

MS-E2135 Decision Analysis Lecture 9

- The Analytic Hierarchy Process
- Outranking methods

Motivation

- When alternatives are evaluated w.r.t. multiple attributes / criteria, decision-making can be supported by methods of
 - Multiattribute value theory MAVT (certain attribute-specific performances)
 - Multiattribute utility theory MAUT (uncertain attribute-specific performances)
- □ Both MAVT and MAUT have a solid axiomatic basis
 - Characterization of preferences → Representation theorems

□ But there are many other multicriteria methods, too

Analytic Hierarchy Process (AHP)

- Thomas L. Saaty (1977, 1980)
- □ Has gained much popularity
 - Thousands of reported applications
 - Dedicated conferences and scientific journals
 - Is rather straightforward to apply
- □ Implemented in many software tools
 - Expert Choice, WebHipre etc.
- Not based on a well-founded axiomatization of preferences
 - Is viewed as controversial by rigorous decision theorists

Problem structuring in the AHP

Objectives, subobjectives / criteria, and alternatives are represented as a <u>hierarchy</u> of elements (cf. value tree)

Local priorities

- For each objective / sub-objective, a local priority vector is determined
- This vector reflects the relative importance of the elements (either sub-objectives or alternatives) that are placed immediately below the chosen objective / sub-objective
- Pairwise comparisons:
 - For (sub-)objectives: "Which sub-objective / criterion is more important for the attainment of the objective? How much more important is it?"
 - For alternatives: "Which alternative contributes more to the attainment of the criterion? How much more does it contribute?"
- Responses on a verbal scale correspond to weight ratios

	Sc	ale
Verbal statement	1-to-9	Balanced
Equally important	1	1.00
-	2	1.22
Slightly more important	3	1.50
-	4	1.86
Strongly more important	5	2.33
-	6	3.00
Very strongly more important	7	4.00
-	8	5.67
Extremely more important	9	9.00

Aalto University School of Science

The balanced scale presented in: Salo and Hämäläinen, On the Measurement of Preferences in the Analytic Hierarchy Process, *Journal of Multi-Criteria Decision Analysis* 6/6 (1997) 309–319.

Pairwise comparison matrix

□ Ratios $r_{ij} = \frac{w_i}{w_j}$ give the pairwise comparison matrix *A* (the more important on the row *i*)

$$A = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1} = 1/r_{1n} & \cdots & r_{nn} \end{bmatrix}$$

	L	F	SL	VT	СР	MC
Learning	1	4	3	1	3	4
Friends	1/4	1	7	3	1/5	1
School life	1/3	1/7	1	1/5	1/5	1/6
Voc. training	1	1/3	5	1	1	1/3
College prep.	1/3	5	5	1	1	3
Music classes	1/4	1	6	3	1/3	1

		Learniı	ng		Friends				So	chool li	fe	
	А	В	С		А	В	С		А	В	С	Γ
А	1	1/3	1⁄2	А	1	1	1	А	1	5	1	5
В	3	1	3	В	1	1	1	В	1/5	1	1/5	L
С	2	1/3	1	С	1	1	1	С	1	5	1	

	Voc. training				College prep.				Music classes		
	А	В	С		А	В	С		А	В	С
А	1	9	7	А	1	1/2	1	А	1	6	4
В	1/9	1	5	В	2	1	2	В	1/6	1	1/3
С	1/7	1/5	1	С	1	1/2	1	С	1/4	3	1

Music classes contribute strongly/very
trongly more important than school life

Inconsistency in pairwise comparison matrices

□ **Problem:** Pairwise comparisons are not necessarily consistent

• Consistency:
$$r_{ij} = \frac{w_i}{w_j}$$
 and $r_{jk} = \frac{w_j}{w_k}$ imply that $r_{ik} = \frac{w_i}{w_k} = \frac{w_i}{w_j} \times \frac{w_j}{w_k} = r_{ij} \times r_{jk}$

- □ E.g., if learning is slightly more important (3) than college preparation, which is strongly more important (5) than school life, then learning should be 3 × 5 = 15 times more important than school life ... but this is impossible due to the scale upper bound 9
- \rightarrow Weights need to be estimated

Local priority vector

□ The local priority vector *w* (=estimated weights) is obtained by normalizing the eigenvector corresponding to the largest eigenvalue of matrix *A*

$$Aw = \lambda_{max}w,$$
$$w := \frac{1}{\sum_{i=1}^{n} w_i}w$$

- □ If *A* is consistent, then $\lambda_{max} = n$, the number of rows/colums of *A*
- Matlab:
 - [v,lambda]=eig(A) returns the eigenvectors
 and eigenvalues of A >> real(v(:,1))/sum(real(v(:,1)))


```
ans =
0.1571
0.5936
0.2493
```

		W		
	А	В	С	
А	1	1/3	1/2	0.16
В	3	1	3	0.59
С	2	1/3	1	0.25
		1		

Only one eigenvector with all real elements: $(0.237, 0.896, 0.376) \rightarrow$ normalized eigenvector *w*=(0.16, 0.59, 0.25).

```
>> A=[1 1/3 .5; 3 1 3; 2 1/3 1]
A =
    1.0000
              0.3333
                        0.5000
    3.0000
              1.0000
                        3.0000
    2.0000
              0.3333
                        1.0000
>> [v,1]=eig(A)
   0.2370 + 0.00001
                       0.1185 \pm 0.2052i
   0.8957 + 0.0000i
                      -0.8957 + 0.0000i
                                         -0.8957 \pm 0.0000i
   0.3762 + 0.0000i
                      0.1881 - 0.32581
                                          0.1881 + 0.3258i
 =
   3.0536 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
   0.0000 + 0.0000i
                     -0.0268 + 0.4038i
                                          0.0000 + 0.0000i
                      0.0000 + 0.0000i -0.0268 - 0.4038i
   0.0000 + 0.0000i
```

Local priority vectors = "weights"

	L	.earnin	g	W		F	Friends		W
	А	В	С			А	В	С	
А	1	1/3	1/2	0.16	А	1	1	1	0.33
В	3	1	3	0.59	В	1	1	1	0.33
С	2	1/3	1	0.25	С	1	1	1	0.33
	S	chool I	ife	W		Voo	. train	ing	W
	А	В	С			А	В	С	
А	1	5	1	0.45	А	1	9	7	0.77
В	1/5	1	1/5	0.09	В	1/9	1	5	0.05
С	1	5	1	0.46	С	1/7	1/5	1	0.17
	Co	llege p	rep.	W		Mus	ic clas	ses	W
	А	В	С			А	В	С	
А	1	1/2	1	0.25	А	1	6	4	0.69

0.50

0.25

В

С

1/6

1/4

1/3

1

0.09

0.22

1

3

В

С

2

1

1

1/2

2

1

	L	F	SL	VT	СР	MC	W
Learning	1	4	3	1	3	4	0.32
Friends	1/4	1	7	3	1/5	1	0.14
School life	1/3	1/7	1	1/5	1/5	1/6	0.03
Voc. Training	1	1/3	5	1	1	1/3	0.13
College prep.	1/3	5	5	1	1	3	0.24
Music classes	1/4	1	6	3	1/3	1	0.14

Consistency checks

The consistency of the pairwise comparison matrix A is assessed by comparing the consistency index (CI) of A to the average consistency index RI of a random pairwise comparison matrix:

$$CI = \frac{\lambda_{max} - n}{n - 1}, \qquad CR = \frac{CI}{RI}$$

n	3	4	5	6	7	8	9	10
RI	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49

Rule of thumb: if CR>0.10, comparisons are so inconsistent that they should be revised

Aalto University School of Science Three alternatives, *n*=3:

- **Learning:** $\lambda_{max} = 3.05$, CR = 0.04
- **G** Friends: $\lambda_{max} = 3.00$, CR = 0
- **School life:** $\lambda_{max} = 3.00, CR = 0$
- \Box Voc. training $\lambda_{max} = 3.40$, CR = 0.34
- **College prep:** $\lambda_{max} = 3.00, CR = 0$
- $\Box \quad \text{Music classes: } \lambda_{max} = 3.05, CR = 0.04$

Six attributes, *n=6:*

□ All attributes: λ_{max} = 7.42, *CR* = 0.23

Total priorities

The total (overall) priorities are obtained recursively:

$$w_k = \sum_{i=1}^n w_i \, w_k^i,$$

where

- w_i is the total priority of criterion *i*,
- *wⁱ_k* is the local priority of criterion / alternative *k* with regard to criterion *i*,
- The sum is computed over all criteria *i* below which criterion / alternative *k* is positioned in the hierarchy

 $w_A = \sum_{i=1}^{6} w_i w_k^i = 0.32 \cdot 0.16 + 0.14 \cdot 0.33 + \dots$

Total priorities

	L	.earnir	ng	w		Friends		w	
	А	В	С			А	В	С	
А	1	1/3	1/2	0.16	А	1	1	1	0.33
В	3	1	3	0.59	В	1	1	1	0.33
С	2	1/3	1	0.25	С	1	1	1	0.33
	S	chool I	life	w		Voo	. train	ing	w
	А	В	С			А	В	С	
А	1	5	1	0.45	А	1	9	7	0.77
В	1/5	1	1/5	0.09	В	1/9	1	5	0.05
С	1	5	1	0.46	С	1/7	1/5	1	0.17
	Co	lleae p	rep.	w		Mus	ic clas	ses	w
	А	В	С			А	В	С	
А	1	1/2	1	0.25	А	1	6	4	0.69
В	2	1	2	0.50	В	1/6	1	1/3	0.09
С	1	1/2	1	0.25	С	1/4	3	1	0.22

	L	F	SL	VT	СР	MC	w
Learning	1	4	3	1	3	4	0.32
Friends	1/4	1	7	3	1/5	1	0.14
Schoo life	1/3	1/7	1	1/5	1/5	1/6	0.03
Voc. Training	1	1/3	5	1	1	1/3	0.13
College prep.	1/3	5	5	1	1	3	0.24
Music classes	1/4	1	6	3	1/3	1	0.14
College prep. Music classes	1/3 1/4	5 1	5 6	1 3	1 1/3	3 1	0

	0.32	0.14	0.03	0.13	0.24	0.14	
	L	F	SL	VT	CP	MC	Total w
А	0.16	0.33	0.45	0.77	0.25	0.69	0.37
В	0.59	0.33	0.09	0.05	0.50	0.09	0.38
С	0.25	0.33	0.46	0.17	0.25	0.22	0.25

E.g., $w_B = 0.32 \times 0.59 + 0.14 \times 0.33 + 0.03 \times 0.09 +$ $0.13 \times 0.05 + 0.24 \times 0.50 + 0.14 \times 0.09 = 0.38$

Problems with AHP

- Rank reversals: The introduction of an additional alternative may change the relative ranking of other, previously introduced alternatives
 - This means that the preferences between two alternatives do not depend on these alternatives only, but on the other alternatives as well, even if these other ones are less preferred

Example:

- Alternatives A and B are compared w.r.t. two "equally important" criteria C_1 and C_2 ($w_{C1} = w_{C2} = 0.5$)
- A is better than B:

$$w_A = \frac{1}{2} \times \frac{1}{5} + \frac{1}{2} \times \frac{5}{6} \approx 0.517, \qquad w_B = \frac{1}{2} \times \frac{4}{5} + \frac{1}{2} \times \frac{1}{6} \approx 0.483$$

- Add C which is **identical to A** in terms of its evaluations:

$$w_A = w_C = \frac{1}{2} \times \frac{1}{6} + \frac{1}{2} \times \frac{5}{11} \approx 0.311, \qquad w_B = \frac{1}{2} \times \frac{4}{6} + \frac{1}{2} \times \frac{1}{11} \approx 0.379$$

– Now B is better than A!

Outranking methods*

- Basic question: is there enough preference information / evidence to state that an alternative is at least as good as another alternative?
- □ I.e., does an alternative *outrank* some other alternative?

* For an overview of these methods (not required), see, e.g., B. Roy. The outranking approach and the foundations of ELECTRE methods. *Theory and Decision*, 31:49–73, 1991.

Indifference and preference thresholds divide the measurement scale into three parts

- If the difference between the criterion-specific performances of A and B is below a predefined indifference threshold, then A and B are "equally good" w.r.t. this criterion
- □ If the difference between the criterion-specific performances of A and B is above a predefined **preference threshold**, then A is preferred to B w.r.t this criterion
- Between indifference and preference thresholds, the DM is uncertain about preference

PROMETHEE I & II

In PROMETHEE methods, the degree to which alternative k is preferred to l is

$$\sum_{i=1}^{n} w_i F_i(k,l) \ge 0,$$

where

- w_i is the weight of criterion i
- $F_i(k, l) = 1$, if k is preferred to l w.r.t. criterion i,
- $F_i(k, l) = 0$, if the DM is indifferent between kand l w.r.t. criterion i, or l is preferred to k
- $F_i(k, l) \in (0, 1)$, if preference between k and l w.r.t. criterion *i* is uncertain

PROMETHEE I & II

$\square \text{ PROMETHEE I: } k \text{ is preferred to } k', \text{ if} \\ \sum_{l \neq k} \sum_{i=1}^{n} w_i F_i(k, l) > \sum_{l \neq k'} \sum_{i=1}^{n} w_i F_i(k', l) \\ \sum_{l \neq k} \sum_{i=1}^{n} w_i F_i(l, k) < \sum_{l \neq k'} \sum_{i=1}^{n} w_i F_i(l, k') \end{aligned}$

k is not preferred to k' and k' is not preferred to k

The resulting relation is not necessarily complete – it may be that

There is more evidence in favor of *k* than *k*'

There is less evidence against *k* than *k*'

□ PROMETHEE II: k is preferred to k', if

$$F_{net}(k) = \sum_{l \neq k} \sum_{i=1}^{n} w_i [F_i(k,l) - F_i(l,k)] > \sum_{l \neq k'} \sum_{i=1}^{n} w_i [F_i(k',l) - F_i(l,k')] = F_{net}(k')$$

The "net evidence" for
k is larger than for k'

PROMETHEE: Example

	Revenue	Market share	
X ¹	1M€	10%	
X ²	0.5M€	20%	
x ³	0	30%	
Indiff. threshold	0	10%	
Pref. threshold	0.5M€	20%	
Weight	1	1	

	Revenue F ₁	Market share F ₂	Weighted $F_w = w_1F_1 + w_2F_2$
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

PROMETHEE I: Example

F_w

1

0

1

1

1

0

_	x^1 is preferred to x^2 , i	f
	$\sum_{i=1}^{2} \left(F_i(x^1, x^2) + F_i(x^1, x^3) \right)$	$> \underbrace{\sum_{i=1}^{2} \left(F_i(x^2, x^1) + F_i(x^2, x^3) \right)}_{i=1}$
	=1+1=2	=0+1=1
	$\sum_{i=1}^{2} \left(F_i(x^2, x^1) + F_i(x^3, x^1) \right)$	$<\sum_{i=1}^{2} (F_i(x^1, x^2) + F_i(x^3, x^2))$
	=0+1=1	=1+0=1

- x^1 is not preferred to x^2 due to the latter condition
- x^2 is not preferred to x^1 due to both conditions
- x^1 is preferred to x^3
- x^2 is not preferred to x^3 and vice versa
- □ Note: preferences are not transitive

 $- \quad x^1 \succ x^3 {\sim} x^2 \not\Rightarrow x^1 \succ x^2$

F₁

0

0

0

 x^2 , x^3 1

1

1

x¹, x²

x², x¹

X¹, **X**³

x³, **x**¹

x³, x²

 F_2

0

0

0

1

0

0

PROMETHEE I: Example (Cont'd)

□ PROMETHEE I is also prone to rank reversals:

Remove x^2

F₁ **x**¹, **x**³ 0 1 x³, x¹ 0 1 1

F,

 $\rightarrow x^1$ is no longer preferred to x^3

PROMETHEE II: Example

 \Box The "net flow" of alternative x^j

$$F_{net}(x^j) = \sum_{k \neq j} [F_w(x^j, x^k) - F_w(x^k, x^j)]$$

$$- F_{net}(x^1) = (1-0) + (1-1) = 1$$

$$- F_{net}(x^2) = (0-1) + (1-0) = 0$$

$$- F_{net}(x^3) = (1-1) + (0-1) = -1$$

F₁ F_2 F_w **x**¹, **x**² 1 0 1 x², x¹ 0 0 0 x¹, x³ 1 0 1 **x**³, **x**¹ 0 1 1 x², x³ 1 0 1 x³, x² 0 0 0

 $\rightarrow x_1 \succ x_2 \succ x_3$

PROMETHEE II: Example (Cont'd)

□ PROMETHEE II is also prone to rank reversals

Add two altrenatives that are equal to x³ in both criteria.
 Then, x² becomes the most preferred:

 $F_{net}(x^1) = (1-0) + 3 \times (1-1) = 1$ $F_{net}(x^2) = (0-1) + 3 \times (1-0) = 2$ $F_{net}(x^{3:5}) = (1-1) + (0-1) = -1$

- Add two alternatives that are equal to x¹ in both criteria. Then, x² becomes the least preferred: $F_{net}(x^{1,4,5}) = (1-0) + (1-1) + 2 \times (0-0) = 1$ $F_{net}(x^2) = 3 \times (0-1) + (1-0) = -2$ $F_{net}(x^3) = 3 \times (1-1) + (0-1) = -1$
- Remove x². Then, x¹ and x³ are equally preferred. $F_{net}(x^1) = F_{net}(x^3) = (1-1) = 0$

	F ₁	F ₂	F_w
x ¹ , x ²	1	0	1
x ² , x ¹	0	0	0
x ¹ , x ³	1	0	1
x ³ , x ¹	0	1	1
x ² , x ³	1	0	1
x ³ , x ²	0	0	0

Summary

- AHP and outranking methods are widely used to support multiattribute decision-making
- $\hfill\square$ Unlike MAVT (and MAUT), these methods are not founded on a rigorous axiomatization of preferences \rightarrow
 - Rank reversals
 - Preferences are not necessarily transitive

□ Model parameters can be difficult to elicit

- Weights have no clear interpretation
- In outranking methods, statement "I prefer 2€ to 1€" and "I prefer 3€ to 1€" are both modeled with the same number (1); to make a difference, indifference and preference thresholds need to be carefully selected

