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Introduction

Modeling economic phenomena that evolve in time
▶ economic growth, how economic conditions evolve (predictions)

Difference equations
▶ models for discrete time dynamics

Objective
▶ linear difference equations
▶ solutions by eigenvalues
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First-order linear difference equations: Example

▶ Example. Suppose you deposit y0 euros in a savings account

▶ The interest rate r is compounded in each time period t = 0, 1, 2, . . .

▶ The value of your initial deposit in each time period is given by

yt+1 = (1 + r)yt , t = 0, 1, 2, . . . (1)

▶ Equation (1) is a first-order linear difference equation
▶ First-order: for every t, yt affects (directly) only yt+1

▶ Linear: for every t, (1) is a linear equation
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First-order linear difference equations: Example
▶ Example (cont’d). How can we solve (1)? That is, how can we find an

expression for yt that, for every t, depends only on the constant parameter r , the
initial condition y0, and the time index t?

▶ We have:

y1 = (1 + r)y0

y2 = (1 + r)y1 = (1 + r)2y0

y3 = (1 + r)y2 = (1 + r)3y0

y4 = (1 + r)y3 = (1 + r)4y0

. . .

and so on

▶ The solution we are looking for is yt = (1 + r)ty0, t = 0, 1, 2, . . .
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First-order linear difference equations
▶ Consider the first-order linear difference equation

xt+1 = axt + bt , t = 0, 1, 2, . . . ,

where a is a constant

▶ Starting with an initial condition x0, we can calculate xt as follows:

x1 = ax0 + b0

x2 = ax1 + b1 = a(ax0 + b0) + b1 = a2x0 + ab0 + b1

x3 = ax2 + b2 = a(a2x0 + ab0 + b1) + b2 = a3x0 + a2b0 + ab1 + b2

x4 = ax3 + b3 = a(a3x0 + a2b0 + ab1 + b2) + b3 = a4x0 +
4∑

k=1

a4−kbk−1

. . .

and so on
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First-order linear difference equations

▶ In general, we have

xt = atx0 +
t∑

k=1

at−kbk−1, t = 0, 1, 2, . . . (2)

▶ When bk = b for all k = 0, 1, 2, . . . , we have

t∑
k=1

at−kbk−1 = b
t∑

k=1

at−k = b(at−1 + at−2 + · · ·+ a+ 1)

▶ The term (at−1 + at−2 + · · ·+ a+ 1) is the sum of the first t terms of a
geometric series. When a ̸= 1,

(at−1 + at−2 + · · ·+ a+ 1) =
1− at

1− a
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First-order linear difference equations

▶ Therefore, when bk = b for all k = 0, 1, 2, . . . and a ̸= 1, the solution (2) reduces
to

xt = at
(
x0 −

b

1− a

)
+

b

1− a
, t = 0, 1, 2, . . . (3)

▶ When bk = b for all k = 0, 1, 2, . . . and a = 1, we have that
(at−1 + at−2 + · · ·+ a+ 1) = t. Thus (2) simplifies to

xt = x0 + tb, t = 0, 1, 2, . . .
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First-order linear difference equations

▶ Consider the solution (3) and suppose that |a| < 1, i.e. −1 < a < 1. It is then
easy to verify that

lim
t→∞

xt = lim
t→∞

at
(
x0 −

b

1− a

)
+

b

1− a
=

b

1− a

▶ If xs =
b

1−a for some s ≥ 0, then xs+k = b
1−a for all k = 0, 1, 2, . . .

▶ We say that the constant x∗ = b
1−a is the equilibrium (or stationary state) of the

difference equation

▶ When |a| < 1, the solution (3) converges to the equilibrium state x∗ = b
1−a . In

this case, we say that the difference equation is globally asymptotically stable
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Difference equations

A sequence {xk}∞k=0 ⊂ Rn satisfies a difference equation of order T if
G (xk , xk−1, . . . , xk−T ) = 0 (for all k ≥ T ), where G : RTn 7→ Rn

▶ often difference equations are transformed into recursions xk+1 = F (xk)
▶ in this case the solution is a sequence x1, x2, and so on corresponding to the intial

value x0
▶ other names for the recursion: state transition equation, law of motion, or dynamic

system, discrete time process
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Example: a model of national income

▶ In period t national income Yt satisfies Yt = Ct + It + Gt

▶ Ct is of private consumption, It is investments and Gt is public spending
▶ Assume that Ct = αYt , Gt = G0 for all t, It = β(Ct − Ct−1)

▶ This yields a difference equation
Yt = αYt + β(Ct − Ct−1) + G0 = α(1 + β)Yt−1 − αβYt−2 + G0

▶ difference equation of degree 2
▶ choosing xt = Yt and zt = Yt−1 yields a recursion:

xk = α(1 + β)xk−1 − αβzk−1 + G0

zk = zk−1
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Other examples

▶ A growth model Kt+1 = f (Kt , Lt) + (1− δ)Kt − Ct

▶ K is capital, L is labor, C is consumption, δ is the capital depreciation rate
▶ production function f (Kk , Lk)

▶ Harvesting of a natural resource: st+1 = f (st)− xt
▶ resource stock st , harvest xt , growth f (s)
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Linear difference equations

Dynamical system given by zk+1 = Azk , k = 0, 1, . . ., where A ∈ Rn×n and
z0 ∈ Rn is given
▶ model for a discrete time process
▶ this kind of systems can be obtained by linearizing nonlinear difference equations
▶ solution by brute force: find zN corresponding to z0 by iterating the system, i.e.,

zN = ANz0, which means that we need AN (isn’t this a good enough solution?)

Example: an uncoupled system zk+1 = Azk , where A =

(
a 0
0 d

)
▶ what is the solution?

11 / 23



Systems of first-order linear difference equations: Example
▶ Suppose we have the following system:

xt+1 = xt + 4yt (4)

yt+1 =
1

2
xt , (5)

with t = 0, 1, 2, . . .

▶ We can solve the system through a change of variables. More specifically, suppose
we use the transformation

X =
1

6
x +

1

3
y (6)

Y = −1

6
x +

2

3
y (7)

and the inverse transformation

x = 4X − 2Y (8)

y = X + Y (9)
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Systems of first-order linear difference equations: Example

▶ By the transformation (6)-(7) and the system (4)-(5) we get

Xt+1 =
1

6
xt+1 +

1

3
yt+1 =

1

6
(xt + 4yt) +

1

3

(
1

2
xt

)
=

1

3
xt +

2

3
yt

Yt+1 = −1

6
xt+1 +

2

3
yt+1 = −1

6
(xt + 4yt) +

2

3

(
1

2
xt

)
=

1

6
xt −

2

3
yt

▶ Now, using the inverse transformation (8)-(9) yields

Xt+1 =
1

3
xt +

2

3
yt =

1

3
(4Xt − 2Yt) +

2

3
(Xt + Yt) = 2Xt

Yt+1 =
1

6
xt −

2

3
yt =

1

6
(4Xt − 2Yt)−

2

3
(Xt + Yt) = −Yt
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Systems of first-order linear difference equations: Example

▶ In sum, we have just transformed the initial system (4)-(5) into

Xt+1 = 2Xt

Yt+1 = −Yt ,

which is an uncoupled system of two difference equations

▶ The solution of the transformed system is

Xt = 2tc1

Yt = (−1)tc2,

where c1 and c2 are constants determined by the initial conditions x0 and y0
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Systems of first-order linear difference equations: Example
▶ Finally, we use again the transformation (6)-(7) to obtain the solution to the

initial system:

xt = 4Xt − 2Yt = 4 · 2tc1 − 2(−1)tc2

yt = Xt + Yt = 2tc1 + (−1)tc2

▶ If we are given initial conditions x0 and y0, we can also find the exact value of the
two constants c1 and c2 by solving the following system of linear equations

x0 = 4 · 20c1 − 2(−1)0c2 = 4c1 − 2c2

y0 = 20c1 + (−1)0c2 = c1 + c2

▶ You can verify that c1 =
1
6x0 +

1
3y0 and c2 = −1

6x0 +
2
3y0
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Systems of first-order linear difference equations

▶ The transformation we’ve used can be generalized to abstract systems of
difference equations. Consider the following system of two equations (written in
matrix form) (

xt+1

yt+1

)
=

(
a b
c d

)(
xt
yt

)
, t = 0, 1, 2, . . . ,

which we can also write in more compact form:

z t+1 = Az t

▶ To make the change of variables, we choose a 2× 2 (invertible) matrix P and its
inverse P−1, and then define

z = PZ and Z = P−1z (10)
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Solution by diagonalization

▶ Then we have

Z t+1 = P−1z t+1

= P−1(Az t)

= (P−1A)z t

= (P−1A)(PZ t)

= P−1APZ t

▶ We want to choose P in such a way that the coefficient matrix of the transformed
system P−1AP is diagonal (so that the system is uncoupled and easy to solve)
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Solution by diagonalization
▶ Let D be a diagonal matrix

D =

(
r1 0
0 r2

)
▶ Write the matrix P as P =

(
v1 v2

)
, where v1 and v2 are the two column

vectors

▶ We want to choose P in such a way that

P−1AP = D ⇐⇒ AP = PD

▶ One can show that AP = PD is equivalent to

Av1 = r1v1 and Av2 = r2v2

▶ The numbers r1 and r2 are the eigenvalues of A and v1 and v2 are the
corresponding eigenvectors
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Solution by diagonalization

▶ Since P−1AP = D, the transformed system reduces to

Z t+1 = DZ t (11)

▶ The solution to (11) is

Z t =

(
c1r

t
1

c2r
t
2

)

▶ Therefore,

z t = PZ t =
(
v1 v2

)(c1r t1
c2r

t
2

)
= c1r

t
1v1 + c2r

t
2v2
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Solution by diagonalization

▶ Finally, given the initial conditions

z0 =

(
x0
y0

)
,

we can also determine the constants c1 and c2 as follows:(
c1
c2

)
= P−1z0

▶ In sum, we can solve the system of difference equations (4)-(5) by using the
eigenvalues and the eigenvectors of the system’s coefficient matrix A
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Markov processes

▶ Finite number of states i = 1, . . . , n

▶ A stochastic process determined probabilities of moving from one state to another
in each time instant

▶ Markov process: probability of state i in period k + 1 depends only on the state in
period k

▶ state transition probabilities mij = prob. of state i in period k +1 for initial state j

▶ State transition matrix (Markov matrix)

M =

m11 · · · m1n
...

. . .
...

mn1 · · · mnn


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Markov processes
Example: households classified according to their neighborhoods as urban (1),
suburban (2), rural (3)
▶ x i (k) probability that a household is in state i in period k
▶ Markov matrix 0.75 0.02 0.1

0.2 0.9 0.2
0.05 0.08 0.7

 .

Markov process as a difference equation
▶ x i (k + 1)= (prob. of transition form state 1 1 to i) × (prob of state 1)+...+(prob.

of transition form state n 1 to i) × (prob of state n)
▶ In matrix form x(k + 1) = Mx(k), i.e.x1(k + 1)

...
xn(k + 1)

 =

m11 · · · m1n

...
. . .

...
mn1 · · · mnn


x1(k)

...
xn(k)

 .
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Example
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