CHAPTER 8

Entropy

8.1
REVERSIBLE PART OF THE SECOND LAW

Work diagrams in which a generalized force such as P, 7, v, &, or pg# is
plotted against the corresponding generalized displacement V, L, 4, Z, or 7/
have been used to indicate processes of various systems. An isothermal pro-
cess or an adiabatic process is represented by a different curve on each dia-
gram. In this chapter, it is desired to formulate general principles that apply to
all systems. If we let the symbol Y denote any generalized force and the
symbol X its corresponding generalized displacement, a generalized work
diagram in which Y is plotted against X may be used to depict processes
common to all systems and will thus be suitable for general discussions.

Consider a reversible process represented by the smooth curve i — f on
the generalized work diagram shown in Fig. 8-1. The nature of the system is
not essential. The dashed curves through i and f, respectively, represent por-
tions of adiabatic processes. Let us draw a curve a — b, representing an iso-
thermal process, in such a way that the area under the smooth curve if is equal
to the area under the zigzag sequence of processes, path iabf. Then, the work
done 1n traversing both paths is the same, or

Wir = Wiay.
From the first law,
Qi = Ur — Ui = Wy,
and Qiaby = Us — Ui — Wiapy-
Therefore, Oir = Qiabf-
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FIGURE 8-1

Generalized work diagram, where i — f is any reversible process; i — a is a reversible
adiabatic process; a — b is a reversible isothermal process; and & — f is a reversible
adiabatic process.

But, since no heat is transferred in the two adiabatic processes ia and bf, we
have

Oir = Q- (8.1)

If we are given, therefore, a reversible process in which the temperature may
change in any manner, it is always possible to find a reversible zigzag path
between the same two states, consisting of an adiabatic process followed by an
isothermal process followed by an adiabatic process, such that the heat trans-
ferred during the isothermal segment is the same as that transferred during the
original process.

Now, consider the smooth closed curve on the generalized work diagram
shown in Fig. 8-2. Since no two adiabatic lines can intersect (see Prob. 6.13), a
number of adiabatic lines may be drawn, dividing the cycle into a number of
adjacent strips. A zigzag closed path may now be drawn, consisting of alter-
nate adia-batic and isothermal portions, such that the heat transferred during
all the isothermal portions is equal to the heat transferred in the original cycle.
Consider the two isothermal processes ab at the temperature 77, during which
heat Q, is absorbed, and cd at the temperature 75, during which heat Q, is
rejected. Since ab and c¢d are bounded by the same adiabatic curves, abed 1s a
Carnot cycle, and we may write Eq. (7.6) as

ol _lo
T, T,

For the sake of clearness and simplicity, we have been considering only
the absolute values of heat entering or leaving a system, thus ignoring the sign
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Generalized work diagram, where the smooth closed curve is a reversible cycle and the
zigzag closed path is made up of alternating reversible isothermal and reversible
adiabatic processes.

convention introduced in Chap. 4. Let us now return to the sign convention
and regard any Q as an algebraic symbol, positive for heat absorbed by a
system and negative for heat rejected from a system. We may then write the
equation cited above as

0,0,

T, T, ’
where Q; is a positive number and Q; is a negative number. Since the iso-
thermal curves ef and gh are bounded by the same two adiabatic curves, efgh
is also a Carnot cycle, and

0,0,

T; Ty

If a similar equation is written for each pair of isothermal curves bounded by
the same two adiabatic curves and if all the equations are added, then the
result obtained is that

Or, O O3 Qs

2l =22, 23, 24, 0.

T1+T2+T3+T4+
Since no heat is transferred during the adiabatic portions of the zigzag cycle,
we may write

Z% =0, (8.2)
T
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where the summation is taken over the entire zigzag cycle consisting of Carnot
cycles, j in number.

Now, imagine the cycle divided into a very large number of strips by
drawing a large number of adiabatic curves close together. If we connect
these adiabatic curves with small isothermal curves, in the manner already
described, then a zigzag path may be traced that can be made to approximate
the original cycle as closely as we please. When these isothermal processes
become infinitesimal, the ratio dQ/T for an infinitesimal isothermal between
two adjacent adiabatic curves is equal to the ratio dQ/T for the infinitesimal
piece of the original cycle bounded by the same two adiabatic curves. In the
limit, therefore, we may write for Eq. (8.2) any reversible cycle,

dQo
@€ . (8.3)
R% T

The circle through the integral sign signifies that the integration takes place
over the complete cycle, and the letter R emphasizes the fact that the equation
is true only for a reversible cycle. This result, known as Clausius’ theorem, is
one part of Clausius’ mathematical statement of the second law. The other
part applicable to irreversible cycles will be presented in Sec. 8.8.

8.2
ENTROPY

Let an initial equilibrium state of any thermodynamic system be represented
by the point i on any convenient diagram, such as the generalized work dia-
gram of Fig. 8-3. Denote a final equilibrium state by the point f. It is possible
to take the system from i to f along any number of different reversible paths,
since i and f are equilibrium states. Suppose the system is taken from i to f
along the reversible path R; and then back to i again along another reversible
path R,. The two paths form a reversible cycle, and from Clausius’ theorem

we may write
d
4; o _ 0.
rReJd T

The above integral may be expressed as the sum of two integrals, one for the
path R; and the other for the path R;. Then, we have

NESNE

i T R Jf T

f i
or J‘_T_Q:_ Jd_Q,
rdi T R T

Since R is a reversible path,
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FIGURE 8-3
Two reversible paths joining two equilibrium states of a system.

_ Jid_Q: de_Q
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f d0 f do
and, finally, J — = J —. 8.4
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Since R; and R; were chosen at random and represent any two rever51ble
paths, the above equation expresses the important fact that Rf dQ/T is
independent of the reversible path connecting i and f. Therefore, it follows
from Eq. (8.4) that there exists a function of the thermodynamic coordinates
of a system whose value at the final state minus its value at the initial state equals
the integral Rf dQ/T. This state function was named the entropy by Rudolf
Clausius in 1865 and is denoted by S. If S; is the entropy at the initial state and
Sy the entropy at the final state, then we have a finite change of entropy Sy — S;
from state i to state f, given by

f
Sy —Si = JEQ, ®-5)
R T

where the path from state i to state f is any reversible path R. Thus, the
entropy change of the system between states i and f is independent of the
path. This is a very remarkable result. Although the heat entering the system
depends on the path between the states i and f, the entropy change does not
depend on the path.

The existence of an entropy function § is deduced in the same way as that
of the internal-energy function U, that is, by showing that a certain quantity is
independent of choice of reversible processes connecting the initial equilibrium
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state with the final equilibrium state. Both U and § are state functions, which
means that the difference of either function evaluated at the final and initial
equilibrium states is independent of the path connecting the two states. In
neither function, however, does the defining equation enable us to calculate a
single value of the function, only the difference of two values.

If the two equilibrium states i and f are infinitesimally near, then the
integral sign may be eliminated and Sy — S; becomes dS, an infinitesimal
change of entropy of the system. Equation (8.5) then becomes

_ 90

ds T

(8.6)

where dS is an exact differential, since it is the differential of an actual func-
tion and not a small inexact quantity, such as dQ or dW. The subscript R to
dQ indicates that the preceding equation is true only if a small amount of heat
dQ is transferred reversibly.

When Eq. (8.6) is written in the form dQg = T dS, it is seen that the
difficulty of dealing with the inexact differential of heat is eliminated by sub-
stituting the product of the temperature and exact differential of the entropy.
This is a major advancement in the formalism of thermodynamics, compar-
able to replacing W with — P dV in a hydrostatic system. Entropy S joins P,
V,and T as a thermodynamic variable to be used in the development of the
formalism and mathematical methods of thermodynamics.

It is instructive to calculate a unit of entropy, a joule per kelvin, in order
to gain a feeling for this new variable. Consider the Joule paddle wheel appa-
ratus shown in Fig. 8-4. The system is a kilogram of water at room tempera-
ture 7. The surroundings are the adiabatic cylindrical wall and top, the
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FIGURE 8-4

Room-temperature reservoir Joule paddle wheel apparatus, an “‘entropy

generator.”
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diathermic bottom in contact with a heat reservoir, also at temperature 7', and

the paddle wheels. A slowly falling mass m causes the paddle wheels to turn, so

the portion of the boundary formed by the paddle wheels moves. The falling

mass does work on the system, which tends to experience an increase in the

temperature of the water. However, the diathermic bottom prevents the tem-

perature from rising by removing energy from the system in the form of heat.
The change of entropy of the reservoir AS is given by

d0r _Q

T T
which is also the total change of entropy for the composite system of liquid
plus reservoir, since the state of the water in the apparatus is unchanged at the
end of the process. Furthermore, since the temperature of the water and the
volume of the water are both unchanged, the internal energy is unchanged.
Thus, the work done by the falling mass equals the heat that enters the
reservoir. If the paddle wheel is driven by a mass of 29.9 kg (approximately
661b) that falls 1 m, then the change of entropy is given by

W (29.9kg)(9.8 N/kg)(1 m)

AS == 203K

= 1.00J/K.

The entropy of the mass turning the paddle wheels is not changed during the
process, because no heat enters or leaves the mass. Rather, the entropy is
generated by the conversion of work (done by the mass) into heat (entering
the reservoir). Thus, the paddle wheel apparatus serves as an entropy gen-
erator.

AS=J

8.3
PRINCIPLE OF CARATHEODORY

We have arrived at the mathematical formulation of the second law by the
historical method initiated by the engineer Carnot and elaborated by the
physicists Kelvin and Clausius. They thought in terms of practical engines,
ideal engines, and physical models. Starting with a statement expressing the
impossibility of converting heat completely into work, or the impossibility of
spontaneous heat flow from a low-temperature body to a high-temperature
body, they conceived of the ideal Carnot engine having maximum thermal
efficiency. With the aid of this ideal engine, an absolute thermodynamic tem-
perature scale was defined, and the Clausius theorem was proved. On the basis
of Clausius’ theorem, the existence of an entropy function was deduced. From
a mathematical point of view, this procedure is somewhat unsatisfactory.
Mathematicians often prefer an ‘‘axiomatic treatment,” that is, a statement
of the minimum number of fundamental axioms and then a purely formal
mathematical deduction from these axioms.



