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e Application Programming Interfaces (APIs) —
allow access to resources and functionality

e Mainly two types of APlIs
o Synchronous APIs (REST, SOAP, RPC, ...)
o Asynchronous APIs (Event-driven APlIs)
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e Also, ..
o Event-driven architecture
o  Microkernel / plugin architecture
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Event-driven Architecture

e Note! Event-driven architectures
primarily for passing messages about
events

e Passing large files (e.g. images) as
messages maybe not a good idea

e Rather, store the data and pass a
reference (or a link) to the data

https://dzone.com/articles/processing-large-messages-with-apache-kafka

https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas

es-architecture/
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https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas

es-architecture/


https://dzone.com/articles/processing-large-messages-with-apache-kafka
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/

We’'ll discuss microkernel / plugin architecture
and space-based architecture next week.



Scalability Dimensions



Scalability dimensions

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

e Multiple dimensions in scaling a system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o  Numerical dimension — the number of users of the
system and the number of objects and services

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o  Numerical dimension — the number of users of the
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

o  Numerical dimension — the number of users of the
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

rvices, the likelihood

With more se < down increases

. . . thing i
o Numerical dimension — the number of users of the / that something
system and the number of objects and services

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

With mor‘e)rhm9 is down increa

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

o Administrative dimension — the number of
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

with morething is down incred

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

. ) ) ) More governing bodies m
o Administrative dimension — the number of lead 30 Iargérgamooﬁ,rs O?CY

-

organizations that control pieces of the system changes, conflicts, etc..

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions
e Multiple dimensions in scaling a system

e Scale in distributed systems (1994):

e services, the \ike\ihood

with morething is down incred

o Numerical dimension — the number of users of the / that som

system and the number of objects and services

With larger distances
«—— come larger latencies

o Geographical dimension — the distance over which the
system is scattered

. ) ) ) More governing bodies
o Administrative dimension — the number of lead fg Is:gérgamooﬁ,rs";?y

-

organizations that control pieces of the system changes, conflicts, etc..

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994. Not fully QFPHCOE\e Yo
Web 30 tware...



Scalability dimensions — how to scale

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise.



Scalability dimensions — how to scale
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responsibility, action, or data

o Separation of work by
customer or requestor
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e AKF Scale Cube:

o Cloning of systems or data
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multiple parts (e.g. microservices)

Duplication: creating mul’riple
copies of a service

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture,
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