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Intended Learning Outcomes

After this lecture, you will be able to:
@ explain the relationship between the dynamic model,
measurement model, and the filtering methodology,

@ describe and employ the Kalman filter for linear
state-space models.
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Recap (1/3)

@ The discretization of the linear ODE model
x(t) = Ax(t) + Byu(t)

Xp = FnXp_1 4+ LoUp_q
tn
Fp2 ghltnmto) 1, 2 / erl=0B,dt
th—1

@ The discretization of the linear SDE model
x(t) = Ax(t) + Byw(t)

is
Xn = FnXp_1 + dn, dn ~ N(0,Qp)
"oA T AT(S
Q, = / efl-"B,, ¥, Bl e (""dr
tn—1
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Recap (2/3)

@ Nonlinear dynamic model:
x(t) = f(x(t)) + Bw(x(t))w(t)
@ Discretization of the linearized model:

x(t) = f(x(t)) + Bww(t)
~ f(Xp—1) + Ax(X(t) — Xp—1) + Buw(?)
¥

tn
Xn = Xp_1 +/ eM=0Ddtf(x,_1) + qn
th—1
with

tn
An ~ N(0,Qp), Qo = / A (m)B, ¥, Bl A )dr

th—1

— ———————————
Aalto University Filtering Problem and Kalman Filtering
School of Electrical Simo Sérkka
Engineering 6/29



Recap (3/3)

@ Euler-Maruyama discretization:

X(t) = f(x(1)) + Bw(x(t))w(t)
4
Xp = Xp_1 + Atf(Xp_1) +dn

with
dn ~ N(0,Qp),
T
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Recall: Car Localization with Sequential Least

Squares

@ Goal: Estimate the position x =

o

@ Measurements: Noisy position measurements n=1,2,...:

X2

Yn = GnXp+ 1

@ WLS
SLS 1
° L

Qe

X1
X:
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The Filtering Approach

@ We can also allow the target to move between the
measurements.

e This movement can be described by a stochastic dynamic
model.
@ The measurement can be handled as in sequential least
squares.
@ Filter iterates the following two steps for all points in time:

@ Prediction: Predict the current state using the dynamic
model (also called time update)

@ Measurement update: Estimate the current state using the
prediction and the new measurement
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The Filtering Approach: Prediction

@ Objective: Predict the current state x,, at t, given all
previous data Y1.,—1 = {Y1,¥2,...,¥n_1}

@ Done by solving the dynamic model equation starting from
the mean and covariance at the previous step.

@ Notation:

® X, ,—1: Denotes the predicted value of x, given the
measurements Yi.,—1 = {Y1,¥2,.--,Yn-1}
e P,,_1: Denotes the covariance of the predicted x,

@ Prediction adds uncertainty
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The Filtering Approach: Measurement Update

@ Objective: Estimate the current value of x,, given the new
measurement y,, taking the prediction into account

@ Done by solving the regularized least squares problem with
the predicted result as the regularization term.

@ Notation:

® X, ,: Denotes the estimated value at t,, given the
measurements yi., = {y1,¥2,...,Yn}
e P,,: Denotes the covariance at t,

@ The measurement update reduces uncertainty
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Linear State-Space Model
@ Linear state-space model:

x(t) = Ax(t) + Bw(t)
Yn = GpXx(ty) + rn
@ Discrete-time equivalent:
Xp = FpXp 1 +dn
Yn = GnXp+ 1y
with
E{an} =0, Cov{dn} = Qu,
E{r,} =0, Cov{rp} =R
@ Initial conditions:
E{Xo} =mq
Cov{xp} = Py
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Linear Model: Prediction (1/2)
@ Linear dynamic model:
Xp =FnXp_1+dn,  Cov{qn} = Qp
@ Given:

E{Xn—1 | Y1:n—1} = Xn_1n—1,
Cov{Xn_1 | Y1:n-1} = Pp_1jn—1-

@ Predicted mean:

)A(n|n—1 =E{Xn | Y1:n-1}

= FnX;_4 [n—1
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Linear Model: Prediction (2/2)

@ Linear dynamic model:
Xn=FnXp_1+dn, Cov{dn} =Qp
o Given:

E{Xn—1 | Yt:n—1} = Xn_1jn_1,
Cov{Xp_1 | Y1:n-1} = I:,nf1|nf1-

@ Covariance:
Phin—1 = Cov{Xn | Y1:n-1}

= E{(Xn — E{Xn | Y1:n—1})(Xn — E{Xn | Y1:n—1 )" | Y1:n—1}
= FnPnf1|nf1 F-rl; +Qp
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Linear Model: Measurement Update (1/3)

@ Assume that the prediction yields the prior knowledge
)A(n|n—1a Pn\n—1

@ y, provides the new information of the state

@ We can use regularized least squares to estimate x,,:

JreLs(Xn) = (Yn — ann)TR_1 (Yn — GnXp)
+ (Xp — xn\n 1) Pn|n 1( ﬁn\n—1)

and solve

Xpjp = argmin JreLs(Xn)
Xn
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Linear Model: Measurement Update (2/3)
@ Regularized least squares problem:

ﬁn|n = argmin (yn - Gan)TR;1 (yn - Gan)
Xn
+ (Xn - ﬁn|nf1 )TP;\L_1 (Xn - ﬁn|nf1)

@ Solution (see Lecture 3 / Chapter 3.4):

Kn= Pn|nf1G-rl;(GnPn|nf1G-rl; + Rn)q

ﬁn|n = ﬁn|nf1 + Kn(yn - an(n\nf1)
@ Covariance of X ,:
I:’n|n = I:’n|n—1 - Kn(GnPn|n—1G-r|; + RH)K;
@ K, is called the Kalman gain
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Linear Model: Measurement Update (3/3)

@ Measurement update:

Kn = Pn|n—1G-r|;(GnPn|n—1G-rl; + Rn)_1
)A(n|n = )A(n|n—1 + Kn(yn - Gn)A(n\n—1)
Pn|n = I:,n|n—1 - Kn(GnPn|n—1G; + Rn)KZ

@ It can be shown that it holds that:

E{Xn|Y1.n} = )A(n\n
Cov{Xp | Y1.n} = I:’n\n
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Linear Model: Summary
@ Prediction:

Xnin—1 = FnXn_1|n_1
Prin1 = FaPp_1jn1F} + Qp
@ Measurement update:
Kn = Ppn_1G}(GnPpjn_1G) + Rp) ™
Xnin = Xpjn—1 + Kn(Yn — GnXpjn—1)
Poin = Pajn—1 — Kn(GrnPpn_1Gf + Rp)K]

@ Initialization of the recursion:

Xojo = Mg
Pojo = Po
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The Kalman Filter

Algorithm 1 Kalman Filter

1: Initialize ﬁo‘o = My, P0|0 =Pg
2: forn=1,2,... do

3: Prediction (time update):

ﬁn|n—1 = I:n)ltn—1|n—1
T
F,n|n—1 = Fnl:"n—1|n—1 Fn +Qp

4: Measurement update:

Kn = Pn|n—1GE(GnPn\n—1Gn + Rn)_1
ﬁn|n = ﬁn\n—1 + Kn(yn - Gn)ltn|n—1)
F,n|n = F’n|n71 - Kn(GnPn\nf1Gn + Rn)Kz
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Example: Car Localization (1/3)
@ Goal: Estimate the kinematic state at each time t,
@ Dynamic model: 2D Wiener velocity model:

pX] [0 0 1 0] [pX(H)] [0 O
P _ o 00 1f|p(n], [0 0 [w1(t)]
(T lo o0 o0 of [v¥o)] T [1 o] |we(d)
wit] [0 0o of [wit) [o 1

@ Measurements: Noisy position (G, = [I 0]):
Yn = GnXp+ 1ty
@ Discrete-time linear state-space model:

Xp = FpXp 1 +dn
Yn = GnXy + 1

— B
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Example: Car Localization (2/3)
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Example: Car Localization (3/3)
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Performance Evaluation

A few questions:
@ Why not just use the measurements y, as the position
estimate (p, = yn)?
@ How should we assess the performance of the algorithm?

@ One possible criterion: The root mean squared error
(RMSE):

N
]
eRMSE = J > Rajn = Xn)T (Rnjn — Xn)
n=1
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Example: Car Localization

@ RMSE for the primitive approach (p, = yn):
ermse = 0.41

@ RMSE for Kalman filter:
ervse = 0.29

@ The prior knowledge imposed by the dynamic model
significantly improves performance!
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Measurement Update: Some Observations

@ Measurement update:

Kn= Pn|n—1G)7—(GnPn|n—1Gn +Rp)™!
ﬁn|n = )A(n|n—1 + Kn(yn - Gn)/tn|n—1)
Pn|n = I:’n|nf1 - Kn(GnPn\ann + Rn)Kz

@ Prediction of the output and covariances:

E{yn | y1:nf1} = Gnﬁn‘n_1
COV{yn | y1:n—1} = ann\nf1G)7- + Rp
COV{Xn,yn | y1:nf1} = Pn|n_1G-,|;
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Summary
@ The filtering approach iterates between two steps:
o Prediction: ﬁn—1|n—1s Pn—1|n—1 = )Iin|n_1, Pn|n—1
@ Measurement update: )A(,,‘,H, Pojn—1 = f(,,‘,,, Pan
@ The Kalman filter is the optimal filter for linear state-space
models

@ Prediction:

)A(n|n—1 = Fnﬁn—1|n—1

Pn|n71 = Fnl:’n71 [n—1 F-rl; + Qn
@ Measurement update:

Kn = Pn|n71G);-(G‘npn|nf1(?‘n + Rn)_1
)A(n\n = ﬁn|n—1 + Kn(yn - Gnﬁn\n—1)
Pn\n = |:’n|nf1 - Kn(GnPn|n71Gn + R,,)K-,I;
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