Designing and Building
Scalable Web Applications

Lecture 4 / 14.11.2022

The Big Picture

Aepoy Buiyojelos

sJojoe] [euoneziueblio pue uewny

Applications and application archetypes

Implementations and architectures

Application frameworks

Aepoj) Buiyojelos

Infrastructures and platforms

Scalability expectations

Scalability laws

aouewuopad Bulinseaw ¥ Buliojiuop

Agenda

Jamstack

APls

API-first

Server-side Architectural Patterns
Scalability Dimensions

Jamstack and Classic web apps

Jamstack and Classic web apps

e Classic web apps

O

O

O

Client makes a request to a server

Server directs the request to an application
The application retrieves data related to
the request from a database

The application creates a response and
returns the response

Jamstack and Classic web apps

e Classic web apps

O

O

O

Client makes a request to a server

Server directs the request to an application
The application retrieves data related to
the request from a database

The application creates a response and
returns the response

Client

Server

Application

Database

Jamstack and Classic web apps

e Classic web apps e Jamstack
o Client makes a request to a server o Pre-rendered site deployed to a CDN
o Server directs the request to an application o Client retrieves site from CDN
o The application retrieves data related to o Site instructs client to use API(s)

the request from a database
o The application creates a response and
returns the response

Client

Server

Application

Database

Jamstack and Classic web apps

e Classic web apps e Jamstack
o Client makes a request to a server o Pre-rendered site deployed to a CDN
o Server directs the request to an application o Client retrieves site from CDN
o The application retrieves data related to o Site instructs client to use API(s)

the request from a database
o The application creates a response and
returns the response

Client

Client

CDN API

Server

Application

Database

Jamstack and Classic web apps Perormence and maintainabilry.

Classic web apps e Jamstack
o Client makes a request to a server o Pre-rendered site deployed to a CDN
o Server directs the request to an application o Client retrieves site from CDN
o The application retrieves data related to o Site instructs client to use API(s)

the request from a database
The application creates a response and
returns the response

Client

Client

CDN API

Server

Application

Database

https://jamstack.org/

Jamstack and Classic web apps

Classic web apps

O

O

O

Client makes a request to a server

Server directs the request to an application
The application retrieves data related to
the request from a database

The application creates a response and
returns the response

Client

Server

Application

Database

e Jamstack
o Pre-rendered site deployed to a CDN
o Client retrieves site from CDN
o Site instructs client to use API(s)

Client

CDN API

w Front-end Stack. J avascript,

. o’ : The Ne
Mathias Biilmann: The Jvimeo.com/163522126

APTs and Markup - hftps:/

https://jamstack.org/
https://vimeo.com/163522126

Jamstack-..like?

Jamstack-..like?

e The term Jamstack has evolved over the

years — three key features persist
o Frontend and backend separated — frontend uses
backend through an API
o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

https:// Jamstack wtf

Jamstack-..like?

e The term Jamstack has evolved over the

years — three key features persist
o Frontend and backend separated — frontend uses
backend through an API
o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

https:// Jamstack wtf

Jamstack-..like?

e The term Jamstack has evolved over the

years — three key features persist
o Frontend and backend separated — frontend uses
backend through an API
o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

e The term also includes a workflow with
meaningful tools and a CDN

https:// Jamstack wtf

Jamstack-..like? [Develop }
e The term Jamstack has evolved over the l
years — three key features persist [Push to VCS }
o Frontend and backend separated — frontend uses
backend through an API l

o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

[Automatic build }

e The term also includes a workflow with
meaningful tools and a CDN [Update CDN } [Deploy APIs }

Jamstack-..like?

e The term Jamstack has evolved over the

years — three key features persist
o Frontend and backend separated — frontend uses
backend through an API
o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

e The term also includes a workflow with
meaningful tools and a CDN

In the second course Project, there is no need to use q VCS, to

deploy the project, or to .
should allow ‘this though. use a CON — the project structure

hTTpS://\jamSTGCk_WTf

o
l

[Push to VCS }

l

[Automatic build }

[Update CDN } [Deploy APIs }

https:// Jamstack wtf

Jamstack-..like? [Develop }
e The term Jamstack has evolved over the l
years — three key features persist [Push to VCS }
o Frontend and backend separated — frontend uses
backend through an API l

o Frontend built and compiled into HTML, CSS,
JavaScript
o JavaScript included to sites on a need basis

[Automatic build }

e The term also includes a workflow with
meaningful tools and a CDN [Update CDN } [Deploy APIs }

In the second course Project, there is no need to use q VCS, to

deploy the project, or to use g CDN — the project structure

should allow this though. like

Thus, " J anstack”

APls

APIs

e Application Programming Interfaces (APIs) —
allow access to resources and functionality

APIs

e Application Programming Interfaces (APIs) —
allow access to resources and functionality

e Mainly two types of APlIs
o Synchronous APIs (REST, SOAP, RPC, ...)
o Asynchronous APIs (Event-driven APlIs)

il

Synchronous APIs

il

Synchronous APIs

e Request-response paradigm: Client sends
a request, the server returns a response

Synchronous APIs
GET /api/tasks/1 HTTP/1.4

[Req
UeSt-reS
ponse pa .
radlgm. C .
: Client sends TP A 200 OK
Content—Type: app\'\cat'\onl'gson

a request, t
’ he S
erver returns a respons
e
(headers)

’ “comp\e\ed”: false }

{“name”: “task name’,

S

Synchronous APIs

e Request-response paradigm: Client sends
a request, the server returns a response

e Representational State Transfer (REST)

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

@ GET /api/tasks/1 HTTP/1.4

 »

0 OK o
HTT\tDeI:\t-!\'soe: app\'\cat\onlgson
Content
(headers)

{ uname”:

-

Synchronous APIs

e Request-response paradigm: Client sends
a request, the server returns a response

e Representational State Transfer (REST)

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

GET /api
@ /apiftasks/ 1THTTP/1. 1

 »

0 OK o
HTT\tDeI:\t-!\'soe: app\'\cat\onlgson
Content
(headers)

{ uname”:

-

GET /api
m /apiftasks/ 1THTTP/1. 1

Synchronous APIs —_—

OK .
. . prTPMA 200 lication/json
e Request-response paradigm: Client sends Content-Type: 2PP——""

(heade\'s)
a request, the server returns a response)
{“name’: "85

e Representational State Transfer (REST) 4

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

g false }

\ name’, "comPIete

GET /api
m /apiftasks/ 1THTTP/1. 1

Synchronous APIs —_—

OK .
. . prTPMA 200 lication/json
e Request-response paradigm: Client sends Content-Type: 2PP——""

(heade\'s)
a request, the server returns a response)
{“name’: "85

e Representational State Transfer (REST) 4

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

g false }

\ name’, "comPIete

See also Ro Fielding's dissertation on the topic
o y ; ~fielding/pubs/disser“ra’r|on/Top.hTm

https:// www.ics.uci.edu/

Example: REST Api

olication-oroqramminq-interfaces/B-samole—task-agﬁ

https://fitech101 .aalto.fi/web—software-develooment/27-ao

https://fitech101.aalto.fi/web-software-development/27-application-programming-interfaces/3-sample-task-api/

GET /api
m /apiftasks/ 1THTTP/1. 1

Synchronous APIs —_—

OK .
. . prTPMA 200 lication/json
e Request-response paradigm: Client sends Content-Type: 2PP——""

(heade\'s)
a request, the server returns a response)
{“name’: "85

e Representational State Transfer (REST) 4

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

g false }

\ name’, "comPIete

GET /api
EI /apiftasks/ 1THTTP/1. 1

Synchronous APls —

OK .
. . prTPMA 200 lication/json
e Request-response paradigm: Client sends Content-Type: 2PP——""

neaders)

a request, the server returns a response (© ask ame’, “completed . false }
{“name .

e Representational State Transfer (REST)

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

e Needs a polling mechanism to keep track
of changes on server (e.g. long polling,
short polling)

Synchronous APIs

Request-response paradigm: Client sends
a request, the server returns a response

Representational State Transfer (REST)

often used
o Resources identified through URIs
o Agreed upon representation formats (e.g. JSON)
o Standard methods (e.g. HTTP methods) used for
semantics and for exchanging information

Needs a polling mechanism to keep track
of changes on server (e.g. long polling,
short polling)

GET /api
@ /apiftasks/ 1THTTP/1. 1

 »

0 OK o
HTT\tDeI:\t-!\'soe: app\'\cat\onlgson
Content
(headers)

{ uname”:

“tas

\ name’, "comPIete

g false }

_—

WS
QO
\,0“9’

GET /api/tasks/1 HTTP/1.1

7
-
-
-
-
.

\ HTTPA

4200 OK

\\\ (headers)

2

D -

Server waits before sending a
response, maintaining connection

Example: Long polling

Client Client

3 Server €

Client

Client

il

Asynchronous APls

il

e Client requests a bi-directional connection from

the server, the server allows it
o Traditionally WebSocket, soon (?) WebSocketStream
o With HTTP/3, also WebTransport
o (WebRTC for P2P, depending on use case)

Asynchronous APls

o

e Client requests a bi-directional connection from

the server, the server allows it
o Traditionally WebSocket, soon (?) WebSocketStream
o With HTTP/3, also WebTransport
o (WebRTC for P2P, depending on use case)

Asynchronous APls

https://websockets.spec.whatwg.org/

https://developer.chrome.com/en/articles/websocketstream/

https://www.w3.org/TR/webtransport/

Asynchronous APls

GET .

“ng‘ade: WebSOCk
(more headers) et

 »

ok!
Client requests a bi-directional connection from (

the server, the server allows it

(@]
(@]
(@]

Traditionally WebSocket, soon (?) WebSocketStream

With HTTP/3, also WebTransport
(WebRTC for P2P, depending on use case)

S
- —
- —

 »

https://websockets.spec.whatwg.org/
https://developer.chrome.com/en/articles/websocketstream/

https://www.w3.org/TR/webtransport/

GET ..
E‘lrﬁgr'adhe.' WebSOCkeT
ore heade
Asynchronous APls —
ok!
e Client requests a bi-directional connection from (

the server, the server allows it
o Traditionally WebSocket, soon (?) WebSocketStream

o With HTTP/3, also WebTransport
o (WebRTC for P2P, depending on use case) (
e No need for client-side polling of server, but,

need to keep the connection and have the
server up and running.

 »

https://websockets.spec.whatwg.org/
https://developer.chrome.com/en/articles/websocketstream/

https://www.w3.org/TR/webtransport/

https://deno.land/api?s=Deno.upgrade\WebSocket

Example: WebSockets

7 Client

Client == Server SRR Client

™ Client

https://deno.land/api?s=Deno.upgradeWebSocket

AP|-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e API-first approach sees APIs as products
used by other systems (instead of them

providing a set of endpoints supporting a
single system).

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e API-first approach sees APIs as products
used by other systems (instead of them
providing a set of endpoints supporting a
single system).

e Fosters thinking about how APls are
documented, how they are used, how
they are built, how they are maintained,
etc.

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e API-first approach sees APIs as products
used by other systems (instead of them
providing a set of endpoints supporting a
single system).

e Fosters thinking about how APls are
documented, how they are used, how
they are built, how they are maintained,
etc.

e The idea has been around for a while —
e.g. Bezos APl Mandate at Amazon
(2002).

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e API-first approach sees APIs as products
used by other systems (instead of them
providing a set of endpoints supporting a
single system).

e Fosters thinking about how APls are
documented, how they are used, how
they are built, how they are maintained,
etc.

e The idea has been around for a while —
e.g. Bezos APl Mandate at Amazon
(2002).

6.

7.

All teams will henceforth expose their data and functionality
through service interfaces.

Teams must communicate with each other through these
interfaces.

There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team’s
data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service
interface calls over the network.

It doesn’t matter what technology they use. HTTP, Corba,
Pubsub, custom protocols — doesn’t matter.

All service interfaces, without exception, must be designed
from the ground up to be externalizable. That is to say, the
team must plan and design to be able to expose the interface
to developers in the outside world. No exceptions.

Anyone who doesn’t do this will be fired.

Thank you; have a nice day!

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

2.
e API-first approach sees APIs as products
used by other systems (instead of them
providing a set of endpoints supporting a
single system).
e Fosters thinking about how APls are 4,

documented, how they are used, how

All teams will henceforth expose their data and functionality
through service interfaces.

Teams must communicate with each other through these
interfaces.

There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team’s
data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service
interface calls over the network.

It doesn’t matter what technology they use. HTTP, Corba,
Pubsub, custom protocols — doesn’t matter.

they are built, how they are maintained, =

etc.

All service interfaces, without exception, must be designed
from the ground up to be externalizable. That is to say, the
team must plan and design to be able to expose the interface
to developers in the outside world. No exceptions.

e The idea has been around for a while —

e.g. Bezos APl Mandate at Amazon 6.

(2002).

7.

Anyone who doesn’t do this will be fired.

Thank you; have a nice day!

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e APIs designed to be used as products —
easier adoption in new applications and
devices

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e APIs designed to be used as products —

easier adoption in new applications and
devices

e Designed collaboratively with API
consumers — key functionality identified
before coding

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e APIs designed to be used as products —
easier adoption in new applications and
devices

e Designed collaboratively with API
consumers — key functionality identified
before coding

e Adoption in (larger) companies; need for an
API style guide including versioning
strategies etc

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

API-first

e APIs designed to be used as products — Also a key part of MACH:
easier adoption in new applications and . _
devices e Microservices
e API-first
e Designed collaboratively with API e Cloud-native SaaS
consumers — key functionality identified
e Headless

before coding

e Adoption in (larger) companies; need for an
API style guide including versioning
strategies etc

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

hTTps://machalliance.org/

API-first
e APIs designed to be used as products — Also a key part of MACH:
easier adoption in new applications and . _
devices e Microservices
e API-first
e Designed collaboratively with API e Cloud-native SaaS
consumers — key functionality identified
e Headless

before coding

e Adoption in (larger) companies; need for an
API style guide including versioning
strategies etc

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

hTTps://machalliance.org/

API-first

e APIs designed to be used as products — Also a key part of MACH:
easier adoption in new applications and . _
devices e Microservices
e API-first
e Designed collaboratively with API e Cloud-native SaaS
consumers — key functionality identified
e Headless

before coding

e Adoption in (larger) companies; need for an .)
API style guide including versioning “MACH technologies supp

. enterprise in
strategies etc ferprise in®

[ved through agi] c
e business requirements.

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 2006.

rt a composable
which every component is pluggable,

le development to meet evolving

Server-side Architectural Patterns

Server-side Architectural Patterns — some concepts

Server-side Architectural Patterns — some concepts

e \Web Software Development (CS-C3170):

Server-side Architectural Patterns — some concepts

: d and how a request goes
e Web Software Development (CS-C3170): How code is structuree B85 5 jication.

ugh the layer
o Layered architecture ~—— throug

Server-side Architectural Patterns — some concepts

ructured and how a (‘eqt{es’r goes
he layers of an application.

e \Web Software Development (CS-C3170): How cTo:e LS ﬁft
] (0]
o Layered architecture —————— Applica‘riron 25 a single coherent unit.
o Monolithic architecture ~————

Server-side Architectural Patterns — some concepts

9065

: d and how a request
e Web Software Development (CS-C3170): How ccheo " ﬁfxg“lg‘;;‘of an application.
o Layered architecture — o J : :
o _ . Application as a single coherent unit.
o Monolithic architecture

) i) Applicati)
o Microservice architecture ——_ 'PPlication as a collection of services.

Server-side Architectural Patterns — some concepts

9065

- d and how a request
e Web Software Development (CS-C3170): How Cfv?eo " :T]fﬁg“é;‘;;‘of an application.
o Layered architecture — o J : :
o _ . Application as a single coherent unit.
Monolithic architecture

O

. . . Applicatio .
o Microservice architecture «—— PP N as a collection of services.
O

Serverless architecture Application on g th;
often launcheq

rd party service
Up on demand,

Server-side Architectural Patterns — some concepts

d and how a request goes
n application.

e Web Software Development (CS-C3170): How c::i Ls :*::Sz;;s of
o Layered architecture — o J : :
s . . — Application as a single coherent unit.

Monolithic architecture

O

. . . Applicatio .
o Microservice architecture «—— PP N as a collection of services.
O

Serverless architecture Application on q th
often launcheq

rd party service
Up on demand,

e All of the above work for scalable
applications (depending on archetype!)

Server-side Architectural Patterns — some concepts

d and how a request goes
n application.

e Web Software Development (CS-C3170): How c::i Ls ;*:#g*lz;zrs of
o Layered architecture — o J : :
s . . — Application as a single coherent unit.

Monolithic architecture

O

. . . Applicatio .
o Microservice architecture «—— PP N as a collection of services.
O

Serverless architecture Application on q th
often launcheq

rd party service
Up on demand,

e All of the above work for scalable
applications (depending on archetype!)

e Also, ..
o Event-driven architecture
o Microkernel / plugin architecture
o Space-based architecture

Event-driven Architecture

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new data
arrives (is produced) for a topic, data is sent to all clients
subscribed to the topic

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new data
arrives (is produced) for a topic, data is sent to all clients
subscribed to the topic

e Needs a message broker (a service for passing and
storing messages): Plenty of existing platforms
including Kafka (which is in Week 4 readings).

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new data
arrives (is produced) for a topic, data is sent to all clients
subscribed to the topic

e Needs a message broker (a service for passing and
storing messages): Plenty of existing platforms
including Kafka (which is in Week 4 readings).

Producer

T
1
1
1
1
1
Y

Broker

Consumer Consumer

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new data
arrives (is produced) for a topic, data is sent to all clients
subscribed to the topic

e Needs a message broker (a service for passing and
storing messages): Plenty of existing platforms
including Kafka (which is in Week 4 readings).

Producer

T
1
1
1
1
1
Y

Broker

Consumer Consumer

Naive implementation possible with
WebSockets and simple server

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new data
arrives (is produced) for a topic, data is sent to all clients
subscribed to the topic

e Needs a message broker (a service for passing and
storing messages): Plenty of existing platforms
including Kafka (which is in Week 4 readings).

Producer

T
1
1
1
1
1
Y

Broker

Consumer Consumer

Naive implementation possible with
WebSockets and simple server

prinigc;d for figuring oyt the
.:pbes - an existing platform
'S Detter for actyq use

https://deno.land/api?s=Deno.upgradeWebSocket

Example: (simple) Messaging with
WebSockets

https://deno.land/api?s=Deno.upgradeWebSocket

Event-driven Architecture

e Note! Event-driven architectures
primarily for passing messages about
events

e Passing large files (e.g. images) as
messages maybe not a good idea

e Rather, store the data and pass a
reference (or a link) to the data

https://dzone.com/articles/processing-large-messages-with-apache-kafka

https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas

es-architecture/

https://dzone.com/articles/processing-large-messages-with-apache-kafka
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/

Event-driven Architecture exercises, pogan o ProGramming

e Note! Event-driven architectures
primarily for passing messages about
events

e Passing large files (e.g. images) as
messages maybe not a good idea

e Rather, store the data and pass a
reference (or a link) to the data

https://dzone.com/articles/processing-large-messages-with-apache-kafka

https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas

es-architecture/

https://dzone.com/articles/processing-large-messages-with-apache-kafka
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/

We’'ll discuss microkernel / plugin architecture
and space-based architecture next week.

Scalability Dimensions

Scalability dimensions

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions

e Multiple dimensions in scaling a system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o Numerical dimension — the number of users of the
system and the number of objects and services

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o Numerical dimension — the number of users of the
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o Numerical dimension — the number of users of the
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

rvices, the likelihood

With more se < down increases

. . . thing i
o Numerical dimension — the number of users of the / that something
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

With mor‘e)rhm9 is down increa

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

with morething is down incred

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

.))) More governing bodies m
o Administrative dimension — the number of lead 30 Iargérgamooﬁ,rs O?CY

-

organizations that control pieces of the system changes, conflicts, etc..

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

with morething is down incred

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

.))) More governing bodies
o Administrative dimension — the number of lead fg Is:gérgamooﬁ,rs";?y

-

organizations that control pieces of the system changes, conflicts, etc..

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994. Not fully QFPHCOE\e Yo
Web 30 tware...

Scalability dimensions — how to scale

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Scalability dimensions — how to scale

e AKF Scale Cube:

o Cloning of systems or data

o Separation of work by
responsibility, action, or data

o Separation of work by
customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Scalability dimensions — how to scale

e AKF Scale Cube:

|
|
|

o Cloning of systems or data Split by ! Near Infinite Scale
o Separation of work by il :
T . i |
responsibility, action, or data armmsHion |
. |
o Separation of work by [
Y-Axis—Split '
customer or requestor by Function or :

Service T Further Slice &
37 Data or Users &Qg
7 an
& @e}\ N
% // 3 \o 69
No Splits No Splits O\)@ &
One, Many Systems, o o
Monolithic Each a Clone IS
.) System/Service and Load v
Starting Point Balanced

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Scalability dimensions — how to scale

e AKF Scale Cube:

|
|
|
o Cloning of systems or data Split by ! Near Infinite Scale
o Separation of work by il :
T . i |
responsibility, action, or data sl .
. |
o Separation of work by !
Y-Axis—Split '
customer or requestor by Function or :
Service g T T Further Slice &
37 Data or Users \,??
X
P \\Qg;_\e
N
& xo&“@b(oQ\
No Splits | * No Splits > @
One, Many Systems, o o
Monolithic Each a Clone IS
.) System/Service and Load v
Starting Point Balanced

Duplication: creating mul’riple
copies of a service

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Scalability dimensions — how to scale

e AKF Scale Cube:

o Cloning of systems or data

o Separation of work by
responsibility, action, or data

o Separation of work by
customer or requestor

Split by Near Infinite Scale

1

1

1

1

! |
Service or |
Similar 1
1

1

1

1

1

1

|

Information

Y-Axis—Split
y Function or
Service pg Further Slice &
/ Data or Users \,??

No Splits |7 No Splits > @
One, Many Systems, o o
Monolithic Each a Clone =

.) System/Service and Load v
Starting Point Balanced

Splitting: dividing service into
multiple parts (e.g. microservices)

Duplication: creating mul’riple
copies of a service

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Scalability dimensions — how to scale

e AKF Scale Cube: o8 |
. < = |
o Cloning of systems or data S g Split by ! Near Infinite Scale
. (@) 1
o Separation of work by s 8 e :
T . (8} i |
responsibility, action, or data & g Inermation .
. (=2 I |
o Separation of work by S o |
2O v-Axis—Split '
customer or requestor Z % by Function or :
"g Service pg Further Slice &
Sa P Data or Users & & o
= X
+ Q s) qu &
Sy P S gL
aFr ’ & ng W L T xO
0S5 No Splits |7 No Splits FE
1S One, Many Systems, o 0{\0 O)QJ O OK
Monolithic Each a Clone P\ O
)] System/Service and Load v & A\ QQ/
Starting Point Balanced 0,? & 06
o & <
, il N
Duplication: creating multiple (}{: X

copies of a service

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.

Recap

Jamstack

APls

API-first

Server-side Architectural Patterns
Scalability Dimensions

