Mathematics for Economists

Mitri Kitti

Aalto University
Difference Equations

Introduction

Modeling economic phenomena that evolve in time

- economic growth, how economic conditions evolve (predictions)

Difference equations

- models for discrete time dynamics

Objective

- linear difference equations
- solutions by eigenvalues

First-order linear difference equations: Example

- Example. Suppose you deposit y_{0} euros in a savings account
- The interest rate r is compounded in each time period $t=0,1,2, \ldots$
- The value of your initial deposit in each time period is given by

$$
\begin{equation*}
y_{t+1}=(1+r) y_{t}, \quad t=0,1,2, \ldots \tag{1}
\end{equation*}
$$

- Equation (1) is a first-order linear difference equation
- First-order: for every t, y_{t} affects (directly) only y_{t+1}
- Linear: for every t, (1) is a linear equation

First-order linear difference equations: Example

- Example (cont'd). How can we solve (1)? That is, how can we find an expression for y_{t} that, for every t, depends only on the constant parameter r, the initial condition y_{0}, and the time index t ?
- We have:

$$
\begin{aligned}
& y_{1}=(1+r) y_{0} \\
& y_{2}=(1+r) y_{1}=(1+r)^{2} y_{0} \\
& y_{3}=(1+r) y_{2}=(1+r)^{3} y_{0} \\
& y_{4}=(1+r) y_{3}=(1+r)^{4} y_{0}
\end{aligned}
$$

and so on

- The solution we are looking for is $y_{t}=(1+r)^{t} y_{0}, t=0,1,2, \ldots$

First-order linear difference equations

- Consider the first-order linear difference equation

$$
x_{t+1}=a x_{t}+b_{t}, \quad t=0,1,2, \ldots,
$$

where a is a constant

- Starting with an initial condition x_{0}, we can calculate x_{t} as follows:

$$
\begin{aligned}
& x_{1}=a x_{0}+b_{0} \\
& x_{2}=a x_{1}+b_{1}=a\left(a x_{0}+b_{0}\right)+b_{1}=a^{2} x_{0}+a b_{0}+b_{1} \\
& x_{3}=a x_{2}+b_{2}=a\left(a^{2} x_{0}+a b_{0}+b_{1}\right)+b_{2}=a^{3} x_{0}+a^{2} b_{0}+a b_{1}+b_{2} \\
& x_{4}=a x_{3}+b_{3}=a\left(a^{3} x_{0}+a^{2} b_{0}+a b_{1}+b_{2}\right)+b_{3}=a^{4} x_{0}+\sum_{k=1}^{4} a^{4-k} b_{k-1}
\end{aligned}
$$

First-order linear difference equations

- In general, we have

$$
\begin{equation*}
x_{t}=a^{t} x_{0}+\sum_{k=1}^{t} a^{t-k} b_{k-1}, \quad t=0,1,2, \ldots \tag{2}
\end{equation*}
$$

- When $b_{k}=b$ for all $k=0,1,2, \ldots$, we have

$$
\sum_{k=1}^{t} a^{t-k} b_{k-1}=b \sum_{k=1}^{t} a^{t-k}=b\left(a^{t-1}+a^{t-2}+\cdots+a+1\right)
$$

- The term $\left(a^{t-1}+a^{t-2}+\cdots+a+1\right)$ is the sum of the first t terms of a geometric series. When $a \neq 1$,

$$
\left(a^{t-1}+a^{t-2}+\cdots+a+1\right)=\frac{1-a^{t}}{1-a}
$$

First-order linear difference equations

- Therefore, when $b_{k}=b$ for all $k=0,1,2, \ldots$ and $a \neq 1$, the solution (2) reduces to

$$
\begin{equation*}
x_{t}=a^{t}\left(x_{0}-\frac{b}{1-a}\right)+\frac{b}{1-a}, \quad t=0,1,2, \ldots \tag{3}
\end{equation*}
$$

- When $b_{k}=b$ for all $k=0,1,2, \ldots$ and $a=1$, we have that $\left(a^{t-1}+a^{t-2}+\cdots+a+1\right)=t$. Thus (2) simplifies to

$$
x_{t}=x_{0}+t b, \quad t=0,1,2, \ldots
$$

First-order linear difference equations

- Consider the solution (3) and suppose that $|a|<1$, i.e. $-1<a<1$. It is then easy to verify that

$$
\lim _{t \rightarrow \infty} x_{t}=\lim _{t \rightarrow \infty} a^{t}\left(x_{0}-\frac{b}{1-a}\right)+\frac{b}{1-a}=\frac{b}{1-a}
$$

- If $x_{s}=\frac{b}{1-a}$ for some $s \geq 0$, then $x_{s+k}=\frac{b}{1-a}$ for all $k=0,1,2, \ldots$
- We say that the constant $x^{*}=\frac{b}{1-a}$ is the equilibrium (or stationary state) of the difference equation
- When $|a|<1$, the solution (3) converges to the equilibrium state $x^{*}=\frac{b}{1-a}$. In this case, we say that the difference equation is globally asymptotically stable

Difference equations

A sequence $\left\{\mathbf{x}_{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}^{n}$ satisfies a difference equation of order T if $G\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \ldots, \mathbf{x}_{k-T}\right)=\mathbf{0}$ (for all $k \geq T$), where $G: \mathbb{R}^{T n} \mapsto \mathbb{R}^{n}$

- often difference equations are transformed into recursions $x_{k+1}=F\left(x_{k}\right)$
- in this case the solution is a sequence $\mathbf{x}_{1}, \mathbf{x}_{2}$, and so on corresponding to the intial value x_{0}
- other names for the recursion: state transition equation, law of motion, or dynamic system, discrete time process

Example: a model of national income

- In period t national income Y_{t} satisfies $Y_{t}=C_{t}+I_{t}+G_{t}$
- C_{t} is of private consumption, I_{t} is investments and G_{t} is public spending
- Assume that $C_{t}=\alpha Y_{t}, G_{t}=G_{0}$ for all $t, I_{t}=\beta\left(C_{t}-C_{t-1}\right)$
- This yields a difference equation
$Y_{t}=\alpha Y_{t}+\beta\left(C_{t}-C_{t-1}\right)+G_{0}=\alpha(1+\beta) Y_{t-1}-\alpha \beta Y_{t-2}+G_{0}$
- difference equation of degree 2
- choosing $x_{t}=Y_{t}$ and $z_{t}=Y_{t-1}$ yields a recursion:

$$
\begin{aligned}
x_{k} & =\alpha(1+\beta) x_{k-1}-\alpha \beta z_{k-1}+G_{0} \\
z_{k} & =z_{k-1}
\end{aligned}
$$

Other examples

- A growth model $K_{t+1}=f\left(K_{t}, L_{t}\right)+(1-\delta) K_{t}-C_{t}$
- K is capital, L is labor, C is consumption, δ is the capital depreciation rate
- production function $f\left(K_{k}, L_{k}\right)$
- Harvesting of a natural resource: $s_{t+1}=f\left(s_{t}\right)-x_{t}$
- resource stock s_{t}, harvest x_{t}, growth $f(s)$

Linear difference equations

Dynamical system given by $z^{k+1}=A z^{k}, k=0,1, \ldots$, where $A \in \mathbb{R}^{n \times n}$ and $z^{0} \in \mathbb{R}^{n}$ is given

- model for a discrete time process
- this kind of systems can be obtained by linearizing nonlinear difference equations
- solution by brute force: find z^{N} corresponding to z^{0} by iterating the system, i.e., $z^{N}=A^{N} z^{0}$, which means that we need A^{N} (isn't this a good enough solution?)
Example: an uncoupled system $z^{k+1}=A z^{k}$, where $A=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$
- what is the solution?

Systems of first-order linear difference equations: Example

- Suppose we have the following system:

$$
\begin{align*}
x_{t+1} & =x_{t}+4 y_{t} \tag{4}\\
y_{t+1} & =\frac{1}{2} x_{t}, \tag{5}
\end{align*}
$$

with $t=0,1,2, \ldots$

- We can solve the system through a change of variables. More specifically, suppose we use the transformation

$$
\begin{align*}
& X=\frac{1}{6} x+\frac{1}{3} y \tag{6}\\
& Y=-\frac{1}{6} x+\frac{2}{3} y \tag{7}
\end{align*}
$$

and the inverse transformation

$$
\begin{align*}
& x=4 X-2 Y \tag{8}\\
& y=X+Y \tag{9}
\end{align*}
$$

Systems of first-order linear difference equations: Example

- By the transformation (6)-(7) and the system (4)-(5) we get

$$
\begin{aligned}
& X_{t+1}=\frac{1}{6} x_{t+1}+\frac{1}{3} y_{t+1}=\frac{1}{6}\left(x_{t}+4 y_{t}\right)+\frac{1}{3}\left(\frac{1}{2} x_{t}\right)=\frac{1}{3} x_{t}+\frac{2}{3} y_{t} \\
& Y_{t+1}=-\frac{1}{6} x_{t+1}+\frac{2}{3} y_{t+1}=-\frac{1}{6}\left(x_{t}+4 y_{t}\right)+\frac{2}{3}\left(\frac{1}{2} x_{t}\right)=\frac{1}{6} x_{t}-\frac{2}{3} y_{t}
\end{aligned}
$$

- Now, using the inverse transformation (8)-(9) yields

$$
\begin{aligned}
& X_{t+1}=\frac{1}{3} x_{t}+\frac{2}{3} y_{t}=\frac{1}{3}\left(4 X_{t}-2 Y_{t}\right)+\frac{2}{3}\left(X_{t}+Y_{t}\right)=2 X_{t} \\
& Y_{t+1}=\frac{1}{6} x_{t}-\frac{2}{3} y_{t}=\frac{1}{6}\left(4 X_{t}-2 Y_{t}\right)-\frac{2}{3}\left(X_{t}+Y_{t}\right)=-Y_{t}
\end{aligned}
$$

Systems of first-order linear difference equations: Example

- In sum, we have just transformed the initial system (4)-(5) into

$$
\begin{aligned}
& X_{t+1}=2 X_{t} \\
& Y_{t+1}=-Y_{t}
\end{aligned}
$$

which is an uncoupled system of two difference equations

- The solution of the transformed system is

$$
\begin{aligned}
& X_{t}=2^{t} c_{1} \\
& Y_{t}=(-1)^{t} c_{2}
\end{aligned}
$$

where c_{1} and c_{2} are constants determined by the initial conditions x_{0} and y_{0}

Systems of first-order linear difference equations: Example

- Finally, we use again the transformation (6)-(7) to obtain the solution to the initial system:

$$
\begin{aligned}
& x_{t}=4 X_{t}-2 Y_{t}=4 \cdot 2^{t} c_{1}-2(-1)^{t} c_{2} \\
& y_{t}=X_{t}+Y_{t}=2^{t} c_{1}+(-1)^{t} c_{2}
\end{aligned}
$$

- If we are given initial conditions x_{0} and y_{0}, we can also find the exact value of the two constants c_{1} and c_{2} by solving the following system of linear equations

$$
\begin{aligned}
& x_{0}=4 \cdot 2^{0} c_{1}-2(-1)^{0} c_{2}=4 c_{1}-2 c_{2} \\
& y_{0}=2^{0} c_{1}+(-1)^{0} c_{2}=c_{1}+c_{2}
\end{aligned}
$$

- You can verify that $c_{1}=\frac{1}{6} x_{0}+\frac{1}{3} y_{0}$ and $c_{2}=-\frac{1}{6} x_{0}+\frac{2}{3} y_{0}$

Systems of first-order linear difference equations

- The transformation we've used can be generalized to abstract systems of difference equations. Consider the following system of two equations (written in matrix form)

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

which we can also write in more compact form:

$$
z_{t+1}=A z_{t}
$$

- To make the change of variables, we choose a 2×2 (invertible) matrix P and its inverse P^{-1}, and then define

$$
\begin{equation*}
\boldsymbol{z}=P \boldsymbol{Z} \quad \text { and } \quad \boldsymbol{Z}=P^{-1} \boldsymbol{z} \tag{10}
\end{equation*}
$$

Solution by diagonalization

- Then we have

$$
\begin{aligned}
\boldsymbol{Z}_{t+1} & =P^{-1} \boldsymbol{z}_{t+1} \\
& =P^{-1}\left(A \boldsymbol{z}_{t}\right) \\
& =\left(P^{-1} A\right) \boldsymbol{z}_{t} \\
& =\left(P^{-1} A\right)\left(P \boldsymbol{Z}_{t}\right) \\
& =P^{-1} A P \boldsymbol{Z}_{t}
\end{aligned}
$$

- We want to choose P in such a way that the coefficient matrix of the transformed system $P^{-1} A P$ is diagonal (so that the system is uncoupled and easy to solve)

Solution by diagonalization

- Let D be a diagonal matrix

$$
D=\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right)
$$

- Write the matrix P as $P=\left(\begin{array}{ll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2}\end{array}\right)$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are the two column vectors
- We want to choose P in such a way that

$$
P^{-1} A P=D \Longleftrightarrow A P=P D
$$

- One can show that $A P=P D$ is equivalent to

$$
A \boldsymbol{v}_{1}=r_{1} \boldsymbol{v}_{1} \quad \text { and } \quad A \boldsymbol{v}_{2}=r_{2} \boldsymbol{v}_{2}
$$

- The numbers r_{1} and r_{2} are the eigenvalues of A and \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are the corresponding eigenvectors

Solution by diagonalization

- Since $P^{-1} A P=D$, the transformed system reduces to

$$
\begin{equation*}
\boldsymbol{Z}_{t+1}=D \boldsymbol{Z}_{t} \tag{11}
\end{equation*}
$$

- The solution to (11) is

$$
\boldsymbol{Z}_{t}=\binom{c_{1} r_{1}^{t}}{c_{2} r_{2}^{t}}
$$

- Therefore,

$$
\boldsymbol{z}_{t}=P \boldsymbol{Z}_{t}=\left(\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right)\binom{c_{1} r_{1}^{t}}{c_{2} r_{2}^{t}}=c_{1} r_{1}^{t} \boldsymbol{v}_{1}+c_{2} r_{2}^{t} \boldsymbol{v}_{2}
$$

Solution by diagonalization

- Finally, given the initial conditions

$$
z_{0}=\binom{x_{0}}{y_{0}}
$$

we can also determine the constants c_{1} and c_{2} as follows:

$$
\binom{c_{1}}{c_{2}}=P^{-1} \boldsymbol{z}_{0}
$$

- In sum, we can solve the system of difference equations (4)-(5) by using the eigenvalues and the eigenvectors of the system's coefficient matrix A

Markov processes

- Finite number of states $i=1, \ldots, n$
- A stochastic process determined probabilities of moving from one state to another in each time instant
- Markov process: probability of state i in period $k+1$ depends only on the state in period k
- state transition probabilities $m_{i j}=$ prob. of state i in period $k+1$ for initial state j
- State transition matrix (Markov matrix)

$$
\mathbf{M}=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1 n} \\
\vdots & \ddots & \vdots \\
m_{n 1} & \cdots & m_{n n}
\end{array}\right)
$$

Markov processes

Example: households classified according to their neighborhoods as urban (1), suburban (2), rural (3)

- $x^{i}(k)$ probability that a household is in state i in period k
- Markov matrix

$$
\left(\begin{array}{ccc}
0.75 & 0.02 & 0.1 \\
0.2 & 0.9 & 0.2 \\
0.05 & 0.08 & 0.7
\end{array}\right) .
$$

Markov process as a difference equation

- $x^{i}(k+1)=($ prob. of transition form state 11 to $i) \times($ prob of state 1$)+\ldots+($ prob. of transition form state $n 1$ to $i) \times($ prob of state $n)$
- In matrix form $\mathbf{x}(k+1)=\mathbf{M} \mathbf{x}(k)$, i.e.

$$
\left(\begin{array}{c}
x^{1}(k+1) \\
\vdots \\
x^{n}(k+1)
\end{array}\right)=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1 n} \\
\vdots & \ddots & \vdots \\
m_{n 1} & \cdots & m_{n n}
\end{array}\right)\left(\begin{array}{c}
x^{1}(k) \\
\vdots \\
x^{n}(k)
\end{array}\right)
$$

Example

