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Linear filters

The term “filter” typically refer to a continuous-time circuit  that is 
designed to remove certain frequencies and allow others to pass. 
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First order Butterworth filter and its Bode plot



Operation principle of a filter

𝐻(𝑓)
𝑋(𝑓) 𝑌 (𝑓) = 𝐻(𝑓)𝑋(𝑓)

𝑋(𝑓) ! 𝐻(𝑓) ! 𝑌(𝑓) ! = 𝐻(𝑓) ! 𝑋(𝑓) !

Input signal Ideal low-pass
Filter

Output signal



Ideal filters
• Low-pass filter

• High-pass filter

• Band-pass filter

• Band-stop filter
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Ideal filters

Ideal filter would not cause phase 
and amplitude distortions on the 
pass-band and completely reject 
the stop-band:
• Pass-band: A(f)=A and f(f)=2pftd
• Stop-band: A(f)=0
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Ideal filters

Ideal low-pass filter

Impulse response

Is not causal unless the delay caused 
by the filter becomes infinite 𝒕𝒅 → ∞
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Uncertainty principle

A function [signal] and its Fourier transform cannot both be 
localized.
Consider an energy signal x(t) with unit energy ∫"#

# 𝑥(𝑡) $ 𝑑𝑡 = 1

Its dispersion in the time and frequency domain fulfill

,
"#

#
𝑡$ 𝑥(𝑡) $ 𝑑𝑡,

"#

#
𝑓$ 𝑋(𝑓) $ 𝑑𝑓 ≥

1
16𝜋$

This bound resembles the Heisenberg’s uncertainty principle in 
quantum physics.



Practical filters

Practical filter is characterized by
• Filter order (order of the LTI 

system realizing the filter)
• Pass-band and pass band ripple 

DAp

• Transition region, roll of rate, 
and shape factor 

• Stop-band and selectivity DAe päästökaista
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Filter shape factor

• Typically we want the 
transition region to be 
narrow.

• Filter shape factor 
describes the relative 
width of the transition 
band
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Example: RC Filter

Frequency transfer function

Amplitude function

Half-power (-3 dB) bandwidth :

-60 dB bandwidth:

x(t) y(t)

𝐻 𝑓 =
1

𝑗2𝜋𝑓𝑇 + 1

Filter time constant 𝑇 = 𝑅𝐶𝐴 𝑓 = 𝐻 𝑓 =
1

2𝜋𝑓𝑇 ! +1

𝑟 = "!"# $%
"!& $%

= 10# −1 ≈ 1000𝐴2 𝑓 = 𝐻 𝑓 2 = $
!%&' '($

= 10)# ⇒ 𝑓 = $*")$
!%'

= 𝐵)#* +"

𝐴2 𝑓 = 𝐻 𝑓 2 = $
!%&' '($

= $
!
⇒ 𝑓 = $

!%'
= 𝐵), +"

Selectivity



Example 2: Two RC Filters in 
series
Frequency transfer function

Amplitude function

Half-power (-3 dB) bandwidth :

-60 dB bandwidth:

x(t)
𝐻 𝑓 =

1
𝑗2𝜋𝑓𝑇 + 1 !

Filter time constant 𝑇 = 𝑅𝐶
𝐴 𝑓 = 𝐻 𝑓 =

1
2𝜋𝑓𝑇 ! +1

𝑟 = "!"# $%
"!& $%

= $*&)$

!)$
≈ 49.1𝐴2 𝑓 = 𝐻 𝑓 2 = $

!%&' '($ ' = 10)# ⇒ 𝑓 = $*&)$
!%'

= 𝐵)#* +"

𝐴2 𝑓 = 𝐻 𝑓 2 = $

!%&' '($ ' =
$
!
⇒ 𝑓 = !)$

!%'
= 𝐵), +"

Selectivity

y(t)



Example: 1st and 2nd order RC 
filters
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Filter families

• There are four classic analogue 
filter types: 

• Butterworth: Flattest pass-band but a poor 
roll-off rate.

• Chebyshev: Some pass-band ripple but a 
better (steeper) roll-off rate. 

• Elliptic (aka Cauer): Some pass- and stop-
band ripple but with the steepest roll-off rate. 

• Bessel: Worst roll-off rate of all four filters but 
the best phase response. Filters with a poor 
phase response will react poorly to a change 
in signal level.



Butterworth filter

Transfer function of nth order Butterworh filter

Rescale to get desirable bandwith W
s:=s/(2pW)
Amplitude function

<𝐻 𝑠 =
1

∏-.$
/ 𝑠 − 𝑝-

𝑝- =
( 1 = ( 𝑒0!%-= 𝑒0-!%

)
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*
+
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Butterworth filters
Bode amplitude plot Group delay



Filter design example

Filter specifications for a subwoofer Butterworth filter

Pass-band

Stop-band

Pass-band ripple dp
at most 3 dB

Selectivity at least 24 dB

20log10A(f)

fp =80 Hz fs =160 Hz

0 dB level



Filter design example

1. Fix pass-band attenuation 

3. Solve filter order

• 2. Fix stop-band attenuation

• 4. Make either pass-band cutoff 
frequency exact and solve for W.

20log10A(80)=-3 dB
⇒A(80)= $
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,
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⇒ 𝑛 =
1
2

ln 10
,
$* −1

10
!3
$* −1

ln 80
160

≈ 3.42 ⇒ 𝑛 = 4

Round up

𝑊 = 1*

$*
&
-#)$

-
,
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𝑊 =
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$
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≈ 80.23
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Filter design example

Designed 4th order filter
!𝐻 𝑠 =

1
𝑠

2𝜋𝑊
!
+ 0.7654 𝑠

2𝜋𝑊 + 1 𝑠
2𝜋𝑊

!
+ 1.8478 𝑠

2𝜋𝑊 + 1

x(t) y(t)



Digital filters

Digital Infinite impulse response (IIR) 
vs Finite Impulse Response (FIR) 
Filters
• Analog filters can be translated to 

IIR filters by discretizing. 
• IIR filters are less sensitive to 

quantization errors than FIR 
filters and use less memory (have 
lower delay).

• FIR filters can be designed to 
have linear phase response

Infinite impulse response (IIR) filter

Finite impulse response (FIR) filter



Digital IIR filter example

Example 3rd order Butterworth filter. Sampling frequency 10Hz



Digital FIR filter example

Several methods to design FIR filters exists. One is to approximate 
given ideal frequency response

Frequency response Impulse response
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