
CS-E4690 – Programming parallel supercomputers

Maarit Korpi-Lagg
maarit.korpi-lagg@aalto.fi

Designing parallel algorithms (EXTRA)

mailto:maarit.korpi-lagg@aalto.fi

How to design a parallel algorithm?
• Determine which parts of your code can be computed concurrently
• Decompose these parts to smaller pieces that can be computed

concurrently== tasks
• Map the obtained tasks to a “virtual” topology of processes, and

optimize configuration
• Maximize concurrency (Task dependency graphs) by mapping

independent tasks onto different processes
• Minimize interactions (Task interaction graphs) by mapping tasks

with high degree of mutual interactions onto the same process
• Make sure that there are processes to execute the next task when

a previous task completes.

Task dependency graph (TDG)
• Optimum decomposition of the tasks for concurrency

10 10 1010

Nodes: tasks

58

4

Directed
edges: control
dependencies

Weight of the
node: work

associated with
this task

Critical path:
The longest directed path between any pair
of start (no incoming edge) and finish (no
outgoing edge) node

Critical path length:
Sum of weigths along critical path

Average degree of concurrency (to
be maximized)
Total amount of work/critical path length
In the example: 57/22=2.59

Examples
Data base query; imaginary phone sales catalogue

ID# Year Manufacturer Model Color Retailer
23498 2018 Komia Pulikka Black Kikantti
8734568 2019 OneMinus 6 Blue Elise
265341 2017 Orange 10 Green NDA
6743345 2019 Komia Palikka Black Kikantti
3265 2016 OneMinus 6 Green Elise
534876 2017 OneMinus 7 Red NDA
762345 2019 Komia Palikka Green Elise
34567 2020 Orange 11 Black Kikantti
123867 2020 Komia Pulikka Blue NDA
46556 2017 Komia Palikka Black Elise

Query: Manufacturer=“Komia” AND Year=“2019” AND (Color=“Black” OR Color=“Green”)

Examples
Data base query; imaginary phone sales catalogue
Query: Manufacturer=“Komia” AND Year=“2019” AND (Color=“Black” OR Color=“Green”)

10 10 1010

Black

10

7AND

Komia
Year Green

AND

7 OR

10 10 1010

Black

9

8AND

Year Green

AND

7
OR

Komia

Question; which is better?

Examples
Matrix-vector multiplication; y=Ax

A x y

• All tasks are independent (no
directed edges from nodes)

• Maximum concurrency according
to TDG would be obtained by
dividing to the smallest possible
entity (one cell)

• Possibility to divide the work based
on data in many different ways (for
example to yellow or green blocks)

• No matter how you divide the work,
you will need totality of x for all
tasks to update an element of y

Task interaction graph (TIG)
• Optimize data dependencies (minimize interactions)
• To decide what is the optimum granulation level of the

decomposition
• Nodes represent tasks and their computation times
• (Un)directed edges the interactions in between them

10

Dense matrix
case: task

decomposition to
one row; one task

50

50

1
1

Decomposition to
green blocks

5n computations,
1 interaction of x

n computations,
n interactions of

x

Decomposition

• Task decomposition
• Recursive decomposition: “Divide and conquer”

• Data decomposition (Input/Output/Intermediate/Hybrid)
• Input/Output: “Owner computes” model

• (Exploratory)
• (Speculative)

Recursive decomposition
• Decompose a problem into independent sub-problems
• Decompose sub-problems similarly using recursion
• Stop decomposing, when the granularity becomes sub-optimal

or result is obtained
• Typical example: Quicksort

4 8 2 1 3 7 5 6

2 1 3 4 8 7 5 6

2 3

32

1 4 5 6 8 7

4

4 5 76 8

5

Task==work to
partition a given sub-
sequence

Data decomposition
• Manipulation of large data sets; matrix-vector multiplication

was one good example
• Define tasks based on partitioning the data
• Output/Input/Intermediate/Hybrid

......

How to map tasks to processes?
• Process is a logic entity performing the defined tasks
• Let us look at our example cases

How to map to processes?
Data base query; best case concurrency-wise

10 10 1010

Black

9

8

AND

Year Green

AND

7

OR

Komia

50

50

1

Dense matrix-vector
multiplication; If we decompose
the data into two row-wise blocks,
we can map them to two
concurrent processes

How to map to processes?

4 8 2 1 3 7 5 6

2 1 3 4 8 7 5 6

2 3

32

1 4 5 6 8 7

4

4 5 76 8

5

Quicksort; tree-like mapping

Static versus dynamic tasks and mapping

• Dense matrix multiplication is suited for static task generation
and mapping (no need to change them when repeating the
operation for different data sets)

• Database query and sorting, for example, are suited for
dynamic task generation and mapping (with a changing query,
the optimal graphs will change)

• Task depency graph is fixed for static, not known a priori for the
dynamic case

Regular versus Irregular interactions
• Dense matrix multiplication has regular interactions

(communication pattern between tasks repeats)

• If the matrix was sparse but did not possess any symmetry
properties, then its communication pattern would become
irregular (communication pattern would become dependent on
where the zeros are in the matrix).

• Task interaction graph is fixed for regular, not known a priori for
the irregular case

• Interactions can also be static and dynamic.

What to do in practice?

• Static and regular mappings are “trivial” cases for MPI.
• Dynamic and irregular mappings are the challenge

• MPI can handle dynamicism with spawning more processes
when needed (MPI_Comm_spawn and related functions);
tedious

• Also the way for implementing fault tolerance in MPI-4 standard; not ubiquituously
available, hence we skip this year

• MPI + openMP programming model; less tedious

