Designing and Building
Scalable Web Applications

Lecture 5/ 21.11.2022

The Big Picture

Aepoy Buiyojelos

sJojoe] [euoneziueblio pue uewny

Applications and application archetypes

Implementations and architectures

|

Application frameworks

Infrastructures and platforms

Aepo) Buiyojelos

Scalability expectations

|

Scalability laws

aouewuopad Bulinseaw ¥ Buliojiuop

Agenda

Server-side architectural patterns continued
Data and scalability

Kubernetes

Load and stress testing

Server-side Architectural Patterns

e Event-driven architecture
e Microkernel / plugin architecture
e Space-based architecture

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new
data arrives (is produced) for a topic, data is sent to all
clients subscribed to the topic

e Needs a message broker (a service for passing
and storing messages): Plenty of existing
platforms (e.g. Kafka)

Producer

T
1
1
1
1
1
Y

Broker

Consumer Consumer

Event-driven Architecture

e When the state of an application changes (i.e. an
event happens), information about the change is
published

e Typically realized using a publish / subscribe
(Pub/Sub) pattern

o Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

o Server (publisher) defines available topics. When new
data arrives (is produced) for a topic, data is sent to all
clients subscribed to the topic

e Needs a message broker (a service for passing
and storing messages): Plenty of existing
platforms (e.g. Kafka)

Producer

T
1
1
1
1
1
Y

Broker

Consumer Consumer

Heiser, G. and Elphinstone, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-29.

Heiser, G. and Elphinston
_ CH e, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-29.

e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

Microkernel / plugin architecture

e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

microkernels: The lessons fr:

Heiser, G. and Elphinstone, K., 2016. L4
om 20 years of

research and deployment. ACM Transactions on

C

omputer Systems (TOCS), 34(1), pp.1-29.

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating n»me kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

Heiser, G. and Elphinston
_ CH e, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to
new platforms (architectures)

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to
new platforms (architectures)

o Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

Heiser, G. and Elphinston
_ CH e, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to Plugin
new platforms (architectures)

o Porting the small kernel to new architectures would allow Plugin Core
reusing existing user-space programs on new those ports
with minimal effort

Plugin

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to Plugin
new platforms (architectures)

o Porting the small kernel to new architectures would allow Plugin Core
reusing existing user-space programs on new those ports
with minimal effort

Plugin

e |dea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, ...)

. - els Done Right? —
ne Monitors Microkern > ckupfhand Jhand

html/index.htm!
t/hotos05/final_papers_ B

Are Virtual Machi

https://www.usenix.org/legacy/even

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to
new platforms (architectures)

o Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

e |dea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, ...)
s Done Right? —

ne Monitors Microkern > ckupfhand/hand

html/index.htm!
t/hotos05/final_papers_ B

Are Virtual Machi

https://www.usenix.org/legacy/even

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to Apps Apps Apps
new platforms (architectures)

Guest OS Guest OS Guest OS

o Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort Microkernel / Virtual Machine Monitor

e |dea currently present in virtual machine monitors,

.) . : Hardware
virtual machines, and containers (e.g. Linux
containers, Docker, ...)
. - |s Done Right? — .
Are Virtual Machine Monitors lV‘|Cr0kemetf’ackup/hand/hand_h’cml/mdex.html

[apers_|
httpS'//www.usenix.org/legacy/event/hotosO5/f|nal_p P

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-20.
e Oirigins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc ot part of
traditionally included into a (monolithic) operating nﬂ\e kerne!

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to Apps Apps Apps
new platforms (architectures)

Guest OS Guest OS Guest OS

o Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort Microkernel / Virtual Machine Monitor

e |dea currently present in virtual machine monitors,

.) . : Hardware
virtual machines, and containers (e.g. Linux
Buil containers, Docker, ...)
ui C“hg our apps, we k Right? —
e Hhow : +ors Microkernels Done RIgn index.html
tht we can run them on Are Virtual Machl;\/ﬁ |\’?c?sn(;tt')o/;isnal papers backup/hand/hand_htmllmde
o B _

different platforms ht’tps://www.usenix.org/legacy/eVen

different platforms ht’tps://www.usenix.org/legacy/eVen

Heiser, G. and Elphinsto
. , G. ne, K., 2016. L4
microkernels: The lessons from 20 years of
research and deployment. ACM Transactions on

Microkernel / plugin architecture Computer Systems (TOCS), 34(1), pp.1-29.
Origins decades ago (first works in 19605): evolving Present 0“150 €.9. in browseps IDEs
hardware, new devices, and so on. Drivers etc ot part of ete (plugin archiTecTuré:, ’
traditionally included into a (monolithic) operating nﬂ\e kerne!)

system kernel /

o Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

o Asmall core kernel could be easier to maintain and port to Apps Apps Apps
new platforms (architectures)

Guest OS Guest OS Guest OS

o Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort Microkernel / Virtual Machine Monitor

Idea currently present in virtual machine monitors,

.) . . Hardware
virtual machines, and containers (e.g. Linux
Buil containers, Docker, ...)
uilding our apps, we k ight? —
' n . - Done Right* .
that we can run them OZW Are Virtual Machine Monitors M|crokerne‘;ackup/hand/hand_html/mdex.htm‘

t/hotos05/final_papers_

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

Processing unit Processing unit

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized

middleware

Virtualized middleware

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

Processing unit Processing unit

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized

middleware

Virtualized middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

Processing unit Processing unit
e Oirigins: tuple space and distributed shared memory Application code Application code
(memory architecture allowing the use of separated
memory units through a single address space) Data persistence Data persistence
e Key components: processing units and virtualized Data replication Data replication
middleware

Virtualized middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

Processing unit Processing unit
e Oirigins: tuple space and distributed shared memory Application code Application code
(memory architecture allowing the use of separated
memory units through a single address space) Data persistence Data persistence
e Key components: processing units and virtualized Data replication Data replication
middleware

Virtualized middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to

processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

Processing unit

Processing unit

Application code

Application code

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Processing unit

Application code

Application code

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Processing unit

Application code

Application code

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Processing unit

Application code

Application code

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Processing unit

Application code

Application code

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Processing unit

Application code

Application code

1

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

¥

Data replication

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

¥

Data replication

Y

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

¥

+

Data replication

Data replication

Y

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid Grid
Request aly mu\’f\P\
u

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

¥

+

Data replication

Data replication

Y

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid ‘ Grid
/ \
SA:'" ved e.g. with
Request Ay ultie
. en‘hc Y ‘\'er
Grid: P ed compuTe
onne han dling a

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit

Datq changedl

Processing unit

Application code

Application code

1

Data persistence

Data persistence

¥

+

Data replication

Data replication

Y

Virtualized middleware

/

/
Messaging Data Deployment || Processing
Grid Grid Grid ‘ Grid
/ |
(obNo equests..
aed eg. with
Request Ay ultie
. en‘hc Y ‘\'er
Grid: P ed compuTe
onne han dling @

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

Processing unit

Datq changedl

Application code

1

Data persistence

¥

Data replication

Virtualized middleware

Messaging Data Deployment || Processing
Grid Grid Grid ‘ Grid
)
SA:'" ved e.g. with
Request ul 1P

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

e Key components: processing units and virtualized
middleware

e Processing unit(s) contain application code, data
persistence functionality, data replication functionality

e Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Software Architecture Patterns Chapter 5. Space-Based Architecture:

Processing unit

Datq changedl

Application code

1

Data persistence

¥

Data replication

Virtualized middleware

MAPE loop: Monitor,
Analyze, Plan, Execute

Messaging Data Deployment || Processing
Grid Grid Grid ‘ Grid
)
SA:'" ved e.g. with
Request ul 1P

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Requests can be directed to any processing units —
data must be up to date between processing units

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Requests can be directed to any processing units —
data must be up to date between processing units

e Data grid responsible for maintaining up-to-date data
in each processing unit through their data replication
engines (but, data replication engines can and also
interact with each others)

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture

e Requests can be directed to any processing units —
data must be up to date between processing units

e Data grid responsible for maintaining up-to-date data
in each processing unit through their data replication
engines (but, data replication engines can and also
interact with each others)

e Applications can also be divided into further
processing units (~microservices) — processing grid
takes some responsibility of sharing requests to
correct processing units

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Space-based architecture See also...

o): < 1log/20
. . . Wit i shaloM>—

e Requests can be directed to any processing units — - a calab\e epad- [na Ser Y

data must be up to date between processing units Des‘gnmg'(\sha\om-"\é&n_sca\a \e-tW

ntpsH e L your-
fing

e Data grid responsible for maintaining up-to-date data 09’04’

in each processing unit through their data replication

engines (but, data replication engines can and also The Case for Sh

a .
interact with each others) https.//dsf.ber red Nothing (19g5):

keley.edu/papers/hpt385-nothing. pdf

e Applications can also be divided into further
processing units (~microservices) — processing grid
takes some responsibility of sharing requests to
correct processing units

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Data and Scalability

Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

-
.~
-
/

(((

Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

e Horizontal scalability = scaling out =
increasing number of servers

e Need to do something with database or
it cannot handle the load

ACID, CAP, BASE

ACID, CAP, BASE Haerder

ACID

O O O O

ndreas R

abeClSe re

eUTer“ “Pr"nci
ples of
Surveys (CSUR) 15 4 (1

covery." Ac .
983): 287315 “*PUting
Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

ACID,

e ACID

O O O O

ndreas R

CAP, BASE

eufer“ “Prv"nci
ples of
Surveys (CSUR) 154 1

COVer'y"’ AC .
983): 287-3{‘;‘- omputing
Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem

O

(¢]
(0]
(¢]

Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance

Consistency — data read is up to date and reflects the latest write

Availability — every request receives a response

Network Partition tolerance — when data is distributed over multiple systems (or multiple partitions), the database works even if

messaging between systems fails Brewer "quves’r,yie\s.
Fox, Armando. and Eric A. rs,“ proceedings of the

and scalable yolerant Sysﬁ:’: Topics i Operatifd

on
Seventh W°"§§?ffms. TEEE, 1999-

ACID,

e ACID

O O O O

ndreas R

CAP, BASE

eU‘f‘er“ “Prv"nci
ples of
Surveys (CSUR) 15 4 (1

COVer'y"’ AC .
983): 287-31A; omputing
Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem

O

(¢]
(0]
(¢]

e BASE

O O O O

Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance
Consistency — data read is up to date and reflects the latest write
Availability — every request receives a response

messaging between systems fails , vest, yie\d.
ando, and Eric A. Brewe!';r'c;c‘;‘zzﬁngs of the
Fox, Armar t systems. erating
toleran sin Op
Accept that reaching consistency may take time, accept partial failures and scc\ab\eWor‘kshop on Hot T01%'S9
Basically Available — distribute data and accept failures — at least some users will get dat:Sevent 5ystems EE,
Soft state — state information can be lost e.g. in system crashes or with network issues s
Eventually consistent — data will be consistent at some point in time itio database>:
- r Yic
. ma
e b ad o drd 55.

id Alternd’ nle e
. Dan "BASE A E 0o °V°‘h\fgﬁ\:% 3 (2008) 4°
H ' : S E) N u

Pr\’rc:\fc ding 50 i»f(;o'\rr\\ \sco\ oty AC

ndreas R

ACID, CAP, BASE Haerder

eU‘f‘er“ “Prv"nci
ples of
Surveys (CSUR) 154 1

cover'y,” AC

M .
e ACID 983): 2 87.317 computing

o Database transaction properties for guaranteeing data consistency

Atomicity — each transaction (a set of database operations) must complete fully or not complete at all

Consistency — each transaction preserves the consistency of the database

Isolation — each transaction must be hidden from other transactions running in parallel

Durability — once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent
system malfunctions

e CAP Theorem

o Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance

o Consistency — data read is up to date and reflects the latest write

o Availability — every request receives a response

o Network Partition tolerance — when data is distributed over multiple systems (or multiple partitions), the database works even if
messaging between systems fails vHarvest, yie\d.

O O O O

e BASE pox, Armando, W ETC Lo o proceedings Bl
! tolera ics in
o Accept that reaching consistency may take time, accept partial failures and 5C°|°k;]\e{/vork5hop on Hot T01%'S9
o Basically Available — distribute data and accept failures — at least some users will get dat:Sevent 5ystem5. TEEE, ’
o Soft state — state information can be lost e.g. in system crashes or with network issues s
o Eventually consistent — data will be consistent at some point in time itio dcTO'?"‘se '
4 A ernative: I“‘:\\ecd" d omcg%c
e Ql . — .
Event-Driven Architec 1BASE: AN AC for cvci\ﬂb‘\\‘l)g_\: 6.3 (2008) 48

ture Suggested as q way to

infor
M users when state hqs become consistent

trading me,i’rs in scalability
e

improv

BASE"
prirchett, D% e S'SW\“CY- v ACMQ

About CAP Theorem...

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

o Orisit?

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

o Orisit?

o Network partitions highly unlikely (given proper
infrastructure) — other problems can also happen (e.g.
broken hardware) — one question is how to handle these.

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infog.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

o Orisit?

o Network partitions highly unlikely (given proper
infrastructure) — other problems can also happen (e.g.
broken hardware) — one question is how to handle these.

o Another question is how to mitigate network partitions.

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infog.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

o Orisit?

o Network partitions highly unlikely (given proper
infrastructure) — other problems can also happen (e.g.
broken hardware) — one question is how to handle these.

o Another question is how to mitigate network partitions.

e In practice, the big question is “how to achieve
effectively CA” in large systems.

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infog.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

About CAP Theorem...

e Network partitions do happen every now and then,
so the choice is between AP and CP

o Orisit?

o Network partitions highly unlikely (given proper
infrastructure) — other problems can also happen (e.g.
broken hardware) — one question is how to handle these.

o Another question is how to mitigate network partitions.

e In practice, the big question is “how to achieve
effectively CA” in large systems.

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infog.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

Practical database scaling

Practical database scaling
e Caching query results
e [Effective indexing

e Read replication and sharding

Practic
al database scaling
Y when data

sh cache onl

esults, flu
fewer databa

Cache query "
anges —

e Cachi
ching query results <—
in database ¢
e [Effective indexing

. :
Read replication and sharding

Practical database scaling

nly when data

sh cache 0 :

sults, flu
esu fewer databa

Cache query ’
ges —

e Caching query results <— in database chan
Works when #reads > Hwrites

e [Effective indexing

e Read replication and sharding

Practical database scaling

g, flush cache only when dafa

X)
Cache query resul ., fewer database queries

e Caching query results <— ' database change
Works when #reads > Hwrites

o Effective indexing < Have q
uery indexes i

: n
(index looky place faster queries

e Read replication and sharding s vs Table scans)

Practical database scaling

g, flush cache only when dafa

X)
Cache query resul ., fewer database queries

e Caching query results <— ' database change
Works when #reads > Hwrites

o Effective indexing < Have q
uery indexes i

: n
(index looky place faster queries

e Read replication and sharding s vs Table scans)

Read replication and sharding

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or
more servers

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or
more servers

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or

more servers
o Consistency in place
o Queries that require data from multiple servers can be slower
o On the other hand, queries requiring data from a single server can be (in some
cases) faster

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,

both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or

more servers
o Consistency in place
o Queries that require data from multiple servers can be slower
o On the other hand, queries requiring data from a single server can be (in some
cases) faster

e Possibility to also do both replication and sharding

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or
more servers
o Consistency in place
o Queries that require data from multiple servers can be slower

o On the other hand, queries requiring data from a single server can be (in some
cases) faster

e Possibility to also do both replication and sharding

\

—

T

ab ... kl
ab ... kl

\{
\
—{tfu.

A

mn...
mn...

Read replication and sharding

e Two ways to distribute database data: (1) data replication, (2) data
sharding

e Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data
o Higher availability
o To achieve consistency, data needs to be updated between servers
o Read replication: one database dedicated for handling writes, others for reads

e Data sharding: Data divided into shards that are stored in two or

more servers
o Consistency in place
o Queries that require data from multiple servers can be slower
o On the other hand, queries requiring data from a single server can be (in some
cases) faster

e Possibility to also do both replication and sharding

-

-

P 4Y 7

\J—/l/\.l./

~ |

\
mn

Updating data between servers

Updating data between servers

e Using consensus protocols (often Paxos) for
updating distributed data (also Raft, EPaxos, ...)

Updating data between servers

e Using consensus protocols (often Paxos) for

updating distributed data (also Raft, EPaxos, ...)

Van Renesse, R., & Altinbuken, D. (2015). Paxos m?d3e6moderately
complex. ACM Computing Surveys (CSUR), 47(3), 1-36.

Build @
. sing Paxos to
Marandi, P. J., Primi, M., Schiper, N., & Pedone, F. \.Using

o1
2010, June). Ring Paxos: A igh-throughiput &35 Reo, J., SNEKIt: B2 1 gy Available D2
(2010, : 10 |IEEE/IFIP International ol Consistent ent
broadcast protocol. In 20 Scalable, \/ DB Endow
Crgre\‘ference on Dependable Systems & Networks Broceedings of the
(DSN).

Ongaro, D., & Ousterhout, J. (2014). In search of an

understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (Usenix ATC 14).

elc...

Updating data between servers

e Using consensus protocols (often Paxos) for

updating distributed data (also Raft, EPaxos, ...)

Van Renesse, R., & Altinbuken, D. (2015). Paxos m?d3e6moderately
complex. ACM Computing Surveys (CSUR), 47(3), 1-36.

; to Build @
. . Using Paxos
Marandi, P. J., Primi, M., Schiper, N., & Pedone, F \

2011
i i i J., & Tata, S.(. tastore.
2010, June). Ring Paxos. A high-throughput 210’ Rao, J., Shekita. = ¢ and Highly Available D2
(cast ré)tocol In 2010 IEEE/IFIP International Scalable, Consistent, OB Endow ment.
t();roafd C:f\cz on Debendable Systems & Networks proceedings of the VL
onfer
(DSN).

Ongaro, D., & Ousterhout, J. (2014). In search of an

understandable consensus algorithm. In 2014 USENIX
Moraruy, |, Andersen,

D.G. &K Annual Technical Conference (Usenix ATC 14).
more con : el aminsky, M. (201 .
Twenty_F 232?2‘8 IN egalitarian parliaments. lr(l Pro%eNgyember)' There is

CM Symposium on Operating Syste?n Ings of the

elc...

Kubernetes

Kubernetes

Borg, Omega, and Kubernetes — https://dl.acm.org/doi/10.1145/2890784

Kubernetes

e Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

Borg, Omega, and Kubernetes — https://dl.acm.org/doi/10.1145/2890784

Kubernetes

e Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

e “Kubernetes [...] is an open-source system for automating deployment,
scaling, and management of containerized applications.” — Kubernetes.io

Borg, Omega, and Kubernetes — https://dl.acm.org/doi/10.1145/2890784

Kubernetes

e Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

e “Kubernetes [...] is an open-source system for automating deployment,
scaling, and management of containerized applications.” — Kubernetes.io

e Key terminology:

o Container: an image containing software and its dependencies (hello Docker!)
Pod: a set of running containers

O
o Node: a (virtual) machine with functionality needed to run pods
o Cluster: a group (n => 1) of nodes

Borg, Omega, and Kubernetes — https://dl.acm.org/doi/10.1145/2890784

Kubernetes

Kubernetes

e Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but...

Kubernetes

e Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but...

e For learning purposes, there’s multiple ways to go

Minikube — https://minikube.sigs.k8s.io/

MicroK8s — https://microk8s.io/

K3s — https://k3s.io/ and K3D — https://k3d.io/ (for running K3s in Docker)
Kind — https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)

O

o O O O

https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/

Kubernetes

e Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but...

e For learning purposes, there’s multiple ways to go

Minikube — https://minikube.sigs.k8s.io/

MicroK8s — https://microk8s.io/

K3s — https://k3s.io/ and K3D — https://k3d.io/ (for running K3s in Docker)
Kind — https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)

O

o O O O

Check out also https://kubernetes.io/docs/tutorials/kubernetes-basics/

https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/

Minikube demo

https://kubernetes.io/docs/tutorials/hello-minikube/

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/

Minikube demo — minikube and kubectl already installed

° Start minikube

o minikube start
e Allow using local docker images in minikube
(¢} eval $(minikube -p minikube docker-env)
e Build a Docker image (In a folder with Dockerfile)
o minikube image build -t my-app-image .

o For the present demo, we built a web app that exposes port 7777
e Open minikube dashboard (separate terminal)
o minikube dashboard
e Create deployment
o kubectl create deployment my-kube-app --image=my-app-image
e Change image pull policy to pull from local (well, to not pull from global)
o Adjust deployment config “imagePullPolicy: Always” 10 “imagePullPolicy: Never”
e Expose pod using a load balancer
o Create a tunnel (as root, separate terminal):
minikube tunnel
o Create a load balancer service for our app:
kubectl expose deployment my-kube-app --type=LoadBalancer —--port=7777
e Find load balancer (external) IP:
o kubectl get svc
e Access server at port :)

10.96.253.86

Requested path /hello-world

Minikube demo — minikube and kubectl already installed

e Updating deployed image
o Update contents of docker image and rebuild it
@ Remove a pod — you’ll notice that the pod will be redeployed — latest image deployed
e Scaling up (by creating replicas)
o Show details (find app name)
| kubectl get all
o Scale the deployment to three replicas
| kubectl scale deployment.apps/my-kube-app --replicas=3

e Scaling automatically
o Enable metrics server (checking metrics for scaling)
[minikube addons enable metrics-server
o Atleast 1 replica, at most 5 replicas, scale up if CPU load is over 25%
| kubectl autoscale deployment.apps/my-kube-app --min=1 --max=5 --cpu-percent=25
o Might need some config trickery to get working locally, e.g. running with
[minikube start --extra-config=kubelet.housekeeping-interval=10s
o And setting resource limits for container config (to allow counting of CPU usage) ...

125~ spec:

126 ~ containers:

127 ~ - name: my-app-image
128 image: my-app-image
129~ resources:

130 ~ limits:

131 cpu: 1

Minikube demo — minikube and kubectl already installed

e Normally configuration through config files; as an example format, see
0 kubectl get deployment -o my-kube-app -o yaml

e Deployment
O kubectl apply -f my-kube-app-deployment.yaml

Kubernetes and databases?

e Replication and sharding can take some effort to setup — in practice, there are
several companies offering scalable databases as a service

e However, pretty much all databases can be used with Kubernetes
o Some have ready bundles with replication out of box (see e.g. https://www.kubegres.io/)
o Others have tutorials to get started (see e.g.
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/)

https://www.kubegres.io/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/

Load and stress testing

Load and stress testing

Load and stress testing

e Previously looked into performance testing

o What is the performance of the application? How fast do the different endpoints respond to
requests?

Load and stress testing

e Previously looked into performance testing

o What is the performance of the application? How fast do the different endpoints respond to
requests?

e There are other types of testing approaches

o Load testing: testing that the application can handle the expected load
o Stress testing: testing how the application fares in extreme conditions

Load and stress testing

e Previously looked into performance testing

o What is the performance of the application? How fast do the different endpoints respond to
requests?

“ The \.\5\—\0‘\ dOY

/

e There are other types of testing approaches

o Load testing: testing that the application can handle the expected load
o Stress testing: testing how the application fares in extreme conditions

Load and stress testing

e Previously looked into performance testing

o What is the performance of the application? How fast do the different endpoints respond to
requests?

: *The usua! day
e There are other types of testing approaches _—
o Load testing: testing that the application can handle the expected load

o Stress testing: testing how the application fares in extreme conditions \"BI ‘
ac fr"dayll

Load testing - k6

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

e [Expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors

import http from "k6/http";
import { sleep } from 'k6';

Load testing - k6

export options = {
stages: [

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

{ duration: "30s", target: 25 },

{ duration: "Im", target: 100 },

{ duration: "Im", target: 50 },
1,

e Expectations: thresholds: {
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default () {
http.get ("my-address") ;
sleep(l);

}

; import http from "k6/http";
Typically tests are run over

_ a longer time period
Load testing - k6 2

import { sleep } from 'k6';

export options = {
stages: [

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

{ duration: "30s", target: 25 },

{ duration: "Im", target: 100 },

{ duration: "Im", target: 50 },
1,

e Expectations: thresholds: {
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default () {
http.get ("my-address") ;
sleep(l);

}

; import http from "k6/http";
Typically tests are run over

a longer time period

Load testing - k6

import { sleep } from 'k6';

export options = {
stages: [

e The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

{ duration: "30s", target: 25 },

{ duration: "Im", target: 100 },

{ duration: "Im", target: 50 },
1,

e Expectations: thresholds: {
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default 0 |
Can and shoy|q test out most

impo . http.get ("my-address") ;
Portant endpoints ang yse cases

]

sleep(l);
}

Stress testing - k6

Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

Same expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors

import http from "k6/http";
import { sleep } from 'k6';

Stress testing - k6

export options = {
stages: [
e Not so usual day: there are some (dQuration: "2m" . 2500)

2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

{ duration: "5m", : 10000 1},
{ duration: "2m", : 500 1},

1,

e Same expectations: thresholelss |
o 99.9% of the requests should be http req duration: ["p(99.9)<300"],
handled in under 300 milliseconds and R
o less than 0.1% of the requests should
have errors

http req failed: ["rate<0.001"]

export default () {
http.get ("my-address") ;
sleep(l);

}

Stress testing - k6

e Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

e Same expectations:
o 99.9% of the requests should be
handled in under 300 milliseconds and
o less than 0.1% of the requests should
have errors

Stress testi
computer? Cons
such as k6, s

ng from q single

idep gloud Services
Upervisor, etc ..

import http from "k6/http";
import { sleep } from 'k6';

export options = {
stages: [
{ duration: "2m", target:
{ duration: "5m", target:
{ duration: "2m", target:
1,
thresholds: {
http req duration: ["p(99.

http req failed: ["rate<O.

export default () {
http.get ("my-address") ;
sleep(l);

}

2500 1},
10000 1},
500 1},

9)<300"7,
001"]

