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Agenda

● Server-side architectural patterns continued
● Data and scalability
● Kubernetes
● Load and stress testing



Server-side Architectural Patterns

● Event-driven architecture
● Microkernel / plugin architecture
● Space-based architecture



Event-driven Architecture

● When the state of an application changes (i.e. an 
event happens), information about the change is 
published

● Typically realized using a publish / subscribe 
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of 
interest by making a request to the server

○ Server (publisher) defines available topics. When new 
data arrives (is produced) for a topic, data is sent to all 
clients subscribed to the topic

● Needs a message broker (a service for passing 
and storing messages): Plenty of existing 
platforms (e.g. Kafka)
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Designing a Scalable Twitter (2009): 

https://natishalom.typepad.com/nati_shaloms_blog/20

09/04/writing-your-own-scalable-twitter.html

The Case for Shared Nothing (1985): https://dsf.berkeley.edu/papers/hpts85-nothing.pdf

See also…
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● Horizontal scalability = scaling out = 
increasing number of servers

● Need to do something with database or 
it cannot handle the load
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○ Consistency – data read is up to date and reflects the latest write
○ Availability – every request receives a response
○ Network Partition tolerance – when data is distributed over multiple systems (or multiple partitions), the database works even if 

messaging between systems fails

● BASE
○ Accept that reaching consistency may take time, accept partial failures
○ Basically Available – distribute data and accept failures → at least some users will get data
○ Soft state – state information can be lost e.g. in system crashes or with network issues
○ Eventually consistent – data will be consistent at some point in time

Fox, Armando, and Eric A. Brewer. "Harvest, yield, 

and scalable tolerant systems." Proceedings of the 

Seventh Workshop on Hot Topics in Operating 

Systems. IEEE, 1999.

Haerder, Theo, and Andreas Reuter. "Principles of 
transaction-oriented database recovery." ACM computing 

surveys (CSUR) 15.4 (1983): 287-317.

Pritchett, Dan. "BASE: An Acid Alternative: In partitioned databases, 

trading some consistency for availability can lead to dramatic 

improvements in scalability." ACM Queue 6.3 (2008): 48-55.
Event-Driven Architecture suggested as a way to inform users when state has become consistent
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CAP Twelve Years Later: How the "Rules" Have Changed 
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● Network partitions do happen every now and then, 
so the choice is between AP and CP

○ Or is it? 

○ Network partitions highly unlikely (given proper 
infrastructure) – other problems can also happen (e.g. 
broken hardware) – one question is how to handle these.

○ Another question is how to mitigate network partitions.

● In practice, the big question is “how to achieve 
effectively CA” in large systems.

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed 
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

E.g. Google Spanner:

Brewer, E., 2017. Spanner, 

TrueTime and the CAP theorem.



Practical database scaling



Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding



Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data 

in database changes → fewer database queries



Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data 

in database changes → fewer database queries

Works when #reads >> #writes



Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data 

in database changes → fewer database queries

Works when #reads >> #writes

Have query indexes in place → faster queries (index lookups vs table scans)



Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data 

in database changes → fewer database queries

Works when #reads >> #writes

Have query indexes in place → faster queries (index lookups vs table scans)

…
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● Two ways to distribute database data: (1) data replication, (2) data 
sharding

● Data replication: entire data is replicated over two or more servers, 
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or 
more servers

○ Consistency in place
○ Queries that require data from multiple servers can be slower
○ On the other hand, queries requiring data from a single server can be (in some 

cases) faster

● Possibility to also do both replication and sharding

Read replication and sharding

ab …  kl mn…
ab …  kl mn…Also fragmentation – dividing data into fragments in a database for 

performance reasons; e.g. storing log data into weekly fragments 
which would allow faster for specific timeframes.
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Updating data between servers

Van Renesse, R., & Altinbuken, D. (2015). Paxos made moderately 

complex. ACM Computing Surveys (CSUR), 47(3), 1-36.

Rao, J., Shekita, E. J., & Tata, S. (2011). Using Paxos to Build a 

Scalable, Consistent, and Highly Available Datastore. 

Proceedings of the VLDB Endowment.
Marandi, P. J., Primi, M., Schiper, N., & Pedone, F. 
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Not going into these... 
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Kubernetes

● Scaling requires adjustment (of the number) of running applications and 
directing traffic to the said applications

● “Kubernetes [...] is an open-source system for automating deployment, 
scaling, and management of containerized applications.” – Kubernetes.io 

● Key terminology:
○ Container: an image containing software and its dependencies (hello Docker!)
○ Pod: a set of running containers
○ Node: a (virtual) machine with functionality needed to run pods
○ Cluster: a group (n => 1) of nodes

Borg, Omega, and Kubernetes – https://dl.acm.org/doi/10.1145/2890784
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● For learning purposes, there’s multiple ways to go
○ Minikube – https://minikube.sigs.k8s.io/ 
○ MicroK8s – https://microk8s.io/ 
○ K3s – https://k3s.io/ and K3D – https://k3d.io/ (for running K3s in Docker)
○ Kind – https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
○ ...
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● For learning purposes, there’s multiple ways to go
○ Minikube – https://minikube.sigs.k8s.io/ 
○ MicroK8s – https://microk8s.io/ 
○ K3s – https://k3s.io/ and K3D – https://k3d.io/ (for running K3s in Docker)
○ Kind – https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
○ ...

Check out also https://kubernetes.io/docs/tutorials/kubernetes-basics/

https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/


Minikube demo

https://kubernetes.io/docs/tutorials/hello-minikube/

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/



Minikube demo – minikube and kubectl already installed
● Start minikube

○ minikube start
● Allow using local docker images in minikube

○ eval $(minikube -p minikube docker-env)
● Build a Docker image (In a folder with Dockerfile)

○ minikube image build -t my-app-image .
○ For the present demo, we built a web app that exposes port 7777

● Open minikube dashboard (separate terminal)
○ minikube dashboard

● Create deployment
○ kubectl create deployment my-kube-app --image=my-app-image

● Change image pull policy to pull from local (well, to not pull from global)
○ Adjust deployment config “imagePullPolicy: Always” to “imagePullPolicy: Never”

● Expose pod using a load balancer
○ Create a tunnel (as root, separate terminal): 

minikube tunnel
○ Create a load balancer service for our app: 

kubectl expose deployment my-kube-app --type=LoadBalancer --port=7777
● Find load balancer (external) IP: 

○ kubectl get svc
● Access server at port :)



Minikube demo – minikube and kubectl already installed

● Updating deployed image
○ Update contents of docker image and rebuild it
○ Remove a pod → you’ll notice that the pod will be redeployed → latest image deployed

● Scaling up (by creating replicas)
○ Show details (find app name)

■ kubectl get all
○ Scale the deployment to three replicas

■ kubectl scale deployment.apps/my-kube-app --replicas=3

● Scaling automatically
○ Enable metrics server (checking metrics for scaling)

■ minikube addons enable metrics-server
○ At least 1 replica, at most 5 replicas, scale up if CPU load is over 25%

■ kubectl autoscale deployment.apps/my-kube-app --min=1 --max=5 --cpu-percent=25
○ Might need some config trickery to get working locally, e.g. running with

■ minikube start --extra-config=kubelet.housekeeping-interval=10s
○ And setting resource limits for container config (to allow counting of CPU usage) … 



Minikube demo – minikube and kubectl already installed

● Normally configuration through config files; as an example format, see
○ kubectl get deployment -o my-kube-app -o yaml

● Deployment
○ kubectl apply -f my-kube-app-deployment.yaml



● Replication and sharding can take some effort to setup – in practice, there are 
several companies offering scalable databases as a service

● However, pretty much all databases can be used with Kubernetes
○ Some have ready bundles with replication out of box (see e.g. https://www.kubegres.io/)
○ Others have tutorials to get started (see e.g. 

https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/)

Kubernetes and databases?

https://www.kubegres.io/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/
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○ What is the performance of the application? How fast do the different endpoints respond to 

requests?

● There are other types of testing approaches
○ Load testing: testing that the application can handle the expected load
○ Stress testing: testing how the application fares in extreme conditions “Black friday”

“The usual day”
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● The usual day: there are some 25 
users making one request per 
second, growing up to 100 users, 
and then declining to 50 users.

● Expectations: 
○ 99.9% of the requests should be 

handled in under 300 milliseconds and 
○ less than 0.1% of the requests should 

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

   { duration: "30s", target: 25 },

   { duration: "1m", target: 100 },

   { duration: "1m", target: 50 },

 ],

 thresholds: {

   http_req_duration: ["p(99.9)<300"],

   http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Can and should test out most important endpoints and use cases

Typically tests are run over a longer time period
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second, growing up to 10000 users, 
and then declining to 500 users.

● Same expectations: 
○ 99.9% of the requests should be 

handled in under 300 milliseconds and 
○ less than 0.1% of the requests should 

have errors
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and then declining to 500 users.

● Same expectations: 
○ 99.9% of the requests should be 

handled in under 300 milliseconds and 
○ less than 0.1% of the requests should 
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import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

   { duration: "2m", target: 2500 },

   { duration: "5m", target: 10000 },

   { duration: "2m", target: 500 },

 ],

 thresholds: {

   http_req_duration: ["p(99.9)<300"],
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 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Stress testing from a single computer? Consider cloud services such as k6, supervisor, etc …


