ELEC-E8101 Digital and Optimal Control Exercise 9 Autumn 2022

Consider the pendulum in the figure below. The stick of the pendulum is massless and the only force that interacts with the mass m is the horizontal force F

1

Determine the (non-linear) dynamics model of the pendulum as a state-space model of the angle θ .

2

Linearize the non-linear state-space model around the equilibrium

$$\left(heta,\dot{ heta}
ight)=\left(0,0
ight)$$

3

A state space model

$$\dot{x} = Ax + Bu, \ y = Cx + Du$$

can be discretized with ZOH with sample time T_{s} as

$$x[k+1] = A_d x[k] + B_d u[k], \ y[k] = C x[k] + D u[k]$$

where

$$A_d=e^{AT_s}, B_d=A^{-1}(A_d-I)B$$

Discretize the system assuming sampling time h (you can use tables and/or symbolic math software).

4

Assume
$$g = 9.81, \, l = 9.81, m = 1/9.81$$

Determine if the discretized system is stable.

5 * (extra task for instruction)

Consider controlling the original (non-linear continuous time) system with a PID controller with a filter for D.

Implement the control in Simulink. Implement also the controller for the discretized system from task 2 similarly.

Assume
$$K_P=K_D=K_I=2,\,N=100$$
 .

Simulate the system response for $heta_{t rg et} = 0.4$ and plot it.

Then plot the response for $\, heta_{t \, {
m arg} \, et} = 1.5 \, . \,$ Explain the difference.