20

B

40

200 passengers 500 passengers

A could thus improve by moving towards the middle. If A chooses for example t = 10,

it will get more passengers than by locating at t = 0. B would still want to locate in

the middle and would get more passengers than A.

0
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B

40

300 passengers 500 passengers

10
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(b) The total revenues to be earned in the market are 800 × 200 = $160 000. Since the

fixed cost is $40,000, there can be at most four flights departing in the market. Let’s

solve the exercise by guessing a potential equilibrium schedule and verifying that it

indeed is an equilibrium. An obvious candidate is a symmetric equilibrium where the

distance between each neighbouring flight is the same. One such equilibrium is to have

A’s flights located at t = 5 and t = 25 and B’s flights at t = 15 and t = 35. All flights

would get 200 passengers and earn zero profits. This is an equilibrium, since neither of

the firms can increase its profits by increasing or decreasing its amount of flights.

There are also many other equilibria. In one such equilibrium, A has two flights at

t = 5 and t = 35 and B one flight at t = 20

(c) Maximal profits are earned with a schedule that has two flights and that covers the

whole market. This is accomplished for example with a schedule that has flights at

t = 10 and t = 30. Profits are 800× 200− 2× 40 000 = $80 000. It is not profitable to

increase the number of flights, since it would not bring any additional passengers.

(d) In a social optimum, flights need to be scheduled so that the average distance from

preferred departure times is minimized. With two flights, this is achieved with flights

at t = 10 and t = 30, resulting in an average waiting time of 5 time units. The total

surplus (TS) is:

TS(2 flights) = CS(2 flights) + Π(2 flights)

= 800× (400− 10× 5− 200) + 80 000 = $200 000

Having three flights placed optimally would decrease the average waiting time to 31
3

time units. Saving on average 5−31
3
= 12

3
time units of waiting would increase consumer

surplus by 800×10×12
3
≈ $13 300, which is less than the increase in fixed costs. Thus,

{t = 10, t = 30} is the optimum.

3. (a) Let’s start by aggregating the demand from hipsters and normies. Since the price at

which demand is zero is the same for both customer groups (p = 24), we can simply

sum up the individual demands:

QD(p) = NHQ
D
H(p) +NNQ

D
N(p) = 100(24− p) + 200(12− 0.5p)

= 100(24− p) + 200(12− 0.5p) = 3600− 150p

The profit function of Warre’s Buffet is:

Π(p) = (p−MC)QD(p)− FC

= (p− 4)(3600− 150p)− 10 000

The optimal price is:

∂Π(p)

∂p
= 4200− 300p = 0

=⇒ p∗ = 14
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(b) Since we have two customer groups and we can track which units are consumed by the

same buyer, we can maximize profits by designing a two-part tariff pricing scheme with

an entry fee F and a unit price P for the buffet. To design an optimal two-part tariff

scheme, let’s follow the steps outlined in the lecture slides. The low-type customers are

the normies, since their demand curve is always below the demand curve of the hipsters.

Let’s set the entrance fee so that it extracts all of normies’ CS:

F (p) = (24− p)QD
N(P )

1

2
= (24− p)(12− 0.5p)

1

2
=

1

4
(24− p)2

Let’s then formulate the profit function of Warre’s Buffet wrt. the unit price p:

Π(p) = (NHQ
D
H(p) +NNQ

D
N(p))(p−MC) + (NH +NN)(F (p))− FC

= (100(24− p) + 200(12− 0.5p))(p− 4) + 300(
1

4
(24− p)2)− 10000

= −125p2 + 2000p+ 14000

Let’s differentiate wrt. p to get the optimal unit price:

∂Π(p)

p
= −250p+ 2000 = 0

=⇒ p∗ = 8

The optimal entrance fee is F (8) = 1
4
(24 − 8)2 = 64 euros and profits are Π(8) =

−125× 82 + 2000× 8 + 14000 = 22 000 euros. Let’s verify that Warre is not better of

by serving only hipsters by setting the entrance fee equal to their consumer surplus at

the marginal cost. The entrance fee would be FH(4) = (24 − 4)(24 − 4)1
2
= 200 euros

and profits:

ΠH(p) = NHFH(4)− FC = 100× 200− 10000 = 10 000

The profit-maximizing pricing strategy is to serve both groups.

(c) Let’s calculate the consumer surpluses of hipsters and normies under optimal simple

pricing:

CSN(p
∗ = 14) = NN(24− 14)QD

N(14)
1

2
= 200× (24− 14)(12− 7)

1

2
= 5 000 e

CSH(p
∗ = 14) = NH(24− 14)QD

H(14)
1

2
= 100× (24− 14)(24− 14)

1

2
= 5 000 e

The CS of normies under two-part tariffs is zero. The consumer surplus of hipsters is:

CSH(F = 64, p∗ = 8) = 100× ((24− 8)(24− 8)
1

2
− 64) = 100× 64 = 6 400 e

As a result of two-part tariffs, normies’ aggregate CS drops from 5 000 euros to zero

and hipsters’ aggregate CS increases from 5 000 euros to 6 400 euros.
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(d) Since serving only hipsters was not profitable even with the lower marginal cost, it

clearly won’t be with the higher marginal cost either - the fee will be smaller while the

fixed costs stay the same. Thus the profit-maximizing pricing scheme will follow the

same strategy as previously. The fee is also still the same as a function of p, since it is

still targeted at extracting the surplus from the normies.

With two different marginal costs, the profit function looks slightly different:

Π(p) = (NHQ
D
H(p))(p−MCH) + (NNQ

D
N(p))(p−MCN) + (NH +NN)(F (p))− FC

= 100(24− p)(p− 6) + 200(12− 0.5p)(p− 4) + 300(
1

4
(24− p)2)− 10000

= −125p2 + 2200p+ 9200

The optimal unit price is:

∂Π(p)

p
= −250p+ 2200 = 0

=⇒ p∗ = 8.8

The optimal entrance fee is F (8.8) = 1
4
(24− 8.8)2 = 57.78 euros. So the optimal price

is higher and the optimal entrance fee lower than before. Profits will be lower than

before due to the increased marginal cost of serving hipsters.

4. (a) An example of two-part tariffs is the purchase of a Nestlé Nescafé capsule coffee maker.

You pay an ”entrance fee” (around 200 euros) for the coffee machine and a unit price

(around 0.5 euros) for the capsules

(b) Coca-Cola is often sold with a quantity discount. 2x1.5 litres costs less than double

(e3.89/pack) what a single 1.5 litre bottle costs (e2.25/bottle).

(c) One example is four friends that have a regular time for badminton doubles practice.

In the ”coordination” state, everybody comes to the practice. This maximizes joint

payoffs, since badminton doubles requires all four players at the court. In the ”stage-

game” state, there is no regular time for practice and it is difficult to organize a time

that suits everyone. If someone is lazy and decides to skip the practice (too often) for

short-term gain and leaving everyone else worse off, the ”punishment” action is to stop

having the regular practice time and end up in the ”stage-game” equilibrium.

Team sports is also an example of network externalities, where the consumption value

of a good depends on the number of other users (players). Network externalities will

be discussed later in the course.
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