Aalto University School of Science

MS-E2135
 Decision Analysis Lecture 9

- The Analytic Hierarchy Process
- Outranking methods

Motivation

\square When alternatives are evaluated w.r.t. multiple attributes / criteria, decision-making can be supported by methods of

- Multiattribute value theory MAVT (certain attribute-specific performances)
- Multiattribute utility theory MAUT (uncertain attribute-specific performances)
\square Both MAVT and MAUT have a solid axiomatic basis
- Characterization of preferences \rightarrow Representation theorems
\square But there are many other multicriteria methods, too

Analytic Hierarchy Process (AHP)

Thomas L. Saaty $(1977,1980)$

- Has gained much popularity
- Thousands of reported applications
- Dedicated conferences and scientific journals
- Is rather straightforward to apply
- Implemented in many software tools
- Expert Choice, WebHipre etc.
- Not based on a well-founded axiomatization of preferences
- Is viewed as controversial by rigorous decision theorists

Problem structuring in the AHP

- Objectives, subobjectives / criteria, and alternatives are represented as a hierarchy of elements (cf. value tree)

Local priorities

- For each objective / sub-objective, a local priority vector is determined

Verbal statement	Scale	
	1-to-9 Balanced	

\square This vector reflects the relative importance of the elements (either sub-objectives or alternatives) that are placed immediately below the chosen objective / sub-objective

- Pairwise comparisons:
- For (sub-)objectives: "Which sub-objective / criterion is more important for the attainment of the objective? How much more important is it?"
- For alternatives: "Which alternative contributes more to the attainment of the criterion? How much more does it contribute?"
- Responses on a verbal scale correspond to weight ratios

Equally important	1	1.00
-	2	1.22
Slightly more important	3	1.50
-	4	1.86
Strongly more important	5	2.33
-	6	3.00
Very strongly more important	7	4.00
Extremely more important	8	5.67
	9	9.00

Aalto University
School of Science

Pairwise comparison matrix

- Ratios $r_{i j}=\frac{w_{i}}{w_{j}}$ give the pairwise comparison matrix A (the more important on the row i)

$$
A=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
\vdots & \ddots & \vdots \\
r_{n 1}=1 / r_{1 n} & \cdots & r_{n n}
\end{array}\right]
$$

	Learning		
	A	B	C
A	1	$1 / 3$	$1 / 2$
B	3	1	3
C	2	$1 / 3$	1

	Friends		
	A	B	C
A	1	1	1
B	1	1	1
C	1	1	1

	School life		
	A	B	C
A	1	5	1
B	$1 / 5$	1	$1 / 5$
C	1	5	1

	Voc. training		
	A	B	C
A	1	9	7
B	$1 / 9$	1	5
C	$1 / 7$	$1 / 5$	1

	College prep.		
	A	B	C
A	1	$1 / 2$	1
B	2	1	2
C	1	$1 / 2$	1

	Music classes		
	A	B	C
A	1	6	4
B	$1 / 6$	1	$1 / 3$
C	$1 / 4$	3	1

Inconsistency in pairwise comparison matrices

\square Problem: Pairwise comparisons are not necessarily consistent

- Consistency: $r_{i j}=\frac{w_{i}}{w_{j}}$ and $r_{j k}=\frac{w_{j}}{w_{k}}$ imply that $r_{i k}=\frac{w_{i}}{w_{k}}=\frac{w_{i}}{w_{j}} \times \frac{w_{j}}{w_{k}}=r_{i j} \times r_{j k}$
\square E.g., if learning is slightly more important (3) than college preparation, which is strongly more important (5) than school life, then learning should be $3 \times 5=15$ times more important than school life \ldots but this is impossible due to the scale upper bound 9
\rightarrow Weights need to be estimated

Local priority vector

\square The local priority vector w (=estimated weights) is obtained by normalizing the eigenvector corresponding to the largest eigenvalue of matrix A

$$
\begin{gathered}
A w=\lambda_{\max } w, \\
w:=\frac{1}{\sum_{i=1}^{n} w_{i}} w
\end{gathered}
$$

\square If A is consistent, then $\lambda_{\max }=n$, the number of rows/colums of A
\square Matlab:

- [v,lambda]=eig(A) returns the eigenvectors and eigenvalues of A

$$
\gg \operatorname{real}(\mathrm{v}(:, 1)) / \operatorname{sum}(\operatorname{real}(\mathrm{v}(:, 1)))
$$

	Learning			W
	A	B	C	
A	1	$1 / 3$	$1 / 2$	0.16
B	3	1	3	0.59
C	2	$1 / 3$	1	0.25

Only one eigenvector with all real elements: $(0.237,0.896,0.376) \rightarrow$ normalized eigenvector $w=(0.16,0.59,0.25)$.
$\mathrm{A}=$

1.0000	0.3333	0.5000
3.0000	1.0000	3.0000
2.0000	0.3333	1.0000

>> $[\mathrm{V}, 1]=\mathrm{eig}(\mathrm{A})$
$0.2370+0.0000 i$
$0.8957+0.00001$
$0.3762+0.0000 i$
$0.1185+0.2052 i \quad 0.1185-0.2052 i$ $-0.8957+0.0000 i-0.8957+0.00001$ $0.1881-0.3258 i \quad 0.1881+0.3258 i$
$3.0536+0.0000 i \quad 0.0000+0.0000 i \quad 0.0000+0.0000 i$ $\begin{array}{rrr}0.0000+0.0000 i & -0.0268+0.4038 i & 0.0000+0.0000 i \\ 0.0000+0.0000 i & 0.0000+0.0000 i & -0.0268-0.4038 i\end{array}$

Local priority vectors = "weights"

	Learning			W
	A	B	C	
A	1	$1 / 3$	$1 / 2$	0.16
B	3	1	3	0.59
C	2	$1 / 3$	1	0.25
	School life			W
	A	B	C	
A	1	5	1	0.45
B	$1 / 5$	1	$1 / 5$	0.09
C	1	5	1	0.46
		College prep.	W	
	A	B	C	
A	1	$1 / 2$	1	0.25
B	2	1	2	0.50
C	1	$1 / 2$	1	0.25

	Friends			W
	A	B	C	
A	1	1	1	0.33
B	1	1	1	0.33
C	1	1	1	0.33
		Voc. training	W	
	A	B	C	
A	1	9	7	0.77
B	$1 / 9$	1	5	0.05
C	$1 / 7$	$1 / 5$	1	0.17
		Music classes	W	
	A	B	C	
A	1	6	4	0.69
B	$1 / 6$	1	$1 / 3$	0.09
C	$1 / 4$	3	1	0.22

	L	F	SL	VT	CP	MC	W
Learning	1	4	3	1	3	4	0.32
Friends	$1 / 4$	1	7	3	$1 / 5$	1	0.14
School life	$1 / 3$	$1 / 7$	1	$1 / 5$	$1 / 5$	$1 / 6$	0.03
Voc. Training	1	$1 / 3$	5	1	1	$1 / 3$	0.13
College prep.	$1 / 3$	5	5	1	1	3	0.24
Music classes	$1 / 4$	1	6	3	$1 / 3$	1	0.14

Consistency checks

- The consistency of the pairwise comparison matrix A is assessed by comparing the consistency index (Cl) of A to the average consistency index $R I$ of a random pairwise comparison matrix:

$$
C I=\frac{\lambda_{\max }-n}{n-1}, \quad C R=\frac{C I}{R I}
$$

n	3	4	5	6	7	8	9	10
RI	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49

- Rule of thumb: if $C R>0.10$, comparisons are so inconsistent that they should be revised

Three alternatives, $n=3$:

- Learning: $\lambda_{\max }=3.05, C R=0.04$
- Friends: $\lambda_{\max }=3.00, C R=0$
- School life: $\lambda_{\max }=3.00, C R=0$
\square Voc. training $\lambda_{\max }=3.40, C R=0.34$
College prep: $\lambda_{\max }=3.00, C R=0$
- Music classes: $\lambda_{\text {max }}=3.05, C R=0.04$

Six attributes, $n=6$:
․ All attributes: $\lambda_{\max }=7.42, C R=0.23$

Total priorities

The total (overall) priorities are obtained recursively:

$$
w_{k}=\sum_{i=1}^{n} w_{i} w_{k}^{i}
$$

where

- $\quad w_{i}$ is the total priority of criterion i,
- $\quad w_{k}^{i}$ is the local priority of criterion / alternative k with regard to criterion i,
- The sum is computed over all criteria i below which criterion / alternative k is positioned in the hierarchy

	Friends			w
	A	B	C	
A	1	1	1	0.33
B	1	1	1	0.33
C	1	1	1	0.33

$$
w_{A}=\sum_{i=1}^{6} w_{i} w_{k}^{i}=0.32 \cdot 0.16+0.14 \cdot 0.33+\ldots
$$

Total priorities

	Friends			w
	A	B	C	
A	1	1	1	0.33
B	1	1	1	0.33
C	1	1	1	0.33
	Voc. training			
	A	B	C	
A	1	9	7	0.77
B	$1 / 9$	1	5	0.05
C	$1 / 7$	$1 / 5$	1	0.17

	L	F	SL	VT	CP	MC	w
Learning	1	4	3	1	3	4	0.32
Friends	$1 / 4$	1	7	3	$1 / 5$	1	0.14
Schoo life	$1 / 3$	$1 / 7$	1	$1 / 5$	$1 / 5$	$1 / 6$	0.03
Voc. Training	1	$1 / 3$	5	1	1	$1 / 3$	0.13
College prep.	$1 / 3$	5	5	1	1	3	0.24
Music classes	$1 / 4$	1	6	3	$1 / 3$	1	0.14

	0.32	0.14	0.03	0.13	0.24	0.14	
	L	F	SL	VT	CP	MC	Total w
A	0.16	0.33	0.45	0.77	0.25	0.69	0.37
B	0.59	0.33	0.09	0.05	0.50	0.09	$\mathbf{0 . 3 8}$
C	0.25	0.33	0.46	0.17	0.25	0.22	0.25

E.g., $w_{B}=0.32 \times 0.59+0.14 \times 0.33+0.03 \times 0.09+$

$$
0.13 \times 0.05+0.24 \times 0.50+0.14 \times 0.09=0.38
$$

Problems with AHP

\square Rank reversals: The introduction of an additional alternative may change the relative ranking of other, previously introduced alternatives

- This means that the preferences between two alternatives do not depend on these alternatives only, but on the other alternatives as well, even if these other ones are less preferred
- Example:
- Alternatives A and B are compared w.r.t. two "equally important" criteria C_{1} and $\mathrm{C}_{2}\left(\mathrm{w}_{\mathrm{C} 1}=\mathrm{w}_{\mathrm{C} 2}=0.5\right)$
- A is better than B :

$$
w_{A}=\frac{1}{2} \times \frac{1}{5}+\frac{1}{2} \times \frac{5}{6} \approx 0.517, \quad w_{B}=\frac{1}{2} \times \frac{4}{5}+\frac{1}{2} \times \frac{1}{6} \approx 0.483
$$

	C_{1}	C_{2}
A	1	5
B	4	1
C	1	5

- Add C which is identical to \mathbf{A} in terms of its evaluations:

$$
w_{A}=w_{C}=\frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{5}{11} \approx 0.311, \quad w_{B}=\frac{1}{2} \times \frac{4}{6}+\frac{1}{2} \times \frac{1}{11} \approx 0.379
$$

- Now B is better than A!

Outranking methods*

\square Basic question: is there enough preference information / evidence to state that an alternative is at least as good as another alternative?
\square I.e., does an alternative outrank some other alternative?

[^0]
Indifference and preference thresholds divide the measurement scale into three parts

I If the difference between the criterion-specific performances of A and B is below a predefined indifference threshold, then A and B are "equally good" w.r.t. this criterion

- If the difference between the criterion-specific performances of A and B is above a predefined preference threshold, then A is preferred to B w.r.t this criterion
- Between indifference and preference thresholds, the DM is uncertain about preference

PROMETHEE I \& II

\square In PROMETHEE methods, the degree to which alternative k is preferred to I is

$$
\sum_{i=1}^{n} w_{i} F_{i}(k, l) \geq 0
$$

where

- $\quad w_{i}$ is the weight of criterion i
- $\quad F_{i}(k, l)=1$, if k is preferred to l w.r.t. criterion i,
- $\quad F_{i}(k, l)=0$, if the DM is indifferent between k and l w.r.t. criterion i, or l is preferred to k
- $\quad F_{i}(k, l) \in(0,1)$, if preference between k and l w.r.t. criterion i is uncertain

PROMETHEE I \& II

There is more

- PROMETHEE I: k is preferred to k^{\prime}, if

$$
\begin{aligned}
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(k, l)>\sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}\left(k^{\prime}, l\right) \\
& \sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}(l, k)<\sum_{l \neq k} \sum_{i=1}^{n} w_{i} F_{i}\left(l, k^{\prime}\right)
\end{aligned}
$$

- The resulting relation is not necessarily complete - it may be that k is not preferred to k^{\prime} and k^{\prime} is not preferred to k evidence in favor of k than k^{\prime}

There is less
evidence against k than k^{\prime}
\square PROMETHEE II: k is preferred to k, if

$$
F_{n e t}(k)=\sum_{l \neq k} \sum_{i=1}^{n} w_{i}\left[F_{i}(k, l)-F_{i}(l, k)\right]>\sum_{l \neq k^{\prime}} \sum_{i=1}^{n} w_{i}\left[F_{i}\left(k^{\prime}, l\right)-F_{i}\left(l, k^{\prime}\right)\right]=F_{n e t}\left(k^{\prime}\right)
$$

PROMETHEE: Example ${ }_{1}^{F_{1}}$
F_{2}
1

	Revenue	Market share
x^{1}	$1 \mathrm{M} €$	10%
x^{2}	$0.5 \mathrm{M} €$	20%
x^{3}	0	30%
Indiff. threshold	0	10%
Pref. threshold	$0.5 \mathrm{M} €$	20%
Weight	1	1

	Revenue F_{1}	Market share F_{2}	Weighted $F_{w}=W_{1} F_{1}+w_{2} F_{2}$
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

PROMETHEE I: Example

- PROMETHEE I:

- x^{1} is preferred to x^{2}, if

	F_{1}	F_{2}	F_{w}
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

$$
\begin{aligned}
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1+1}>\underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{2}, x^{3}\right)\right)}_{=1=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{2}, x^{1}\right)+F_{i}\left(x^{3}, x^{1}\right)\right)}_{=0+1=1}<\underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{2}\right)+F_{i}\left(x^{3}, x^{2}\right)\right)}_{=1+0=1}
\end{aligned}
$$

- x^{1} is not preferred to x^{2} due to the latter condition
- x^{2} is not preferred to x^{1} due to both conditions
- $\quad x^{1}$ is preferred to x^{3}
- x^{2} is not preferred to x^{3} and vice versa
- Note: preferences are not transitive
- $\quad x^{1}>x^{3} \sim x^{2} \nRightarrow x^{1}>x^{2}$

PROMETHEE I: Example (Cont’d)

- PROMETHEE I is also prone to rank reversals:
- Remove x^{2}
- Then,

$$
\begin{aligned}
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1} \ngtr \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \\
& \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{3}, x^{1}\right)\right)}_{=1} \nless \underbrace{\sum_{i=1}^{2}\left(F_{i}\left(x^{1}, x^{3}\right)\right)}_{=1}
\end{aligned}
$$

$\rightarrow x^{1}$ is no longer preferred to x^{3}

PROMETHEE II: Example

The "net flow" of alternative x^{j}

$$
\begin{aligned}
& \quad F_{n e t}\left(x^{j}\right)=\sum_{k \neq j}\left[F_{w}\left(x^{j}, x^{k}\right)-F_{w}\left(x^{k}, x^{j}\right)\right] \\
& -\quad F_{n e t}\left(x^{1}\right)=(1-0)+(1-1)=1 \\
& -\quad F_{n e t}\left(x^{2}\right)=(0-1)+(1-0)=0 \\
& - \\
& -F_{n e t}\left(x^{3}\right)=(1-1)+(0-1)=-1 \\
& \rightarrow \\
& \rightarrow x_{1} \succ x_{2} \succ x_{3}
\end{aligned}
$$

	F_{1}	F_{2}	F_{w}
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

PROMETHEE II: Example (Cont'd)

- PROMETHEE II is also prone to rank reversals
- Add two altrenatives that are equal to x^{3} in both criteria. Then, x^{2} becomes the most preferred:

$$
\begin{aligned}
& F_{n e t}\left(x^{1}\right)=(1-0)+3 \times(1-1)=1 \\
& F_{n e t}\left(x^{2}\right)=(0-1)+3 \times(1-0)=2 \\
& F_{n e t}\left(x^{3: 5}\right)=(1-1)+(0-1)=-1
\end{aligned}
$$

- Add two alternatives that are equal to x^{1} in both criteria. Then, x^{2} becomes the least preferred:

$$
\begin{gathered}
F_{n e t}\left(x^{1,4,5}\right)=(1-0)+(1-1)+2 \times(0-0)=1 \\
F_{n e t}\left(x^{2}\right)=3 \times(0-1)+(1-0)=-2 \\
F_{n e t}\left(x^{3}\right)=3 \times(1-1)+(0-1)=-1
\end{gathered}
$$

	F_{1}	F_{2}	F_{w}
x^{1}, x^{2}	1	0	1
x^{2}, x^{1}	0	0	0
x^{1}, x^{3}	1	0	1
x^{3}, x^{1}	0	1	1
x^{2}, x^{3}	1	0	1
x^{3}, x^{2}	0	0	0

- Remove x^{2}. Then, x^{1} and x^{3} are equally preferred.

$$
F_{n e t}\left(x^{1}\right)=F_{n e t}\left(x^{3}\right)=(1-1)=0
$$

Summary

\square AHP and outranking methods are widely used to support multiattribute decision-making
\square Unlike MAVT (and MAUT), these methods are not founded on a rigorous axiomatization of preferences \rightarrow

- Rank reversals
- Preferences are not necessarily transitive
\square Model parameters can be difficult to elicit
- Weights have no clear interpretation
- In outranking methods, statement "I prefer $2 €$ to $1 €$ " and "I prefer $3 €$ to $1 €$ " are both modeled with the same number (1); to make a difference, indifference and preference thresholds need to be carefully selected

[^0]: *For an overview of these methods (not required), see, e.g., B. Roy. The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31:49-73, 1991.

