
Designing and Building 
Scalable Web Applications

Lecture 4 / 14.11.2022



The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

scratching today 

scratching today 



Agenda

● Jamstack
● APIs
● API-first
● Server-side Architectural Patterns
● Scalability Dimensions



Jamstack and Classic web apps



Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response



Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response

Client

Server

Application

Database



Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response

● Jamstack
○ Pre-rendered site deployed to a CDN
○ Client retrieves site from CDN
○ Site instructs client to use API(s)

Client

Server

Application

Database



Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response

● Jamstack
○ Pre-rendered site deployed to a CDN
○ Client retrieves site from CDN
○ Site instructs client to use API(s)

Client

Server

Application

Client

CDN API

Database



Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response

● Jamstack
○ Pre-rendered site deployed to a CDN
○ Client retrieves site from CDN
○ Site instructs client to use API(s)

Client

Server

Application

Client

CDN API

https://jamstack.org/ – “Jamstack is an architectural approach that decouples the web experience layer from data and business logic, improving flexibility, scalability, performance, and maintainability.”

Database

https://jamstack.org/


Jamstack and Classic web apps

● Classic web apps
○ Client makes a request to a server
○ Server directs the request to an application
○ The application retrieves data related to 

the request from a database
○ The application creates a response and 

returns the response

● Jamstack
○ Pre-rendered site deployed to a CDN
○ Client retrieves site from CDN
○ Site instructs client to use API(s)

Client

Server

Application

Client

CDN API

https://jamstack.org/ – “Jamstack is an architectural approach that decouples the web experience layer from data and business logic, improving flexibility, scalability, performance, and maintainability.”

Mathias Biilmann: The New Front-end Stack. Javascript, 

APIs and Markup – https://vimeo.com/163522126 

Database

https://jamstack.org/
https://vimeo.com/163522126


Jamstack-..like?



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis

https://jamstack.wtf



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis

● The term also includes a workflow with 
meaningful tools and a CDN

https://jamstack.wtf



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis

● The term also includes a workflow with 
meaningful tools and a CDN

Develop

Push to VCS

Automatic build

Update CDN Deploy APIs

https://jamstack.wtf



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis

● The term also includes a workflow with 
meaningful tools and a CDN

In the second course project, there is no need to use a VCS, to deploy the project, or to use a CDN → the project structure should allow this though.

Develop

Push to VCS

Automatic build

Update CDN Deploy APIs

https://jamstack.wtf



Jamstack-..like?

● The term Jamstack has evolved over the 
years – three key features persist

○ Frontend and backend separated – frontend uses 
backend through an API

○ Frontend built and compiled into HTML, CSS, 
JavaScript

○ JavaScript included to sites on a need basis

● The term also includes a workflow with 
meaningful tools and a CDN

In the second course project, there is no need to use a VCS, to deploy the project, or to use a CDN → the project structure should allow this though.

Develop

Push to VCS

Automatic build

Update CDN Deploy APIs

https://jamstack.wtf

Thus, “Jamstack-like”



APIs



APIs

● Application Programming Interfaces (APIs) – 
allow access to resources and functionality



APIs

● Application Programming Interfaces (APIs) – 
allow access to resources and functionality

● Mainly two types of APIs
○ Synchronous APIs (REST, SOAP, RPC, …)
○ Asynchronous APIs (Event-driven APIs)



Synchronous APIs



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Example: REST Api

https://fitech101.aalto.fi/web-software-development/27-application-programming-interfaces/3-sample-task-api/ 

See also Roy Fielding’s dissertation on the topic 

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

https://fitech101.aalto.fi/web-software-development/27-application-programming-interfaces/3-sample-task-api/


Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

● Needs a polling mechanism to keep track 
of changes on server (e.g. long polling, 
short polling)

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }



Synchronous APIs

● Request-response paradigm: Client sends 
a request, the server returns a response

● Representational State Transfer (REST) 
often used

○ Resources identified through URIs
○ Agreed upon representation formats (e.g. JSON)
○ Standard methods (e.g. HTTP methods) used for 

semantics and for exchanging information

● Needs a polling mechanism to keep track 
of changes on server (e.g. long polling, 
short polling)

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

(headers)

{ “name”: “task name”, “completed”: false }

GET /api/tasks/1 HTTP/1.1

HTTP/1.1 200 OK

(headers)

{ “name”: “task name”, “completed”: false }

Se
rv

er
 w

ai
ts

 b
ef

or
e 

se
nd

in
g 

a 
re

sp
on

se
, m

ai
nt

ai
ni

ng
 c

on
ne

ct
io

n

Long polling



Example: Long polling

Client

Server

Client

Client

Client



Asynchronous APIs



Asynchronous APIs

● Client requests a bi-directional connection from 
the server, the server allows it

○ Traditionally WebSocket, soon (?) WebSocketStream
○ With HTTP/3, also WebTransport
○ (WebRTC for P2P, depending on use case)



Asynchronous APIs

● Client requests a bi-directional connection from 
the server, the server allows it

○ Traditionally WebSocket, soon (?) WebSocketStream
○ With HTTP/3, also WebTransport
○ (WebRTC for P2P, depending on use case)

https://www.w3.org/TR/webtransport/

https://websockets.spec.whatwg.org/

https://developer.chrome.com/en/articles/websocketstream/



Asynchronous APIs

● Client requests a bi-directional connection from 
the server, the server allows it

○ Traditionally WebSocket, soon (?) WebSocketStream
○ With HTTP/3, also WebTransport
○ (WebRTC for P2P, depending on use case)

GET … 
upgrade: websocket(more headers)

https://www.w3.org/TR/webtransport/

https://websockets.spec.whatwg.org/

https://developer.chrome.com/en/articles/websocketstream/

ok!



Asynchronous APIs

● Client requests a bi-directional connection from 
the server, the server allows it

○ Traditionally WebSocket, soon (?) WebSocketStream
○ With HTTP/3, also WebTransport
○ (WebRTC for P2P, depending on use case)

● No need for client-side polling of server, but, 
need to keep the connection and have the 
server up and running.

GET … 
upgrade: websocket(more headers)

https://www.w3.org/TR/webtransport/

https://websockets.spec.whatwg.org/

https://developer.chrome.com/en/articles/websocketstream/

ok!



Example: WebSockets

Client Server

Client

Client

Client

https://deno.land/api?s=Deno.upgradeWebSocket 

https://deno.land/api?s=Deno.upgradeWebSocket


API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● API-first approach sees APIs as products 
used by other systems (instead of them 
providing a set of endpoints supporting a 
single system).



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● API-first approach sees APIs as products 
used by other systems (instead of them 
providing a set of endpoints supporting a 
single system).

● Fosters thinking about how APIs are 
documented, how they are used, how 
they are built, how they are maintained, 
etc.



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● API-first approach sees APIs as products 
used by other systems (instead of them 
providing a set of endpoints supporting a 
single system).

● Fosters thinking about how APIs are 
documented, how they are used, how 
they are built, how they are maintained, 
etc.

● The idea has been around for a while – 
e.g. Bezos API Mandate at Amazon 
(2002).



1. All teams will henceforth expose their data and functionality 
through service interfaces.

2. Teams must communicate with each other through these 
interfaces.

3. There will be no other form of interprocess communication 
allowed: no direct linking, no direct reads of another team’s 
data store, no shared-memory model, no back-doors 
whatsoever. The only communication allowed is via service 
interface calls over the network.

4. It doesn’t matter what technology they use. HTTP, Corba, 
Pubsub, custom protocols — doesn’t matter.

5. All service interfaces, without exception, must be designed 
from the ground up to be externalizable. That is to say, the 
team must plan and design to be able to expose the interface 
to developers in the outside world. No exceptions.

6. Anyone who doesn’t do this will be fired.

7. Thank you; have a nice day!

API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● API-first approach sees APIs as products 
used by other systems (instead of them 
providing a set of endpoints supporting a 
single system).

● Fosters thinking about how APIs are 
documented, how they are used, how 
they are built, how they are maintained, 
etc.

● The idea has been around for a while – 
e.g. Bezos API Mandate at Amazon 
(2002).



1. All teams will henceforth expose their data and functionality 
through service interfaces.

2. Teams must communicate with each other through these 
interfaces.

3. There will be no other form of interprocess communication 
allowed: no direct linking, no direct reads of another team’s 
data store, no shared-memory model, no back-doors 
whatsoever. The only communication allowed is via service 
interface calls over the network.

4. It doesn’t matter what technology they use. HTTP, Corba, 
Pubsub, custom protocols — doesn’t matter.

5. All service interfaces, without exception, must be designed 
from the ground up to be externalizable. That is to say, the 
team must plan and design to be able to expose the interface 
to developers in the outside world. No exceptions.

6. Anyone who doesn’t do this will be fired.

7. Thank you; have a nice day!

API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● API-first approach sees APIs as products 
used by other systems (instead of them 
providing a set of endpoints supporting a 
single system).

● Fosters thinking about how APIs are 
documented, how they are used, how 
they are built, how they are maintained, 
etc.

● The idea has been around for a while – 
e.g. Bezos API Mandate at Amazon 
(2002).



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices

● Designed collaboratively with API 
consumers → key functionality identified 
before coding



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices

● Designed collaboratively with API 
consumers → key functionality identified 
before coding

● Adoption in (larger) companies; need for an 
API style guide including versioning 
strategies etc



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices

● Designed collaboratively with API 
consumers → key functionality identified 
before coding

● Adoption in (larger) companies; need for an 
API style guide including versioning 
strategies etc

Also a key part of MACH: 

● Microservices
● API-first
● Cloud-native SaaS
● Headless



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices

● Designed collaboratively with API 
consumers → key functionality identified 
before coding

● Adoption in (larger) companies; need for an 
API style guide including versioning 
strategies etc

https://machalliance.org/

Also a key part of MACH: 

● Microservices
● API-first
● Cloud-native SaaS
● Headless



API-first

Bloch, Joshua. "How to design a good API and why it matters." Companion to the 21st ACM SIGPLAN 
symposium on Object-oriented programming systems, languages, and applications. 2006.

● APIs designed to be used as products → 
easier adoption in new applications and 
devices

● Designed collaboratively with API 
consumers → key functionality identified 
before coding

● Adoption in (larger) companies; need for an 
API style guide including versioning 
strategies etc

https://machalliance.org/

Also a key part of MACH: 

● Microservices
● API-first
● Cloud-native SaaS
● Headless

“MACH technologies support a composable 

enterprise in which every component is pluggable, 

scalable, replaceable, and can be continuously 

improved through agile development to meet evolving 

business requirements.”



Server-side Architectural Patterns



Server-side Architectural Patterns – some concepts



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture

How code is structured and how a request goes 

through the layers of an application.



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture
○ Monolithic architecture

How code is structured and how a request goes 

through the layers of an application.

Application as a single coherent unit.



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture
○ Monolithic architecture
○ Microservice architecture

How code is structured and how a request goes 

through the layers of an application.

Application as a single coherent unit.
Application as a collection of services.



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture
○ Monolithic architecture
○ Microservice architecture
○ Serverless architecture

How code is structured and how a request goes 

through the layers of an application.

Application as a single coherent unit.
Application as a collection of services.Application on a third party service, often launched up on demand.



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture
○ Monolithic architecture
○ Microservice architecture
○ Serverless architecture

● All of the above work for scalable 
applications (depending on archetype!)

How code is structured and how a request goes 

through the layers of an application.

Application as a single coherent unit.
Application as a collection of services.Application on a third party service, often launched up on demand.



Server-side Architectural Patterns – some concepts

● Web Software Development (CS-C3170):
○ Layered architecture
○ Monolithic architecture
○ Microservice architecture
○ Serverless architecture

● All of the above work for scalable 
applications (depending on archetype!)

● Also, ..
○ Event-driven architecture
○ Microkernel / plugin architecture
○ Space-based architecture

How code is structured and how a request goes 

through the layers of an application.

Application as a single coherent unit.
Application as a collection of services.Application on a third party service, often launched up on demand.



Event-driven Architecture



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).

Producer

Broker

Consumer Consumer



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).

Producer

Broker

Consumer Consumer

Naive implementation possible with 
WebSockets and simple server



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new data 
arrives (is produced) for a topic, data is sent to all clients 
subscribed to the topic

● Needs a message broker (a service for passing and 
storing messages): Plenty of existing platforms 
including Kafka (which is in Week 4 readings).

Producer

Broker

Consumer Consumer

Good for figuring out the principles – an existing platform is better for actual use

Naive implementation possible with 
WebSockets and simple server



Example: (simple) Messaging with 
WebSockets

https://deno.land/api?s=Deno.upgradeWebSocket 

https://deno.land/api?s=Deno.upgradeWebSocket


Event-driven Architecture

● Note! Event-driven architectures 
primarily for passing messages about 
events

● Passing large files (e.g. images) as 
messages maybe not a good idea

● Rather, store the data and pass a 
reference (or a link) to the data

https://dzone.com/articles/processing-large-messages-with-apache-kafka 

https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas
es-architecture/ 

https://dzone.com/articles/processing-large-messages-with-apache-kafka
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/


Event-driven Architecture

● Note! Event-driven architectures 
primarily for passing messages about 
events

● Passing large files (e.g. images) as 
messages maybe not a good idea

● Rather, store the data and pass a 
reference (or a link) to the data

https://dzone.com/articles/processing-large-messages-with-apache-kafka 

https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cas
es-architecture/ 

For the second course project, given the size of the programming exercises, passing full solutions as messages is ok.

https://dzone.com/articles/processing-large-messages-with-apache-kafka
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/
https://www.kai-waehner.de/blog/2020/05/19/apache-kafka-event-streaming-pharmaceuticals-pharma-life-sciences-use-cases-architecture/


We’ll discuss microkernel / plugin architecture 
and space-based architecture next week.



Scalability Dimensions



Scalability dimensions

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

○ Administrative dimension – the number of 
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

○ Administrative dimension – the number of 
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

With more services, the likelihood 

that something is down increases



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

○ Administrative dimension – the number of 
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

With more services, the likelihood 

that something is down increases

With larger distances 
come larger latencies



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

○ Administrative dimension – the number of 
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

With more services, the likelihood 

that something is down increases

With larger distances 
come larger latencies

More governing bodies may 
lead to larger amounts of 
changes, conflicts, etc..



Scalability dimensions

● Multiple dimensions in scaling a system

● Scale in distributed systems (1994):

○ Numerical dimension – the number of users of the 
system and the number of objects and services

○ Geographical dimension – the distance over which the 
system is scattered

○ Administrative dimension – the number of 
organizations that control pieces of the system

B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems. 1994.

With more services, the likelihood 

that something is down increases

With larger distances 
come larger latencies

More governing bodies may 
lead to larger amounts of 
changes, conflicts, etc..

Not fully applicable to 

web software…



Scalability dimensions – how to scale

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.



Scalability dimensions – how to scale

● AKF Scale Cube:
○ Cloning of systems or data
○ Separation of work by 

responsibility, action, or data
○ Separation of work by 

customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.



Scalability dimensions – how to scale

● AKF Scale Cube:
○ Cloning of systems or data
○ Separation of work by 

responsibility, action, or data
○ Separation of work by 

customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.



Scalability dimensions – how to scale

● AKF Scale Cube:
○ Cloning of systems or data
○ Separation of work by 

responsibility, action, or data
○ Separation of work by 

customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.

Duplication: creating multiple 
copies of a service



Scalability dimensions – how to scale

● AKF Scale Cube:
○ Cloning of systems or data
○ Separation of work by 

responsibility, action, or data
○ Separation of work by 

customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.

Duplication: creating multiple 
copies of a service

Sp
lit

ti
ng

: d
iv

id
in

g 
se

rv
ic

e 
in

to
 

m
ul

ti
pl

e 
pa

rt
s 

(e
.g

. m
ic

ro
se

rv
ic

es
)



Scalability dimensions – how to scale

● AKF Scale Cube:
○ Cloning of systems or data
○ Separation of work by 

responsibility, action, or data
○ Separation of work by 

customer or requestor

Abbott, M.L. and Fisher, M.T., 2009. The Art of Scalability: Scalable Web Architecture, 
Processes, and Organizations for the Modern Enterprise.

Duplication: creating multiple 
copies of a service

Sp
lit

ti
ng

: d
iv

id
in

g 
se

rv
ic

e 
in

to
 

m
ul

ti
pl

e 
pa

rt
s 

(e
.g

. m
ic

ro
se

rv
ic

es
)

Seg
men

tin
g e

.g.
 ba

se
d o

n 

cu
sto

mer
, lo

ca
tio

n, 
or

 so
me 

oth
er

 as
pe

ct 
of

 da
ta



Recap

● Jamstack
● APIs
● API-first
● Server-side Architectural Patterns
● Scalability Dimensions


