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Server-side Architectural Patterns

e Event-driven architecture
e Microkernel / plugin architecture
e Space-based architecture



Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o  Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o  Server (publisher) defines available topics. When new
data arrives (is produced) for a topic, data is sent to all
clients subscribed to the topic

e Needs a message broker (a service for passing
and storing messages): Plenty of existing
platforms (e.g. Kafka)
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in each processing unit through their data replication

engines (but, data replication engines can and also The Case for Sh
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keley.edu/papers/hpt385-nothing. pdf

e Applications can also be divided into further
processing units (~microservices) — processing grid
takes some responsibility of sharing requests to
correct processing units

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html
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Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

e Need to do something with database or
it cannot handle the load
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Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions
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Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem
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Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance

Consistency — data read is up to date and reflects the latest write

Availability — every request receives a response

Network Partition tolerance — when data is distributed over multiple systems (or multiple partitions), the database works even if

messaging between systems fails Brewer "quves’r,yie\s.
Fox, Armando. and Eric A. rs,“ proceedings of the

and scalable yolerant Sysﬁ:’: Topics i Operatifd

on
Seventh W°"§§?ffms. TEEE, 1999-



ACID,

e ACID

O O O O

ndreas R

CAP, BASE

eU‘f‘er“ “Prv"nci
ples of
Surveys (CSUR) 15 4 (1

COVer'y"’ AC .
983): 287-31A; omputing
Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem

O

(¢]
(0]
(¢]

e BASE

O O O O
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o Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem

o Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance

o Consistency — data read is up to date and reflects the latest write

o Availability — every request receives a response
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About CAP Theorem...

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
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Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or

more servers
o Consistency in place
o Queries that require data from multiple servers can be slower
o On the other hand, queries requiring data from a single server can be (in some
cases) faster
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Kubernetes

e Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

e “Kubernetes [...] is an open-source system for automating deployment,
scaling, and management of containerized applications.” — Kubernetes.io

e Key terminology:

o Container: an image containing software and its dependencies (hello Docker!)
Pod: a set of running containers

O
o Node: a (virtual) machine with functionality needed to run pods
o  Cluster: a group (n => 1) of nodes

Borg, Omega, and Kubernetes — https://dl.acm.org/doi/10.1145/2890784
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e Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but...

e For learning purposes, there’s multiple ways to go

Minikube — https://minikube.sigs.k8s.io/

MicroK8s — https://microk8s.io/

K3s — https://k3s.io/ and K3D — https://k3d.io/ (for running K3s in Docker)
Kind — https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
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Kubernetes

e Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but...

e For learning purposes, there’s multiple ways to go

Minikube — https://minikube.sigs.k8s.io/

MicroK8s — https://microk8s.io/

K3s — https://k3s.io/ and K3D — https://k3d.io/ (for running K3s in Docker)
Kind — https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
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Check out also https://kubernetes.io/docs/tutorials/kubernetes-basics/


https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/

Minikube demo

https://kubernetes.io/docs/tutorials/hello-minikube/

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/



Minikube demo — minikube and kubectl already installed

° Start minikube

o minikube start
e Allow using local docker images in minikube
(¢} eval $(minikube -p minikube docker-env)
e  Build a Docker image (In a folder with Dockerfile)
o minikube image build -t my-app-image .

o For the present demo, we built a web app that exposes port 7777
e  Open minikube dashboard (separate terminal)
o minikube dashboard
e Create deployment
o kubectl create deployment my-kube-app --image=my-app-image
e Change image pull policy to pull from local (well, to not pull from global)
o Adjust deployment config “imagePullPolicy: Always” 10 “imagePullPolicy: Never”
e Expose pod using a load balancer
o Create a tunnel (as root, separate terminal):
minikube tunnel
o Create a load balancer service for our app:
kubectl expose deployment my-kube-app --type=LoadBalancer —--port=7777
e Find load balancer (external) IP:
o kubectl get svc
e  Access server at port :)

10.96.253.86

Requested path /hello-world



Minikube demo — minikube and kubectl already installed

e Updating deployed image
o Update contents of docker image and rebuild it
@ Remove a pod — you’ll notice that the pod will be redeployed — latest image deployed
e Scaling up (by creating replicas)
o  Show details (find app name)
| kubectl get all
o  Scale the deployment to three replicas
| kubectl scale deployment.apps/my-kube-app --replicas=3

e Scaling automatically
o  Enable metrics server (checking metrics for scaling)
[ minikube addons enable metrics-server
o  Atleast 1 replica, at most 5 replicas, scale up if CPU load is over 25%
| kubectl autoscale deployment.apps/my-kube-app --min=1 --max=5 --cpu-percent=25
o Might need some config trickery to get working locally, e.g. running with
[ minikube start --extra-config=kubelet.housekeeping-interval=10s
o  And setting resource limits for container config (to allow counting of CPU usage) ...

125~ spec:

126 ~ containers:

127 ~ - name: my-app-image
128 image: my-app-image
129~ resources:

130 ~ limits:

131 cpu: 1



Minikube demo — minikube and kubectl already installed

e Normally configuration through config files; as an example format, see
0 kubectl get deployment -o my-kube-app -o yaml

e Deployment
O kubectl apply -f my-kube-app-deployment.yaml



Kubernetes and databases?

e Replication and sharding can take some effort to setup — in practice, there are
several companies offering scalable databases as a service

e However, pretty much all databases can be used with Kubernetes
o Some have ready bundles with replication out of box (see e.g. https://www.kubegres.io/)
o Others have tutorials to get started (see e.g.
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/)



https://www.kubegres.io/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/
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Load and stress testing

e Previously looked into performance testing

o What is the performance of the application? How fast do the different endpoints respond to
requests?

: *The usua! day
e There are other types of testing approaches _—
o Load testing: testing that the application can handle the expected load

o Stress testing: testing how the application fares in extreme conditions \"BI ‘
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Load testing - k6

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

e [Expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors



import http from "k6/http";
import { sleep } from 'k6';

Load testing - k6

export options = {
stages: [

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

{ duration: "30s", target: 25 },

{ duration: "Im", target: 100 },

{ duration: "Im", target: 50 },
1,

e Expectations: thresholds: {
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default () {
http.get ("my-address") ;
sleep(l);

}
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import { sleep } from 'k6';
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; import http from "k6/http";
Typically tests are run over

a longer time period

Load testing - k6

import { sleep } from 'k6';

export options = {
stages: [

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

{ duration: "30s", target: 25 },

{ duration: "Im", target: 100 },

{ duration: "Im", target: 50 },
1,

e Expectations: thresholds: {
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default 0 |
Can and shoy|q test out most

impo . http.get ("my-address") ;
Portant endpoints ang yse cases

]

sleep(l);
}




Stress testing - k6

Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

Same expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors



import http from "k6/http";
import { sleep } from 'k6';

Stress testing - k6

export options = {
stages: [
e Not so usual day: there are some ( dQuration: "2m" . 2500 )

2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

{ duration: "5m", : 10000 1},
{ duration: "2m", : 500 1},

1,

e Same expectations: thresholelss |
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default () {
http.get ("my-address") ;
sleep(l);

}




Stress testing - k6

e Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

e Same expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors

Stress testi
computer? Cons
such as k6, s

ng from q single

idep gloud Services
Upervisor, etc ..

import http from "k6/http";
import { sleep } from 'k6';

export options = {
stages: [
{ duration: "2m", target:
{ duration: "5m", target:
{ duration: "2m", target:
1,
thresholds: {
http req duration: ["p(99.

http req failed: ["rate<O.

export default () {
http.get ("my-address") ;
sleep(l);

}

2500 1},
10000 1},
500 1},

9)<300"7,
001"]




