Mathematics for Economists

Problem Set 7 Due date: Friday 25.11 at 12.15

Exercise 1

A consumer's utility function is $u(x, y) = x^2 y^3$ and the budget constraint is $p_x x + p_y y \le w$, where the parameters p_x , p_y and w are all strictly positive.

- (a) Solve the consumer's utility maximization problem.
- (b) Use the envelope theorem to estimate the change in the indirect utility function (i.e., the problem's value function) when the price p_y is changed to $p_y + \epsilon$, with $\epsilon > 0$.

Exercise 2

Consider the following constrained maximization problem:

$$\max_{x,y,z} \quad f(x,y,z) = ax + by + cz \\ \text{s.t.} \quad g(x,y,z) = \alpha x^2 + \beta y^2 + \gamma z^2 \leq G$$

where $a, b, c, \alpha, \beta, \gamma, G$ are all positive parameters.

- (a) Solve the maximization problem.
- (b) Let V be the value function of this maximization problem, \mathcal{L} the corresponding Lagrangian function and λ the Lagrange multiplier. Verify that:

$$\frac{dV}{dG} = \lambda^*.$$

Exercise 3

Find the solutions of the following difference equations with the given initial values of x_0 . In addition, check what happens when t goes to infinity.

- (a) $x_{t+1} = 2x_t + 4, x_0 = 1;$
- (b) $3x_{t+1} = x_t + 2, x_0 = 2;$
- (c) $2x_{t+1} + 3x_t + 2 = 0, x_0 = -1;$
- (d) $x_{t+1} x_t + 3 = 0, x_0 = 3.$

Exercise 4

Solve the below difference equation system for initial values $x_0 = 25$ ja $y_0 = 0$.

$$x_{k+1} = 1.5x_k + y_k,$$

 $y_{k+1} = x_k.$

What happens to the ratio x_k/y_k , when k goes to infinity?

Exercise 5

Consider the following square matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}.$$

- (a) Show that $\boldsymbol{v}_1 = (2,3)^T$ and $\boldsymbol{v}_2 = (1,-1)^T$ are the two eigenvectors of A.
- (b) For each eigenvector, find the corresponding eigenvalue.
- (c) Use the two eigenvectors v_1 and v_2 and the eigenvalues you obtained in question (b) to find a square matrix P and a diagonal matrix D such that

$$A = PDP^{-1}. (1)$$

(d) Use (1) to calculate A^n , where $n \ge 1$.