Statistical Mechanics
E0415

Fall 2022, lecture 8
Quantum phase transitions



... take home...

“I chose the paper "Splitting up entropy into vibrational and configurational contributions in bulk metallic
glasses: A thermodynamic approach", because | know from the past that neurostuff can be very confusing and
wanted to avoid that. The article discussed entropy of metallic glasses, i.e. amorphous metals.... The methods
for studying it were computational as they utilized molecular dynamics... The system size was relatively small
with only 4000 atoms, but still the results matched the experiments well in case of Cu50Zr50. The main results
were that the entropy originating from the number of different configurations, configurational entropy, and
vibrational part. The authors found that the configurational part was constant with respect to temperature.”

"The glass with aluminium has better glass forming abilityin the real world suggesting that studying the
configurational entropies could help understand glass forming ability of bulk metallic glasses.”

"I chose this study as | am taking a course in neuroscience this semester and | was interested in linking these
two domains. ... This article wants to analyze the distribution of entropy in the brain and its evolution via a
brain scanning method with fMRI. The hypothesis made was that the entropy has a determinate structure and
fluctuations according to the different regions of the brain, and this discrimination is determined by neuronal
dynamics. ... The study found clear hierarchical BEN clusters and significant contrast between grey and white
matter. In conclusion, BEN provided a clear mapping of brain activity (at resting state), which could
become an interesting index to further investigate mental disorders or dysfunctionings”



.... On the papers ....

"Brain Entropy Mapping Using fMRI by Ze Wang et. al. explores the possibility to use for fMRI to measure
brain entropy or BEN. This information could be used for determining brain status or to detect anomalous
brain activity since human brain has normally approximately constant entropy. Also, background and nonliving
objects have higher entropy in comparison which allows for distinction of living tissue.

Structural MRI, resting state fMRI and fMRI under sensorimotor action were measured from 16 young and
healthy subjects twice and two months apart. BEN mapping was computed using sample entropy for both fMRI
measurements and clear decrease in entropy was detected when sensorimotor tasks were performed.

A mean BEN mapping was also calculated from a dataset containing resting state fMRI measurements from 1049
subjects, which shows a clear distinction between neocortex, white matter, and subcortical gray matter
structures. The data was used to divide the brain into 8 distinctive BEN clusters. The results indicated
that fMRI can be robustly used for brain activity mapping using sample entropy*

"The article discusses that the total entropy in bulk metallic glasses originates from vibrational and configurational
contributions. The configurational contribtuion comes from the exploration of different basins, while the vibrational
part is result of intrabasin thermal motion. This splitting is possible thanks to the description known as potential-
energy landscape (PEL), stating that below glass transition temperature (Tg) the liquid (glass) is frozen in a single
configuration, and unable to explore different configurations. The work done in the article was computational, and
simulations were used to explore the entropies of one binary and one ternary bulk metallic glasses. If | understood
correctly, directly calculating the contribution of configurational entropy is quite difficult. However, the vibrational
contribution could be calculated more easily, as well as the total entropy of the system. As long as the T < Tqg, the
total entropy of the system is directly just the entropy of the glass, and thus subtracting the vibrational
contribution gives the configurational contribution. The results obtained were relatively similar to the ones
obtained recently using experimental methods."



Outline of lecture

) Idea of a QPT

) Quantum Transverse Ising model

) Phase diagrams

4) Scaling hypothesis: classical vs. guantum
) Classical-quantum mapping

) Quantum annealing

) Kibble-Zurek mechanism



Quantum Ising
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Quantum Ising model has symmetry under spin-flip operator U = []

e., [H,U =0



Paramagnet
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For g — +o0, |g.5.) = [[;|—);
spins align with applied field: “quantum paramagnet”
g.s. is symmetric under spin flip: U|g.s.) = |g.s.)
(9.5./6719.5.) =0 u=1le
product state, so no correlations: (g.s.|t’:‘r,-z(’:‘rf|g.5.)J = 0jj
For large finite g, |g.5.) = [[;|->); + perturbative corrections in 1/g
correlations (g.s.|6767(g.s.) ~ e™Xi=%il/& with ¢ — 0 for g — oo

“kinetic energy (i.e., off-diagonal term) wins"
(“kinetic” / "potential” depends on choice of basis)



Ferromagnet

H=-JY 6767 —Jg>» 6&f
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For g = 0, two degenerate ground states: |[ft) = [[,|1); and [4) = T[;|1)
spins align with each other: ferromagnet
both states break spin-flip symmetry (U[ft) = [{))
(9.5.16719.s.) = 1
product state: (9.5./6767(9.5.) = (9.5.|67|9.5.)(9.5./67]g.5.) = 1
For g = 0", superpositions |ft) £ |{}) are e'states, but splitting — 0 as N —» oo

N = oo: macroscopic superpos'ns unstable; take |f}}, [{}) as degenerate g.s.

for small g and N = oc, |g.s..) = [[,|T); + perturbative corrections in g
lg.s._) = [[;|4); + perturbative corrections in g

“potential energy (i.e., diagonal term) wins"



Partititon function

at temperature T = 1/, partition function
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Quantum model to classical
mapping
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ﬂzf. classical statistical system with reduced Hamiltonian E \
on (d + 1)-dimensional lattice (with p.b.c.)

E, = Z [E1(si) + Ea(si, 5i41)] Eq: layer configuration energy
i E>: interaction between adjacent layers
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if £(s,s’) is real, interpret Z as partition f'n for classical (d + 1)-dimensional system




Summary

quantum classical
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quantum critical phenomena  classical critical phenomena
at T =0 in d dimensions in d 4+ 1 dimensions

e at zero temperature, B = 1/T = oo: imaginary-time direction is infinite

e n.b., distinct from relationship between classical stochastic dynamics
(in d dimensions) and quantum mechanics (in d dimensions)



Ising again
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Ising |

transverse-field quantum Ising model: ‘H = —JZﬁfﬁf — Jch’;‘rj—‘
i

s (i)
- Z E_Zf—a E(5,,5141)

50,5100y Sp-1

k.
o

For a — 0, B(a) = —% logtanha

Imaginary time 7

E(s,s') = —aJZs;’sj — B(aJg) Zs,-sf
(i) i

layer configuration energy ) \ >

d-dimensional space (lattice)

™

interaction between adjacent layers
e Transverse-field Ising model in d dimensions maps to highly anisotropic
(a — 0) classical Ising model in d + 1 dimensions

e By universality, quantum Ising model has identical critical properties
to isotropic classical Ising model in d + 1 dimensions



Ising chalin

transverse-field quantum Ising model in 1D:
H=—JY [6767,+ 967

!
(related to 2D classical Ising model, so ordering transition at g.)
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flipped spins
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so treat flipped spins as particles



Use a transformation....

; _
Treat flipped spins as particles +—+—+—+—+—j+——+

either:

e as bosons—but then need interactions 97 = 1 —2n; ni =0
to forbid two flipped spins on one site 7 = p, + b] n=1

e as fermions—double occupation automatically forbidden,
but fermion operators anticommute on different sites:

{Cf. C_: } = 5:,;

{c.gy={c. ¢} =4
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Jordan—Wigner transformation (in 1D): add a string of minus signs
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including this string, [67, 67] = 0 for / # J, as required



... diagonalize... exact spectrum.

transverse-field quantum Ising model in 1D: H = —JZ 6767, + g7

JW transformation: &7 =1 — 2n; nj = CJTCj '
&7 = —(ci+¢) (1 —2n)
J<i
6767, = (ci+c)c+ ) [ —2m) T (1 —2np)
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result: quadratic Hamiltonian in terms of fermion operators
L ; (see practice
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H = Zsk(wh — %) ground state |g.s.): ¥«|g.s.) = 0 (all k)
k
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Chain: QPT

H=—JY 6767 —Jgy 65 =Y exlvjve—2)
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A nonanalyticity in ground state
gap A (in thermodynamic limit)

>
(6767) — const # 0 9 =1 \_g/ (6767) ~ e b=xil/t(g)
as |x; — x;| = o0 as |x; — x;| = o

£ =2J\/1+ g2 — 2gcosk
A=2J]1-g[~|g— g
critical exponent zv = 1

Sachdev (1999/2011)




Quantum annealing

Solution

Quantum Tunnelling

Solution

Adiabatic evolution

|dea: take a classical Hamiltonian
(energy function). Instead of doing
things at finite T and lowering it
(Simulated Annealing)... Glauber
dynamics with a decreasing T.

Do the quantum version with
decreasing quantum effects.

Tunneling through barriers.



Kibble-Zurek

Approach a 2" order phase transition at a (fixed) finite rate. Eg. The
Ising transition.

At some point, the correlation time / relaxation timescale becomes so

large, that the system no longer relaxes (“adiabatically”) or is able to
follow the change.

Consequence: topological defects are created. The density depends on
the correlation scale (length) and dimension (“coherent volumes”).

Lots of applications...
Physics depends on the rate of approach (velocity).



Kibble-Zurek mechanism in colloidal monolayers

]
KI b b I e - 2 u re k I I Sven Deutschlander,! Patrick Dillmann,! Georg Maret,! and Peter Keim!:*

PNAS 2015
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FIG. 5. Snapshot sections of the colloidal ensemble
(992 x 960 um?, ~ 4000 particles) illustrating the defect (a.c)
— » and domain configurations (b,d) at the freeze out temperature
distance to T for the fastest (a,b: T = 0.0326 1/s, T =~ 30.3) and slowest
=1 cooling rate (c,d: I' = 0.000042 1/s, I &~ 66.8). The deflects
transrtlﬂln are marked as follows: Particles with five nearest neighbors

are colored red, seven nearest neighbors green and other de-
fects blue. Sixfold coordinated particles are colored grey. Dif-
ferent symmetry broken domains are colored individually and
high symmetry particles are displayed by smaller circles.



Quantum take-home

The classic reference for this stuff is by Subir Sachdeev (Quantum Phase Transitions) but we utilize here
two sets of lecture notes that exploit it. The first set is from Warwick

https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cgpt/lectures?-10.pdf

And if you want another viewpoint, with partly more detail, check lectures 5 and 6 from Dresden
(Lukas Jansssen), https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt ss18

For the applications, we have quantum annealing and the Kibble-Zurek mechanism. The take home is
now like this: check those notes so that you recall the main points of QPT. Then pick either a topic on
quantum annealing (including the D-Wave simulator), in other words

https://www.nature.com/articles/s41598-019-49172-3

... or if you want to have more insight on the Kibble-Zurek, you should take

https://www.nature.com/articles/s41586-019-1070-1

And your task is like the previous time "2+8" sentences on the selection and main points.


https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures9-10.pdf
https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt_ss18
https://www.nature.com/articles/s41598-019-49172-3
https://www.nature.com/articles/s41586-019-1070-1
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