ELEC-E8101 Digital and Optimal Control
Exercise 9 - solution
Autumn 2022
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For rotational motion, the sum of torques acting on the system is equal to the product of the

moment of inertia / and angular acceleration 6. For this system the torques are caused by the
external force F and the gravity of the end of the pendulum (assume that the stick is massless).

Thus,
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Using state variables £1 = 0,20 =0, u=F,y=0=ux gives the state-space form
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Linearization of a function f(Z) around a point Zo is equivalent to approximating the function
around the point with a first-order Taylor series, given by

f(@) = f(zo) + f'(wo)(z — o).

The nonlinear functions in the state equations are the trigonometric functions, which only appear
in the terms for Z2. Their linearizations around zero are then
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The linearization can then be written

. g . 1
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l ml
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with all other parts of the model remaining original.

In the standard form this gives

) =2+ me= (5 o) (5 + ()
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A state space model

t = Ax + Bu, y=Cz + Du
can be discretized with ZOH with sample time Ts as

x|k + 1] = Agx[k] + Bgulk|, y[k] = Cz[k] + Dulk]
where

A; = eATS,Bd = Ail(Ad — I)B



The matrices can be calculated using Matlab symbolic toolbox as

syms g 1 Ts m positive

A=[0 1;-g/1 0]

B=[0 ; 1/(m*1)]
Ad=simplify (expm (A*Ts))
Bd=simplify (inv (A) * (Ad-eye (2)) *B)

ijng ( cos (Ts \/?) \/%Sin (Ts ﬁ)
\_\/gsm (TS \@) cos (TS \/g )
By = /<1 - (TS\@))/(mg)
| oo (/%) (30

Simplifying this by substituting

_ /9
VT
gives 1
_( cos(Tyw)  w sin(Tsw)
A= (—w sin (Tsw)  cos (Tsw) )
_ (1 = cos (Tsw))/(mg)
Ba = ( sin (Tyw) /(mlw) )

The quantity w is the natural frequency of the pendulum.

4
Assume 9 = 9.81,1=9.81,m = 1/9.81 Thys w = 1.

The discretized system is stable if the eigenvalues of A4 are in the unit circle.
Finding them using Matlab symbolic toolbox

eig (Ad)

gives
z = cos (Tsw) + jsin (Tsw)



for which 12| =1, The system (without a controller) is thus marginally stable (oscillation

continues forever).
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Simulator model
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Matlab code for the non-linear plant
function dxdt = fcn(x,u)
theta=x(1);

dtheta=x(2);

F=u;

g=9.81;

1=9.81;

m=1/9.81;

dxdt=[dtheta;...

linearized1

-g/l*sin(theta)+1/ (m*1) *cos (theta) *F];

and its linearized version

function dxdt = fcn(x,u)

theta=x (1) ;

dtheta=x(2) ;

F=u;

g=9.81;

1=9.81;

m=1/9.81;

dxdt=[dtheta; ...
-g/l*theta+l/ (m*1) *F];

™

theta

thetadiscr



Using the PID parameters given, the response for Otarget = 0.4 js shown below.
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Looking at the figure, both the true non-linear system and its linear approximation behave in a
similar fashion, with small differences.

Now the response for Otarget = 1.5 jg plotted below.
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The linearized system behaves similarly to the earlier response, as expected for a linear system,
where the set-point does not affect the system performance characteristics. However, the true



non-linear system behaves in a very different way—it oscillates heavily and its steady state error
appears to remain high. Also, unlike a linear system, the frequency of oscillation varies over
time.

This experiment demonstrates a few important points: First, that the linearization is reasonably
accurate only around the point in which it was performed. Thus, analysis and design of control
based on a linearized model is valid only when the linearization error is small. Despite the
shortcomings, linearization is an important tool for analyzing and designing controllers also for
non-linear systems.



