Mathematics for Economists

Mitri Kitti

Aalto University

Difference Equations

Introduction

Modeling economic phenomena that evolve in time

economic growth, how economic conditions evolve (predictions)
 Difference equations

models for discrete time dynamics

Objective

- linear difference equations
- solutions by eigenvalues

First-order linear difference equations: Example

Example. Suppose you deposit y₀ euros in a savings account

• The interest rate r is compounded in each time period t = 0, 1, 2, ...

The value of your initial deposit in each time period is given by

$$y_{t+1} = (1+r)y_t, \quad t = 0, 1, 2, \dots$$
 (1)

▶ Equation (1) is a *first-order linear difference equation*

- First-order: for every t, y_t affects (directly) only y_{t+1}
- Linear: for every t, (1) is a linear equation

First-order linear difference equations: Example

Example (cont'd). How can we solve (1)? That is, how can we find an expression for y_t that, for every t, depends only on the constant parameter r, the initial condition y₀, and the time index t?

We have:

$$y_1 = (1 + r)y_0$$

$$y_2 = (1 + r)y_1 = (1 + r)^2 y_0$$

$$y_3 = (1 + r)y_2 = (1 + r)^3 y_0$$

$$y_4 = (1 + r)y_3 = (1 + r)^4 y_0$$

and so on

• The solution we are looking for is $y_t = (1 + r)^t y_0$, t = 0, 1, 2, ...

Consider the first-order linear difference equation

$$x_{t+1} = ax_t + b_t, \quad t = 0, 1, 2, \dots,$$

where a is a constant

Starting with an initial condition x_0 , we can calculate x_t as follows:

$$x_{1} = ax_{0} + b_{0}$$

$$x_{2} = ax_{1} + b_{1} = a(ax_{0} + b_{0}) + b_{1} = a^{2}x_{0} + ab_{0} + b_{1}$$

$$x_{3} = ax_{2} + b_{2} = a(a^{2}x_{0} + ab_{0} + b_{1}) + b_{2} = a^{3}x_{0} + a^{2}b_{0} + ab_{1} + b_{2}$$

$$x_{4} = ax_{3} + b_{3} = a(a^{3}x_{0} + a^{2}b_{0} + ab_{1} + b_{2}) + b_{3} = a^{4}x_{0} + \sum_{k=1}^{4} a^{4-k}b_{k-1}$$

and so on

. . .

► In general, we have

$$x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_{k-1}, \quad t = 0, 1, 2, \dots$$
 (2)

• When $b_k = b$ for all $k = 0, 1, 2, \ldots$, we have

$$\sum_{k=1}^{t} a^{t-k} b_{k-1} = b \sum_{k=1}^{t} a^{t-k} = b(a^{t-1} + a^{t-2} + \dots + a + 1)$$

The term (a^{t-1} + a^{t-2} + · · · + a + 1) is the sum of the first t terms of a geometric series. When a ≠ 1,

$$(a^{t-1} + a^{t-2} + \dots + a + 1) = \frac{1 - a^t}{1 - a}$$

▶ Therefore, when $b_k = b$ for all k = 0, 1, 2, ... and $a \neq 1$, the solution (2) reduces to

$$x_t = a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}, \quad t = 0, 1, 2, \dots$$
 (3)

When
$$b_k = b$$
 for all $k = 0, 1, 2, ...$ and $a = 1$, we have that $(a^{t-1} + a^{t-2} + \cdots + a + 1) = t$. Thus (2) simplifies to

$$x_t = x_0 + tb, \quad t = 0, 1, 2, \dots$$

► Consider the solution (3) and suppose that |a| < 1, i.e. -1 < a < 1. It is then easy to verify that</p>

$$\lim_{t\to\infty} x_t = \lim_{t\to\infty} a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a} = \frac{b}{1-a}$$

• If
$$x_s = \frac{b}{1-a}$$
 for some $s \ge 0$, then $x_{s+k} = \frac{b}{1-a}$ for all $k = 0, 1, 2, ...$

- ► We say that the constant x^{*} = ^b/_{1-a} is the equilibrium (or stationary state) of the difference equation
- ▶ When |a| < 1, the solution (3) converges to the equilibrium state $x^* = \frac{b}{1-a}$. In this case, we say that the difference equation is globally asymptotically stable

Difference equations

A sequence $\{\mathbf{x}_k\}_{k=0}^{\infty} \subset \mathbb{R}^n$ satisfies a difference equation of order T if $G(\mathbf{x}_k, \mathbf{x}_{k-1}, \dots, \mathbf{x}_{k-T}) = \mathbf{0}$ (for all $k \geq T$), where $G : \mathbb{R}^{Tn} \mapsto \mathbb{R}^n$

- often difference equations are transformed into recursions $x_{k+1} = F(x_k)$
- in this case the solution is a sequence x₁, x₂, and so on corresponding to the intial value x₀
- other names for the recursion: state transition equation, law of motion, or dynamic system, discrete time process

Example: a model of national income

- ▶ In period t national income Y_t satisfies $Y_t = C_t + I_t + G_t$
 - \triangleright C_t is of private consumption, I_t is investments and G_t is public spending
 - Assume that $C_t = \alpha Y_t$, $G_t = G_0$ for all t, $I_t = \beta (C_t C_{t-1})$
- This yields a difference equation $Y_t = \alpha Y_t + \beta (C_t - C_{t-1}) + G_0 = \alpha (1+\beta) Y_{t-1} - \alpha \beta Y_{t-2} + G_0$ difference equation of degree 2
 - difference equation of degree 2
 - choosing $x_t = Y_t$ and $z_t = Y_{t-1}$ yields a recursion:

$$x_k = \alpha(1+\beta)x_{k-1} - \alpha\beta z_{k-1} + G_0$$

$$z_k = z_{k-1}$$

Other examples

- A growth model $K_{t+1} = f(K_t, L_t) + (1 \delta)K_t C_t$
 - K is capital, L is labor, C is consumption, δ is the capital depreciation rate • production function $f(K_{\nu}, L_{\nu})$
- Harvesting of a natural resource: $s_{t+1} = f(s_t) x_t$

resource stock s_t , harvest x_t , growth f(s)

Linear difference equations

Dynamical system given by $z^{k+1} = Az^k$, k = 0, 1, ..., where $A \in \mathbb{R}^{n \times n}$ and $z^0 \in \mathbb{R}^n$ is given

- model for a discrete time process
- this kind of systems can be obtained by linearizing nonlinear difference equations
- ▶ solution by brute force: find z^N corresponding to z^0 by iterating the system, i.e., $z^N = A^N z^0$, which means that we need A^N (isn't this a good enough solution?)

Example: an uncoupled system
$$z^{k+1} = A z^k$$
, where $A = egin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$

what is the solution?

Suppose we have the following system:

$$x_{t+1} = x_t + 4y_t$$
 (4)
 $y_{t+1} = \frac{1}{2}x_t$, (5)

with t = 0, 1, 2, ...

We can solve the system through a *change of variables*. More specifically, suppose we use the transformation

$$X = \frac{1}{6}x + \frac{1}{3}y$$
(6)

$$Y = -\frac{1}{6}x + \frac{2}{3}y$$
(7)

and the inverse transformation

$$x = 4X - 2Y \tag{8}$$

$$y = X + Y \tag{9}$$

▶ By the transformation (6)-(7) and the system (4)-(5) we get

$$X_{t+1} = \frac{1}{6}x_{t+1} + \frac{1}{3}y_{t+1} = \frac{1}{6}(x_t + 4y_t) + \frac{1}{3}\left(\frac{1}{2}x_t\right) = \frac{1}{3}x_t + \frac{2}{3}y_t$$
$$Y_{t+1} = -\frac{1}{6}x_{t+1} + \frac{2}{3}y_{t+1} = -\frac{1}{6}(x_t + 4y_t) + \frac{2}{3}\left(\frac{1}{2}x_t\right) = \frac{1}{6}x_t - \frac{2}{3}y_t$$

▶ Now, using the inverse transformation (8)-(9) yields

$$X_{t+1} = \frac{1}{3}x_t + \frac{2}{3}y_t = \frac{1}{3}(4X_t - 2Y_t) + \frac{2}{3}(X_t + Y_t) = 2X_t$$
$$Y_{t+1} = \frac{1}{6}x_t - \frac{2}{3}y_t = \frac{1}{6}(4X_t - 2Y_t) - \frac{2}{3}(X_t + Y_t) = -Y_t$$

ln sum, we have just transformed the initial system (4)-(5) into

$$\begin{aligned} X_{t+1} &= 2X_t \\ Y_{t+1} &= -Y_t \end{aligned}$$

which is an uncoupled system of two difference equations

The solution of the transformed system is

$$X_t = 2^t c_1$$
$$Y_t = (-1)^t c_2$$

where c_1 and c_2 are constants determined by the initial conditions x_0 and y_0

Finally, we use again the transformation (6)-(7) to obtain the solution to the initial system:

$$x_t = 4X_t - 2Y_t = 4 \cdot 2^t c_1 - 2(-1)^t c_2$$

$$y_t = X_t + Y_t = 2^t c_1 + (-1)^t c_2$$

► If we are given initial conditions x₀ and y₀, we can also find the exact value of the two constants c₁ and c₂ by solving the following system of linear equations

$$x_0 = 4 \cdot 2^0 c_1 - 2(-1)^0 c_2 = 4c_1 - 2c_2$$

$$y_0 = 2^0 c_1 + (-1)^0 c_2 = c_1 + c_2$$

• You can verify that $c_1 = \frac{1}{6}x_0 + \frac{1}{3}y_0$ and $c_2 = -\frac{1}{6}x_0 + \frac{2}{3}y_0$

 The transformation we've used can be generalized to abstract systems of difference equations. Consider the following system of two equations (written in matrix form)

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}, \quad t = 0, 1, 2, \dots,$$

which we can also write in more compact form:

$$\boldsymbol{z}_{t+1} = A \boldsymbol{z}_t$$

To make the change of variables, we choose a 2 × 2 (invertible) matrix P and its inverse P⁻¹, and then define

$$\boldsymbol{z} = P\boldsymbol{Z}$$
 and $\boldsymbol{Z} = P^{-1}\boldsymbol{z}$ (10)

Then we have

$$Z_{t+1} = P^{-1} z_{t+1}$$

= $P^{-1}(Az_t)$
= $(P^{-1}A)z_t$
= $(P^{-1}A)(PZ_t)$
= $P^{-1}APZ_t$

We want to choose P in such a way that the coefficient matrix of the transformed system P⁻¹AP is diagonal (so that the system is uncoupled and easy to solve)

Let D be a diagonal matrix

$$D = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix}$$

• Write the matrix P as $P = (\mathbf{v}_1 \ \mathbf{v}_2)$, where \mathbf{v}_1 and \mathbf{v}_2 are the two column vectors

We want to choose P in such a way that

$$P^{-1}AP = D \iff AP = PD$$

• One can show that AP = PD is equivalent to

$$A \mathbf{v}_1 = r_1 \mathbf{v}_1$$
 and $A \mathbf{v}_2 = r_2 \mathbf{v}_2$

The numbers r₁ and r₂ are the eigenvalues of A and v₁ and v₂ are the corresponding eigenvectors

Since $P^{-1}AP = D$, the transformed system reduces to

$$\boldsymbol{Z}_{t+1} = \boldsymbol{D}\boldsymbol{Z}_t \tag{11}$$

▶ The solution to (11) is

$$\boldsymbol{Z}_t = \begin{pmatrix} c_1 r_1^t \\ c_2 r_2^t \end{pmatrix}$$

$$\boldsymbol{z}_t = \boldsymbol{P}\boldsymbol{Z}_t = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{pmatrix} \begin{pmatrix} c_1 r_1^t \\ c_2 r_2^t \end{pmatrix} = c_1 r_1^t \boldsymbol{v}_1 + c_2 r_2^t \boldsymbol{v}_2$$

► Finally, given the initial conditions

$$\mathbf{z}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix},$$

we can also determine the constants c_1 and c_2 as follows:

$$\binom{c_1}{c_2} = P^{-1} \boldsymbol{z}_0$$

In sum, we can solve the system of difference equations (4)-(5) by using the eigenvalues and the eigenvectors of the system's coefficient matrix A

Markov processes

- Finite number of states i = 1, ..., n
- A stochastic process determined probabilities of moving from one state to another in each time instant
- Markov process: probability of state i in period k + 1 depends only on the state in period k
- ▶ state transition probabilities m_{ij} = prob. of state *i* in period k+1 for initial state *j*

State transition matrix (Markov matrix)

$$\mathbf{M} = \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{pmatrix}$$

Markov processes

Example: households classified according to their neighborhoods as urban (1), suburban (2), rural (3)

- $\blacktriangleright x^i(k)$ probability that a household is in state *i* in period k
- Markov matrix

$$\begin{pmatrix} 0.75 & 0.02 & 0.1 \\ 0.2 & 0.9 & 0.2 \\ 0.05 & 0.08 & 0.7 \end{pmatrix} \,.$$

Markov process as a difference equation

- xⁱ(k + 1)= (prob. of transition form state 1 1 to i) × (prob of state 1)+...+(prob. of transition form state n 1 to i) × (prob of state n)
- ln matrix form $\mathbf{x}(k+1) = \mathbf{M}\mathbf{x}(k)$, i.e.

$$\begin{pmatrix} x^{1}(k+1) \\ \vdots \\ x^{n}(k+1) \end{pmatrix} = \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{pmatrix} \begin{pmatrix} x^{1}(k) \\ \vdots \\ x^{n}(k) \end{pmatrix}$$

.

Example

