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Introduction

Modeling economic phenomena that evolve in time

> economic growth, how economic conditions evolve (predictions)
Difference equations

» models for discrete time dynamics
Objective

» linear difference equations

> solutions by eigenvalues
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First-order linear difference equations: Example

» Example. Suppose you deposit yg euros in a savings account
» The interest rate r is compounded in each time period t =0,1,2,...

» The value of your initial deposit in each time period is given by

Vir1 =(1+ 1)y, t=0,1,2,... (1)

» Equation (1) is a first-order linear difference equation

> First-order: for every t, y; affects (directly) only y;i1
» Linear: for every t, (1) is a linear equation
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First-order linear difference equations: Example

» Example (cont’d). How can we solve (1)? That is, how can we find an
expression for y; that, for every t, depends only on the constant parameter r, the
initial condition yg, and the time index t7

» We have:
= (1+r)yo
o= 1+ry1=(1+r)y
v3=(1+nryx:=(1+ r)3y0
va=(1+r)ys = (1+r)y
and so on

» The solution we are looking for is y; = (1 + r)tyo, t =0,1,2,...
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First-order linear difference equations

» Consider the first-order linear difference equation
Xt+]_:aXt+bt7 t:0,1,2,...,

where a is a constant

» Starting with an initial condition xp, we can calculate x; as follows:

x1 = axp + bg

Xp = axy + b1 = a(axo + bo) + b = a2x0 + abg + by

X3 = axo + by = 3(32X0 + abg + bl) + by = a3X0 + a2b0 + ab; + bo
4

X4 = ax3 + b3 = a(a3x0 + aZbo + aby + bp) + bz = a*xo + Z 34_kbk_1
k=1

and so on
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First-order linear difference equations

» In general, we have

t
xx=ax+y aFb_y, t=012,. .. (2)
k=1

» When by = b for all k=0,1,2,..., we have
t t
Zat kb1 = Zat_k:b(at_1+at_2+--'+a+1)
k=1 k=1

» The term (a1 4+ a®2+ ...+ a+ 1) is the sum of the first t terms of a
geometric series. When a # 1,

1—at
1-a

(at—1+at—2+._‘+a+1):
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First-order linear difference equations

» Therefore, when by = b for all k =0,1,2,... and a # 1, the solution (2) reduces

to b b
=at — =0,1,2,...
Xt a (XO 1— a) + 1— a7 t 07 P (3)

» When by = b forall k=0,1,2,... and a =1, we have that
(at 14+ at2 4 ... +a+1)=t. Thus (2) simplifies to

Xt =xp+th, t=0,1,2,...
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First-order linear difference equations

| 2

Consider the solution (3) and suppose that |a|] < 1, ie. —1 < a < 1. Itis then
easy to verify that

lim x; = lim at<x0— b )—i— b = b
1—a 1

t—o0 t—o00

If xs = fba for some s > 0, then x5 4 = lfba forall k=0,1,2,...
We say that the constant x* = 2 is the equilibrium (or stationary state) of the
difference equation

When |a| < 1, the solution (3) converges to the equilibrium state x* = %a. In

I
this case, we say that the difference equation is globally asymptotically stable
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Difference equations

A sequence {x,}?2, C R" satisfies a difference equation of order T if
G(Xk,Xk—1, -+, Xk_7) = 0 (for all k > T), where G : R™"  R"
> often difference equations are transformed into recursions xx11 = F(x)
P in this case the solution is a sequence xj, X2, and so on corresponding to the intial
value xq
» other names for the recursion: state transition equation, law of motion, or dynamic
system, discrete time process
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Example: a model of national income

» In period t national income Y; satisfies Y; = G + I + G;
» (; is of private consumption, I; is investments and G; is public spending
» Assume that G; = aY;, Gy = Gy for all ¢, I = B(C; — Ci—1)

» This yields a difference equation
Yt = CYYt + /B(Ct — Ct—l) + GO = Oé(]. + 5)Yt_1 — OJ,BYt—Z + GO
» difference equation of degree 2
» choosing x; = Y; and z; = Y;_1 yields a recursion:
xx = a(l+ B)xk—1— aBz_1+ Go

Zx = Zk-1
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Other examples

» A growth model K;y1 = f(Ky, Le) + (1 — 6)Ke — Gt
» K is capital, L is labor, C is consumption, ¢ is the capital depreciation rate
» production function (K, L)

» Harvesting of a natural resource: si11 = f(s¢) — x¢
> resource stock s;, harvest x;, growth f(s)
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Linear difference equations

Dynamical system given by z<t1 = AzK, k =0,1,..., where A € R™*" and
Z% € R" is given
» model for a discrete time process
» this kind of systems can be obtained by linearizing nonlinear difference equations
» solution by brute force: find zV corresponding to z° by iterating the system, i.e.,
zNV = ANZ® which means that we need AV (isn't this a good enough solution?)

Example: an uncoupled system zK*1 = AzK where A = <g 2)

» what is the solution?
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Systems of first-order linear difference equations: Example
» Suppose we have the following system:

Xey1 = Xt + 4yt (4)
1
Yee1 = 5%, (5)

with t =0,1,2, ...

» We can solve the system through a change of variables. More specifically, suppose
we use the transformation

1 1
X == -
eXt3y (6)
1 2
Y =—-Z= — 7
eXt3Y (7)
and the inverse transformation
x=4X —2Y (8)
y=X+Y (9)
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Systems of first-order linear difference equations: Example

» By the transformation (6)-(7) and the system (4)-(5) we get

Xyl = EXt-|—1 + 1}&-&—1 = 1(Xt +4y:) + E <1Xt> = 1Xt + g)/t
6 3 6 3\2 3 3
Yer1 = —EXH-l + g)/t-i-l = —E(Xt +4y:) + g <1Xt> = 1Xt - g)/t
6 3 6 3\2 6 3

» Now, using the inverse transformation (8)-(9) yields

1 2 1 2

Xf+1 = §Xt + §yt = 5(4Xt — 2Yt) + §(Xt + Yt) = 2Xt
1 2 1 2

Yt+1 6Xt — gyt = 6(4Xt — 2Yt) — §(Xt + Yt) - _Yt
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Systems of first-order linear difference equations: Example

» In sum, we have just transformed the initial system (4)-(5) into

Xt+1 =2X;
yt+l = _Yt7

which is an uncoupled system of two difference equations

» The solution of the transformed system is

Xt - 2tC]_
Yt ( ) e,

where ¢; and ¢, are constants determined by the initial conditions xg and yg
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Systems of first-order linear difference equations: Example

» Finally, we use again the transformation (6)-(7) to obtain the solution to the
initial system:

Xt = 4-Xt — 2Yt =4. 2tC]_ — 2(—1)tC2
Ye=Xe+Ye=2'a+(-1)'e

» If we are given initial conditions xp and yp, we can also find the exact value of the
two constants ¢; and ¢, by solving the following system of linear equations

xo0=4-2% —2(~1)%c = 4c; — 2

=2+ (-1 a=ca+o

» You can verify that ¢; = %Xo + %yo and ¢ = —%Xo + %yo
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Systems of first-order linear difference equations

» The transformation we've used can be generalized to abstract systems of
difference equations. Consider the following system of two equations (written in

matrix form)
Yev1 c d)\yn)’ R

which we can also write in more compact form:
Zip1 = Az

» To make the change of variables, we choose a 2 x 2 (invertible) matrix P and its
inverse P~1, and then define

z=PZ and Z=P7:z (10)
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Solution by diagonalization

» Then we have

Zi1=Plzey
= P (Az))
= (P71A)z,
= (PA)(PZ,)
=P 'APZ,

> We want to choose P in such a way that the coefficient matrix of the transformed
system P~1AP is diagonal (so that the system is uncoupled and easy to solve)
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Solution by diagonalization
> Let D be a diagonal matrix

. rn 0
2= (5 o)

» Write the matrix P as P = (v1 v2), where v7 and v, are the two column
vectors

> We want to choose P in such a way that

P'AP=D <= AP=PD

» One can show that AP = PD is equivalent to
Avi=nvi and Avs=nvs

» The numbers r; and r» are the eigenvalues of A and v; and v, are the
corresponding eigenvectors
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Solution by diagonalization

» Since P~LAP = D, the transformed system reduces to

Zt+1 — th (].].)

» The solution to (11) is

» Therefore,
t
CLr t t
z, = PZ;, = (vl v2) <ch1t> =CirHV1+ KLV
2
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Solution by diagonalization

» Finally, given the initial conditions

Zy = <X0) )
Yo

we can also determine the constants ¢; and ¢ as follows:

» In sum, we can solve the system of difference equations (4)-(5) by using the
eigenvalues and the eigenvectors of the system'’s coefficient matrix A
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Markov processes

» Finite number of states i =1,...,n

P A stochastic process determined probabilities of moving from one state to another
in each time instant

> Markov process: probability of state / in period k 4+ 1 depends only on the state in
period k

> state transition probabilities m;; = prob. of state / in period k +1 for initial state j

» State transition matrix (Markov matrix)

mi1 -+ Mip
M =

Mp1 -+ Mpp
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Markov processes
Example: households classified according to their neighborhoods as urban (1),
suburban (2), rural (3)

> x'(k) probability that a household is in state i in period k
» Markov matrix

0.75 0.02 0.1
02 09 02
0.05 0.08 0.7

Markov process as a difference equation

» x/(k+ 1)= (prob. of transition form state 1 1 to i) x (prob of state 1)+...+(prob.
of transition form state n 1 to i) x (prob of state n)
» In matrix form x(k + 1) = Mx(k), i.e.

x (k4 1) muceoom\ [(xM(k)

x"(k + 1) My -+ Mpp x"(k)
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Example
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