
CS-E4690 – Programming parallel supercomputers

Maarit Korpi-Lagg
maarit.korpi-lagg@aalto.fi

Hybrid computing in the CPU paradigm

mailto:maarit.korpi-lagg@aalto.fi

Recap

Multicore processors (core==CPU)

Multi-thread processors (e.g. processors with GPUs)

The two trajectories resulting from the power wall

Lecture 5 (this material)

Lecture 6 (next week’s material)

How to combine MPI distributed memory
programming models with shared-memory ones?
One of the ultimate questions to answer to create efficient codes

for the hybrid HPC platforms

Thread-level parallelism
openMP

Process-level parallelism
MPI

Separate address space

Common address space

Library calls

Directives: the programmer
has to correctly identify the

parallel parts and dependencies

Programmer implements
the communication patterns

explicitely

Compiler translates
the directives of the

programmer into a communication
pattern

Easy

Complicated
Observation we made:

Works both in distributed
and shared memory

But is this the
optimum?

To get yourself started
with/reminded about openMP,

recommended reading includes

https://ppc.cs.aalto.fi/ch3/

More and docs
https://www.openmp.org

https://ppc.cs.aalto.fi/ch3/

P0 P1

Addr. Space 0 Addr. Space 1

System
buffer

MPI_Send
MPI_Recv

MPI openMP

P0

Shared address space

T0 T1 T2

Data

Thread synchronizationPassing messages

Dominating issue

Memory models

P0 P1

Program

MPI openMP

Globally SPMD

P1

Fork-and-join

Time

Time
T0

T1,2,3

T1,2,3,4,5,6

Serial

Parallel

Serial

Parallel

Serial

Local
SPMD

Local
SPMD

Execution models

What are the (lower level) hybrid comp. options?

Pure MPI MPI+openMPMPI+ Shared
mem MPI openMP

No capacity to
investigate here,
but please read
[1], if you are
interested in trying
out.

Current consensus:
not the way to go
for distributed
memory comp.

The mode that
has been used
so far….

Now provides
reference
cases

Modes that are discussed today,
and tried out in Sheet 5

Use OpenMP
within a node and
MPI across nodes

Use shared mem.
MPI within a node
and MPI across
nodes

Lecture 4: one-
sided p2p comms
material

What benefits are we expecting?

1. Reducing memory usage, both in the application and by the
MPI library (e.g. decreased usage of communication buffers)

2. Improved performance and extended scale-up to higher
number of CPU cores.

Two types of improvements can be envisaged

Memory consumption issues with MPI
Strong scaling scenario: if only shared memory, total consumption remains
constant; with MPI there can be an increase due the replication (application)
and buffering (system) of data.

Why is this a problem? Core issue: some applications are limited by the amount of
memory per core (1-2GB nowadays); this is not going to increase dramatically in the
future; better to try to optimize the memory consumption.

Local domain size Size of halos Fraction of
halos/domain size

64! = 262,144 66!−64!= 25,352 10%

32! = 32,768 34!−32!= 6,536 20%

16! = 4,096 18!−16!= 1,736 42%

Halo sizes in
strong scaling case

with 2nd order
Moore stencil in 3D

periodic case

Goals?

• To reduce the total memory requirement; larger problem sizes can then
be computed with the same amount of cores

• Reduced memory footprint per core may also give performance
benefit, as data locality is improved: Data can fit into cache, reducing
the demand on memory bandwidth.

How could this be done?

• Request less MPI processes on each node than there are cores.
• This results in some cores being idle
• Use openMP threads to make the idle cores work (non-trivial,

but possible)

Investigate whether the following strategy is possible:

Performance

At low and intermediate core
counts the performance of
pure MPI is typically better
than hybrid. At high core
counts, parallelization
overheads with pure MPI kill
performance, but hybrid
performance can overtake
and the code may continue to
perform to higher number of
cores.

MPI + openMP

Pure MPIPerformance

Number of cores

Scale-up

Ideal scaling

Measured scaling

Speed up

Number of cores

Pure MPI

MPI + openMP

Situation when looking at scaling plots

How can these benefits be achieved?
Investigate if there is a possibility to add lower-level parallelism into
the application

Typical example: ISLs using MPI
Repeat:

Initiate communication of yellow halos;
Do update of the green zones;
Wait for communications to finalize;
Update the red zones;

Loop-level parallelism to be added

How can these benefits be achieved?
Investigate whether you can reduce communication overhead by

removing redundant comm. operations

Typical example: dynamical ISLs;
conditional communication of part of the
halos required, but often implemented as
full
Do conditional communication in shared
memory programming model
Decrease number of MPI processes, give
that work to openMPI threads

OK, makes sense to implement

What to do in practise?

Use OpenMP
within a
node and

MPI across
nodes

Use shared
mem. MPI
within a
node and

MPI across
nodes

First, check if your MPI library supports threading
ompi_info | grep "Thread support"

Triton:

Thread support: posix (MPI_THREAD_MULTIPLE: yes, OPAL
support: yes, OMPI progress: no, ORTE progress: yes, Event lib:
yes)

Hybrid/hello_class.c
scripts/job_hybrid_example.sh

How to make MPI to co-operate with threads?
Instead of MPI_Init() one should call

MPI_THREAD_SINGLE (0) Only one thread will execute (Equiv. of
MPI_Init(). No openMP parallel regions in the code expected.

MPI_THREAD_FUNNELED (1) If the process is multithreaded, only the
thread that called MPI_Init_thread will make MPI calls.

MPI_THREAD_SERIALIZED (2) If the process is multithreaded, only one
thread will make MPI library calls at one time.

MPI_THREAD_MULTIPLE (3) If the process is multithreaded, multiple
threads may call MPI at once with no restrictions.

int MPI_Init_thread(int *argc, char ***argv, int required, int
*provided)

All threads share all MPI objects (communicators, requests)

Case MPI_THREAD_FUNNELED
All MPI calls are made by the openMP master thread OUTSIDE
parallel regions, or inside openMP master regions.

int main(int argc, char ** argv) {
int data[100], provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#pragma omp parallel for
for (i = 0; i < 100; i++)
compute(data[i]);
/* Do MPI stuff */
MPI_Finalize();
return 0; }

Master-only style, if calls
only outside parallel
regions

Master-only type programming
• All MPI calls outside openMP parallel regions
• Straightforward fork-and-join parallelism typical for openMP
• Easy and safe: Each parallel region imposes a synchronization,

hence programmer does not have to worry about it. High overhead.
• During the MPI calls by master, all other threads are idling; using

derived data types can be especially devastating, as the
packing/unpacking of data is serialized

• Poor data locality; all data passes through the cache of the master
thread

More cons than pros

Funneled type programming
• MPI calls are made by OpenMP master thread, but take place

inside OpenMP parallel “master” regions.

#pragma omp parallel {
... work
#pragma omp barrier
#pragma omp master {

MPI_Send(...);
}
#pragma omp barrier ...
work
}

Funneled type programming
• Two restrictions are relaxed in comparison to master-only

programming:
• there are now cheaper ways available to synchronise

threads than opening and closing parallel regions
• It possible for other threads to do useful computation

while the master thread is executing MPI calls.

Serialized mode of programming
• Any thread inside an OpenMP parallel region may make calls to

the MPI library, but the threads must be synchronised in such a
way that only one thread at a time may be in an MPI call.

#pragma omp parallel {
... work
#pragma omp critical {
MPI_Send(...); }
... work }

Serialized mode of programming
• Threads can communicate their own data to other threads in other

processes. This improves locality, since the message data is not all
being cycled through one cache.

• It is now often necessary to use tags or communicators to
distinguish between messages from (or to) different threads in the
same MPI process. This is because the ordering of the sends and
receives posted by different threads is non-deterministic.

• Ensuring threads do not enter MPI calls at the same time, by
enclosing the MPI calls into openMP critical regions, may result in
idle threads.

Serialized mode of programming
On a certain MPI rank of processes:

T1

T2

T3

T4

Black: time
Green: computation
Red: communication
Orange: critical

MPI calls are embedded in omp critical sections

Multiple style programming
• Any thread inside (or outside) an openMP parallel region may call

MPI, and there are no restrictions on how many threads may be
executing MPI calls at the same time.

• MPI assumes that it should take care of thread safety internally.
• Application code can become very inefficient. Efficient usage of

this model requires advanced knowledge on openMP; skip but if
interested, read [2].

#pragma omp parallel {
... work
MPI_Send(...);
... work
}

OK, makes sense to implement

What to do in practise?

Use OpenMP
within a
node and

MPI across
nodes

Use shared
mem. MPI
within a
node and

MPI across
nodes

Example codes:
Hybrid/OMP_MPI_X.c

What is shared memory computing using MPI?
• “Standard” MPI mode for internode comms, shared memory

mode for the intranode comms; altogether only one
programming standard

Each blue circle= MPI process; orange boxes SMP nodes

MPI_COMM_WORLD

MPI_Comm_split or MPI_Comm_group

Shared memory window Shared memory window Shared memory window

Shared mem. Communicator 1 Shared mem. Communicator 2 Shared mem. Communicator 3
MPI_Win_allocate_shared MPI_Win_allocate_shared MPI_Win_allocate_shared

Similarities and differences between RMA ops.

RMA ops.

Local window

Load/Store

Local window

Load/Store

MPI_Put/
MPI_get

Load/Store

Shared mem.

• No MPI_Put/MPI_get used in shared memory MPI mode; only
loads/stores to the correct address of each core

• All RMA ops. are available, e.g. the atomic MPI_Accumulate and
MPI_Get_accumulate

• Synchronization as in the RMA ops, e.g., fenching

OK, makes sense to implement

What to do in practise?

Use OpenMP
within a
node and

MPI across
nodes

Use shared
mem. MPI
within a
node and

MPI across
nodes

Example codes:
Hybrid/OMP_MPI_X.c

Example codes:
Hybrid/MPIs_MPI_X.c

Useful reading
[1] A. Basumallik, S. Min and R. Eigenmann, "Programming
Distributed Memory Sytems Using OpenMP," 2007 IEEE
International Parallel and Distributed Processing Symposium,
2007, pp. 1-8, doi: 10.1109/IPDPS.2007.370397.
[2] http://www.intertwine-
project.eu/sites/default/files/images/INTERTWinE_Best_Practice_G
uide_MPI%2BOmpSs_1.0.pdf

Basics of openMP: https://ppc.cs.aalto.fi/ch3/
More and docs: https://www.openmp.org

http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOmpSs_1.0.pdf
https://ppc.cs.aalto.fi/ch3/

