
Designing and Building
Scalable Web Applications

Lecture 5 / 21.11.2022

The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

scratching today

scratching today

Agenda

● Server-side architectural patterns continued
● Data and scalability
● Kubernetes
● Load and stress testing

Server-side Architectural Patterns

● Event-driven architecture
● Microkernel / plugin architecture
● Space-based architecture

Event-driven Architecture

● When the state of an application changes (i.e. an
event happens), information about the change is
published

● Typically realized using a publish / subscribe
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

○ Server (publisher) defines available topics. When new
data arrives (is produced) for a topic, data is sent to all
clients subscribed to the topic

● Needs a message broker (a service for passing
and storing messages): Plenty of existing
platforms (e.g. Kafka)

Producer

Broker

Consumer Consumer

Event-driven Architecture

● When the state of an application changes (i.e. an
event happens), information about the change is
published

● Typically realized using a publish / subscribe
(Pub/Sub) pattern

○ Client (subscriber) subscribes to one or more topics of
interest by making a request to the server

○ Server (publisher) defines available topics. When new
data arrives (is produced) for a topic, data is sent to all
clients subscribed to the topic

● Needs a message broker (a service for passing
and storing messages): Plenty of existing
platforms (e.g. Kafka)

Producer

Broker

Consumer Consumer

Check out also Pipes and

Filters pattern

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

CorePlugin

Plugin

Plugin

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

● Idea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, …)

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

CorePlugin

Plugin

Plugin

Are Virtual Machine Monitors Microkernels Done Right? –

https://www.usenix.org/legacy/event/hotos05/final_papers_backup/hand/hand_html/index.html

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

● Idea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, …)

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

Are Virtual Machine Monitors Microkernels Done Right? –

https://www.usenix.org/legacy/event/hotos05/final_papers_backup/hand/hand_html/index.html

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

● Idea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, …)

Microkernel / plugin architecture

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

Microkernel / Virtual Machine Monitor

Hardware

Guest OS

Apps

Guest OS

Apps

Guest OS

Apps

Are Virtual Machine Monitors Microkernels Done Right? –

https://www.usenix.org/legacy/event/hotos05/final_papers_backup/hand/hand_html/index.html

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

● Idea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, …)

Microkernel / plugin architecture

Are Virtual Machine Monitors Microkernels Done Right? –

https://www.usenix.org/legacy/event/hotos05/final_papers_backup/hand/hand_html/index.html

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

Building our apps, we know that we can run them on different platforms

Microkernel / Virtual Machine Monitor

Hardware

Guest OS

Apps

Guest OS

Apps

Guest OS

Apps

● Origins decades ago (first works in 1960s): evolving
hardware, new devices, and so on. Drivers etc
traditionally included into a (monolithic) operating
system kernel

○ Objective: Implement drivers etc as user-space programs
instead, keeping a small core kernel

○ A small core kernel could be easier to maintain and port to
new platforms (architectures)

○ Porting the small kernel to new architectures would allow
reusing existing user-space programs on new those ports
with minimal effort

● Idea currently present in virtual machine monitors,
virtual machines, and containers (e.g. Linux
containers, Docker, …)

Microkernel / plugin architecture

Are Virtual Machine Monitors Microkernels Done Right? –

https://www.usenix.org/legacy/event/hotos05/final_papers_backup/hand/hand_html/index.html

Heiser, G. and Elphinstone, K., 2016. L4 microkernels: The lessons from 20 years of research and deployment. ACM Transactions on Computer Systems (TOCS), 34(1), pp.1-29.

not part of

the kernel

Present also e.g. in browsers, IDEs, etc (“plugin architecture”)

Building our apps, we know that we can run them on different platforms

Microkernel / Virtual Machine Monitor

Hardware

Guest OS

Apps

Guest OS

Apps

Guest OS

Apps

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit Processing unit

Virtualized middleware

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Processing unit Processing unit

Virtualized middleware

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

No requests..(observed e.g. with MAPE loop)
Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

No requests..(observed e.g. with MAPE loop)
Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

No requests..(observed e.g. with MAPE loop)
Request

● Origins: tuple space and distributed shared memory
(memory architecture allowing the use of separated
memory units through a single address space)

● Key components: processing units and virtualized
middleware

● Processing unit(s) contain application code, data
persistence functionality, data replication functionality

● Virtualized middleware used to direct requests to
processing units, to replicate data between processing
units, to start and stop processing units based on
demand, and to (potentially) distribute processing if
the application has been divided into multiple
components

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Application code

Data persistence

Data replication

Processing unit

Virtualized middleware

Messaging
Grid

Data
Grid

Deployment
Grid

Processing
Grid

Grid: potentially multiple

connected computers

used for handling a task

Data changed!

No requests..(observed e.g. with MAPE loop)
Request

MAPE loop: Monitor, Analyze, Plan, Execute

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Requests can be directed to any processing units →
data must be up to date between processing units

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Requests can be directed to any processing units →
data must be up to date between processing units

● Data grid responsible for maintaining up-to-date data
in each processing unit through their data replication
engines (but, data replication engines can and also
interact with each others)

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Requests can be directed to any processing units →
data must be up to date between processing units

● Data grid responsible for maintaining up-to-date data
in each processing unit through their data replication
engines (but, data replication engines can and also
interact with each others)

● Applications can also be divided into further
processing units (~microservices) → processing grid
takes some responsibility of sharing requests to
correct processing units

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

● Requests can be directed to any processing units →
data must be up to date between processing units

● Data grid responsible for maintaining up-to-date data
in each processing unit through their data replication
engines (but, data replication engines can and also
interact with each others)

● Applications can also be divided into further
processing units (~microservices) → processing grid
takes some responsibility of sharing requests to
correct processing units

Space-based architecture

Software Architecture Patterns Chapter 5. Space-Based Architecture:
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch05.html

Designing a Scalable Twitter (2009):

https://natishalom.typepad.com/nati_shaloms_blog/20

09/04/writing-your-own-scalable-twitter.html

The Case for Shared Nothing (1985): https://dsf.berkeley.edu/papers/hpts85-nothing.pdf

See also…

Data and Scalability

Data as a bottleneck

● Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

● Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

● Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

● Horizontal scalability = scaling out =
increasing number of servers

Data as a bottleneck

● Horizontal scalability = scaling out =
increasing number of servers

● Need to do something with database or
it cannot handle the load

ACID, CAP, BASE

ACID, CAP, BASE

● ACID
○ Database transaction properties for guaranteeing data consistency
○ Atomicity – each transaction (a set of database operations) must complete fully or not complete at all
○ Consistency – each transaction preserves the consistency of the database
○ Isolation – each transaction must be hidden from other transactions running in parallel
○ Durability – once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent

system malfunctions

Haerder, Theo, and Andreas Reuter. "Principles of
transaction-oriented database recovery." ACM computing

surveys (CSUR) 15.4 (1983): 287-317.

ACID, CAP, BASE

● ACID
○ Database transaction properties for guaranteeing data consistency
○ Atomicity – each transaction (a set of database operations) must complete fully or not complete at all
○ Consistency – each transaction preserves the consistency of the database
○ Isolation – each transaction must be hidden from other transactions running in parallel
○ Durability – once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent

system malfunctions

● CAP Theorem
○ Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance
○ Consistency – data read is up to date and reflects the latest write
○ Availability – every request receives a response
○ Network Partition tolerance – when data is distributed over multiple systems (or multiple partitions), the database works even if

messaging between systems fails

Fox, Armando, and Eric A. Brewer. "Harvest, yield,

and scalable tolerant systems." Proceedings of the

Seventh Workshop on Hot Topics in Operating

Systems. IEEE, 1999.

Haerder, Theo, and Andreas Reuter. "Principles of
transaction-oriented database recovery." ACM computing

surveys (CSUR) 15.4 (1983): 287-317.

ACID, CAP, BASE

● ACID
○ Database transaction properties for guaranteeing data consistency
○ Atomicity – each transaction (a set of database operations) must complete fully or not complete at all
○ Consistency – each transaction preserves the consistency of the database
○ Isolation – each transaction must be hidden from other transactions running in parallel
○ Durability – once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent

system malfunctions

● CAP Theorem
○ Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance
○ Consistency – data read is up to date and reflects the latest write
○ Availability – every request receives a response
○ Network Partition tolerance – when data is distributed over multiple systems (or multiple partitions), the database works even if

messaging between systems fails

● BASE
○ Accept that reaching consistency may take time, accept partial failures
○ Basically Available – distribute data and accept failures → at least some users will get data
○ Soft state – state information can be lost e.g. in system crashes or with network issues
○ Eventually consistent – data will be consistent at some point in time

Fox, Armando, and Eric A. Brewer. "Harvest, yield,

and scalable tolerant systems." Proceedings of the

Seventh Workshop on Hot Topics in Operating

Systems. IEEE, 1999.

Haerder, Theo, and Andreas Reuter. "Principles of
transaction-oriented database recovery." ACM computing

surveys (CSUR) 15.4 (1983): 287-317.

Pritchett, Dan. "BASE: An Acid Alternative: In partitioned databases,

trading some consistency for availability can lead to dramatic

improvements in scalability." ACM Queue 6.3 (2008): 48-55.

ACID, CAP, BASE

● ACID
○ Database transaction properties for guaranteeing data consistency
○ Atomicity – each transaction (a set of database operations) must complete fully or not complete at all
○ Consistency – each transaction preserves the consistency of the database
○ Isolation – each transaction must be hidden from other transactions running in parallel
○ Durability – once a transaction has been completed, the system must guarantee that the transaction outcomes persist any subsequent

system malfunctions

● CAP Theorem
○ Any distributed data store can have at most two out of (1) Consistency, (2) Availability, and (3) Partition tolerance
○ Consistency – data read is up to date and reflects the latest write
○ Availability – every request receives a response
○ Network Partition tolerance – when data is distributed over multiple systems (or multiple partitions), the database works even if

messaging between systems fails

● BASE
○ Accept that reaching consistency may take time, accept partial failures
○ Basically Available – distribute data and accept failures → at least some users will get data
○ Soft state – state information can be lost e.g. in system crashes or with network issues
○ Eventually consistent – data will be consistent at some point in time

Fox, Armando, and Eric A. Brewer. "Harvest, yield,

and scalable tolerant systems." Proceedings of the

Seventh Workshop on Hot Topics in Operating

Systems. IEEE, 1999.

Haerder, Theo, and Andreas Reuter. "Principles of
transaction-oriented database recovery." ACM computing

surveys (CSUR) 15.4 (1983): 287-317.

Pritchett, Dan. "BASE: An Acid Alternative: In partitioned databases,

trading some consistency for availability can lead to dramatic

improvements in scalability." ACM Queue 6.3 (2008): 48-55.
Event-Driven Architecture suggested as a way to inform users when state has become consistent

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

○ Or is it?

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

○ Or is it?

○ Network partitions highly unlikely (given proper
infrastructure) – other problems can also happen (e.g.
broken hardware) – one question is how to handle these.

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

○ Or is it?

○ Network partitions highly unlikely (given proper
infrastructure) – other problems can also happen (e.g.
broken hardware) – one question is how to handle these.

○ Another question is how to mitigate network partitions.

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

○ Or is it?

○ Network partitions highly unlikely (given proper
infrastructure) – other problems can also happen (e.g.
broken hardware) – one question is how to handle these.

○ Another question is how to mitigate network partitions.

● In practice, the big question is “how to achieve
effectively CA” in large systems.

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

● Network partitions do happen every now and then,
so the choice is between AP and CP

○ Or is it?

○ Network partitions highly unlikely (given proper
infrastructure) – other problems can also happen (e.g.
broken hardware) – one question is how to handle these.

○ Another question is how to mitigate network partitions.

● In practice, the big question is “how to achieve
effectively CA” in large systems.

About CAP Theorem…

CAP Twelve Years Later: How the "Rules" Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

E.g. Google Spanner:

Brewer, E., 2017. Spanner,

TrueTime and the CAP theorem.

Practical database scaling

Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data

in database changes → fewer database queries

Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data

in database changes → fewer database queries

Works when #reads >> #writes

Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data

in database changes → fewer database queries

Works when #reads >> #writes

Have query indexes in place → faster queries (index lookups vs table scans)

Practical database scaling

● Caching query results

● Effective indexing

● Read replication and sharding

Cache query results, flush cache only when data

in database changes → fewer database queries

Works when #reads >> #writes

Have query indexes in place → faster queries (index lookups vs table scans)

…

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

Read replication and sharding

writeread

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

Read replication and sharding

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

Read replication and sharding

ab … kl mn…

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

○ Consistency in place
○ Queries that require data from multiple servers can be slower
○ On the other hand, queries requiring data from a single server can be (in some

cases) faster

Read replication and sharding

ab … kl mn…

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

○ Consistency in place
○ Queries that require data from multiple servers can be slower
○ On the other hand, queries requiring data from a single server can be (in some

cases) faster

● Possibility to also do both replication and sharding

Read replication and sharding

ab … kl mn…

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

○ Consistency in place
○ Queries that require data from multiple servers can be slower
○ On the other hand, queries requiring data from a single server can be (in some

cases) faster

● Possibility to also do both replication and sharding

Read replication and sharding

ab … kl mn…
ab … kl mn…

● Two ways to distribute database data: (1) data replication, (2) data
sharding

● Data replication: entire data is replicated over two or more servers,
both maintaining copies of the data

○ Higher availability
○ To achieve consistency, data needs to be updated between servers
○ Read replication: one database dedicated for handling writes, others for reads

● Data sharding: Data divided into shards that are stored in two or
more servers

○ Consistency in place
○ Queries that require data from multiple servers can be slower
○ On the other hand, queries requiring data from a single server can be (in some

cases) faster

● Possibility to also do both replication and sharding

Read replication and sharding

ab … kl mn…
ab … kl mn…Also fragmentation – dividing data into fragments in a database for

performance reasons; e.g. storing log data into weekly fragments
which would allow faster for specific timeframes.

Updating data between servers

● Using consensus protocols (often Paxos) for
updating distributed data (also Raft, EPaxos, …)

Updating data between servers

● Using consensus protocols (often Paxos) for
updating distributed data (also Raft, EPaxos, …)

Updating data between servers

Van Renesse, R., & Altinbuken, D. (2015). Paxos made moderately

complex. ACM Computing Surveys (CSUR), 47(3), 1-36.

Rao, J., Shekita, E. J., & Tata, S. (2011). Using Paxos to Build a

Scalable, Consistent, and Highly Available Datastore.

Proceedings of the VLDB Endowment.
Marandi, P. J., Primi, M., Schiper, N., & Pedone, F.

(2010, June). Ring Paxos: A high-throughput atomic

broadcast protocol. In 2010 IEEE/IFIP International

Conference on Dependable Systems & Networks

(DSN).
Ongaro, D., & Ousterhout, J. (2014). In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (Usenix ATC 14).Moraru, I., Andersen, D. G., & Kaminsky, M. (2013, November). There is

more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. etc…

● Using consensus protocols (often Paxos) for
updating distributed data (also Raft, EPaxos, …)

Updating data between servers

Van Renesse, R., & Altinbuken, D. (2015). Paxos made moderately

complex. ACM Computing Surveys (CSUR), 47(3), 1-36.

Rao, J., Shekita, E. J., & Tata, S. (2011). Using Paxos to Build a

Scalable, Consistent, and Highly Available Datastore.

Proceedings of the VLDB Endowment.
Marandi, P. J., Primi, M., Schiper, N., & Pedone, F.

(2010, June). Ring Paxos: A high-throughput atomic

broadcast protocol. In 2010 IEEE/IFIP International

Conference on Dependable Systems & Networks

(DSN).
Ongaro, D., & Ousterhout, J. (2014). In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (Usenix ATC 14).Moraru, I., Andersen, D. G., & Kaminsky, M. (2013, November). There is

more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. etc…

Not going into these...

Kubernetes

Kubernetes

Borg, Omega, and Kubernetes – https://dl.acm.org/doi/10.1145/2890784

Kubernetes

● Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

Borg, Omega, and Kubernetes – https://dl.acm.org/doi/10.1145/2890784

Kubernetes

● Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

● “Kubernetes [...] is an open-source system for automating deployment,
scaling, and management of containerized applications.” – Kubernetes.io

Borg, Omega, and Kubernetes – https://dl.acm.org/doi/10.1145/2890784

Kubernetes

● Scaling requires adjustment (of the number) of running applications and
directing traffic to the said applications

● “Kubernetes [...] is an open-source system for automating deployment,
scaling, and management of containerized applications.” – Kubernetes.io

● Key terminology:
○ Container: an image containing software and its dependencies (hello Docker!)
○ Pod: a set of running containers
○ Node: a (virtual) machine with functionality needed to run pods
○ Cluster: a group (n => 1) of nodes

Borg, Omega, and Kubernetes – https://dl.acm.org/doi/10.1145/2890784

Kubernetes

Kubernetes

● Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but…

Kubernetes

● Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but…

● For learning purposes, there’s multiple ways to go
○ Minikube – https://minikube.sigs.k8s.io/
○ MicroK8s – https://microk8s.io/
○ K3s – https://k3s.io/ and K3D – https://k3d.io/ (for running K3s in Docker)
○ Kind – https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
○ ...

https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/

Kubernetes

● Large scale deployment in practice requires a bunch of nodes (servers or
virtual machines), but…

● For learning purposes, there’s multiple ways to go
○ Minikube – https://minikube.sigs.k8s.io/
○ MicroK8s – https://microk8s.io/
○ K3s – https://k3s.io/ and K3D – https://k3d.io/ (for running K3s in Docker)
○ Kind – https://kind.sigs.k8s.io/ (running Kubernetes with Docker containers)
○ ...

Check out also https://kubernetes.io/docs/tutorials/kubernetes-basics/

https://minikube.sigs.k8s.io/
https://microk8s.io/
https://k3s.io/
https://k3d.io/
https://kind.sigs.k8s.io/

Minikube demo

https://kubernetes.io/docs/tutorials/hello-minikube/

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/

Minikube demo – minikube and kubectl already installed
● Start minikube

○ minikube start
● Allow using local docker images in minikube

○ eval $(minikube -p minikube docker-env)
● Build a Docker image (In a folder with Dockerfile)

○ minikube image build -t my-app-image .
○ For the present demo, we built a web app that exposes port 7777

● Open minikube dashboard (separate terminal)
○ minikube dashboard

● Create deployment
○ kubectl create deployment my-kube-app --image=my-app-image

● Change image pull policy to pull from local (well, to not pull from global)
○ Adjust deployment config “imagePullPolicy: Always” to “imagePullPolicy: Never”

● Expose pod using a load balancer
○ Create a tunnel (as root, separate terminal):

minikube tunnel
○ Create a load balancer service for our app:

kubectl expose deployment my-kube-app --type=LoadBalancer --port=7777
● Find load balancer (external) IP:

○ kubectl get svc
● Access server at port :)

Minikube demo – minikube and kubectl already installed

● Updating deployed image
○ Update contents of docker image and rebuild it
○ Remove a pod → you’ll notice that the pod will be redeployed → latest image deployed

● Scaling up (by creating replicas)
○ Show details (find app name)

■ kubectl get all
○ Scale the deployment to three replicas

■ kubectl scale deployment.apps/my-kube-app --replicas=3

● Scaling automatically
○ Enable metrics server (checking metrics for scaling)

■ minikube addons enable metrics-server
○ At least 1 replica, at most 5 replicas, scale up if CPU load is over 25%

■ kubectl autoscale deployment.apps/my-kube-app --min=1 --max=5 --cpu-percent=25
○ Might need some config trickery to get working locally, e.g. running with

■ minikube start --extra-config=kubelet.housekeeping-interval=10s
○ And setting resource limits for container config (to allow counting of CPU usage) …

Minikube demo – minikube and kubectl already installed

● Normally configuration through config files; as an example format, see
○ kubectl get deployment -o my-kube-app -o yaml

● Deployment
○ kubectl apply -f my-kube-app-deployment.yaml

● Replication and sharding can take some effort to setup – in practice, there are
several companies offering scalable databases as a service

● However, pretty much all databases can be used with Kubernetes
○ Some have ready bundles with replication out of box (see e.g. https://www.kubegres.io/)
○ Others have tutorials to get started (see e.g.

https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/)

Kubernetes and databases?

https://www.kubegres.io/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/deploy-replica-set/

Load and stress testing

Load and stress testing

Load and stress testing

● Previously looked into performance testing
○ What is the performance of the application? How fast do the different endpoints respond to

requests?

Load and stress testing

● Previously looked into performance testing
○ What is the performance of the application? How fast do the different endpoints respond to

requests?

● There are other types of testing approaches
○ Load testing: testing that the application can handle the expected load
○ Stress testing: testing how the application fares in extreme conditions

Load and stress testing

● Previously looked into performance testing
○ What is the performance of the application? How fast do the different endpoints respond to

requests?

● There are other types of testing approaches
○ Load testing: testing that the application can handle the expected load
○ Stress testing: testing how the application fares in extreme conditions

“The usual day”

Load and stress testing

● Previously looked into performance testing
○ What is the performance of the application? How fast do the different endpoints respond to

requests?

● There are other types of testing approaches
○ Load testing: testing that the application can handle the expected load
○ Stress testing: testing how the application fares in extreme conditions “Black friday”

“The usual day”

Load testing - k6

● The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

● Expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

Load testing - k6

● The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

● Expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

 { duration: "30s", target: 25 },

 { duration: "1m", target: 100 },

 { duration: "1m", target: 50 },

],

 thresholds: {

 http_req_duration: ["p(99.9)<300"],

 http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Load testing - k6

● The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

● Expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

 { duration: "30s", target: 25 },

 { duration: "1m", target: 100 },

 { duration: "1m", target: 50 },

],

 thresholds: {

 http_req_duration: ["p(99.9)<300"],

 http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Typically tests are run over a longer time period

Load testing - k6

● The usual day: there are some 25
users making one request per
second, growing up to 100 users,
and then declining to 50 users.

● Expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

 { duration: "30s", target: 25 },

 { duration: "1m", target: 100 },

 { duration: "1m", target: 50 },

],

 thresholds: {

 http_req_duration: ["p(99.9)<300"],

 http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Can and should test out most important endpoints and use cases

Typically tests are run over a longer time period

Stress testing - k6

● Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

● Same expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

Stress testing - k6

● Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

● Same expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

 { duration: "2m", target: 2500 },

 { duration: "5m", target: 10000 },

 { duration: "2m", target: 500 },

],

 thresholds: {

 http_req_duration: ["p(99.9)<300"],

 http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Stress testing - k6

● Not so usual day: there are some
2500 users making one request per
second, growing up to 10000 users,
and then declining to 500 users.

● Same expectations:
○ 99.9% of the requests should be

handled in under 300 milliseconds and
○ less than 0.1% of the requests should

have errors

import http from "k6/http";

import { sleep } from 'k6';

export const options = {

 stages: [

 { duration: "2m", target: 2500 },

 { duration: "5m", target: 10000 },

 { duration: "2m", target: 500 },

],

 thresholds: {

 http_req_duration: ["p(99.9)<300"],

 http_req_failed: ["rate<0.001"]

 },

};

export default function () {

 http.get("my-address");

 sleep(1);

}

Stress testing from a single computer? Consider cloud services such as k6, supervisor, etc …

