
CS-E400201 - Special Course in Computer Science
D: Modern High-performance Computing Tools

Maarit Käpylä
maarit.kapyla@aalto.fi

Hybrid computing using GPUs

mailto:maarit.kapyla@aalto.fi

Recap

Multicore processors (core==CPU)

Multi-thread processors (e.g. processors with GPUs)

The two trajectories resulting from the power wall

Lecture 5

This material

Schematic comparison

31.1 Heterogeneous parallel computing

since 2003. As of 2016, the ratio of peak !oating-point calculation throughput
between many-thread GPUs and multicore CPUs is about 10, and this ratio has been
roughly constant for the past several years. These are not necessarily application
speeds, but are merely the raw speed that the execution resources can potentially sup-
port in these chips. For more discussion of GPUs, see https://en.wikipedia.org/wiki/
Graphics_processing_unit.

Such a large performance gap between parallel and sequential execution has
amounted to a signi"cant “electrical potential” build-up, and at some point, some-
thing will have to give. We have reached that point. To date, this large performance
gap has already motivated many applications developers to move the computation-
ally intensive parts of their software to GPU for execution. Not surprisingly, these
computationally intensive parts are also the prime target of parallel programming—
when there is more work to do, there is more opportunity to divide the work among
cooperating parallel workers.

One might ask why there is such a large peak throughput gap between many-
threaded GPUs and general-purpose multicore CPUs. The answer lies in the differ-
ences in the fundamental design philosophies between the two types of processors, as
illustrated in Fig. 1.1. The design of a CPU is optimized for sequential code perfor-
mance. It makes use of sophisticated control logic to allow instructions from a single
thread to execute in parallel or even out of their sequential order while maintaining
the appearance of sequential execution. More importantly, large cache memories are
provided to reduce the instruction and data access latencies of large complex appli-
cations. Neither control logic nor cache memories contribute to the peak calculation
throughput. As of 2016, the high-end general-purpose multicore microprocessors
typically have eight or more large processor cores and many megabytes of on-chip
cache memories designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. The speed of many applications is
limited by the rate at which data can be delivered from the memory system into the
processors. Graphics chips have been operating at approximately 10x the memory
bandwidth of contemporaneously available CPU chips. A GPU must be capable of
moving extremely large amounts of data in and out of its main Dynamic Random

Control

Cache

CPU GPU

DRAM DRAM

ALU

ALU

ALU

ALU

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Optimising sequential execution Optimising parallel throughput

Adapted from [1]

Peak throughput of GPUs about 10x higher than multi-core CPUs

DRAM access speed 10x higher for GPUs (made
for gaming)

15

Speed v. Throughput
Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…

15

Speed v. Throughput
Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…

Leading idea of large-scale computation

Execute sequential parts on CPUs
and parallel parts faster on GPUs;
Communications between GPUs

using MPI

Schematic model of a GPU
Input assembler

Host

Thread execution manager

Cache Cache Cache Cache Cache Cache Cache Cache

Texture Texture Texture Texture Texture Texture TextureTexture

Load/store

Global memory

Load/storeLoad/store Load/store Load/store Load/store

FIGURE 1.2

Architecture of a CUDA-capable GPU.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Adapted from [1]

CPU (host); has its own memory, but can access global device
memory

Device
GPU

On-chip
memory

Off-chip
memory

Streaming
multiprocessor (SM)

Core, or
streaming
processor

Memory hierarchy

12

GPU Memory Hierarchy Review

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

- Memory transfers between host
and device global memory have
the highest latency (as bad as
100x the smem); to be minimized

- Access to shared memory and
registers have much lower
latency
- Registers are seen by single

threads
- Shared memory is for fast

communication between
threads in a block

- The sizes of the shared memory
and registers are very limited.

Chapter 4 of Programming parallel computers teaches you how to make efficient code
by optimizing the memory usage; please read through

https://ppc.cs.aalto.fi/ch4/v1/, …/v2 and …/v3

https://ppc.cs.aalto.fi/ch4/v1/

The GPUs in Triton

The GPUs in Triton

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications

(*)

(*)

Kepler architecture

An Overview of Kepler GK110 and GK210 Architecture
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations include 15 SMX units and six 64‐bit memory controllers.
Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

x The new SMX processor architecture

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

x Hardware support throughout the design to enable new programming model capabilities

x GK210 expands upon GK110’s on-chip resources, doubling the available register file and shared

memory capacities per SMX.

Kepler SM
• Each SM has its own control units,

registers, execution pipelines,
caches

• Many cores per SM; how many is
architecture dependent

• Special-function units (cos/sin/tan,
etc.)

• Shared memory/L1 cache
• Thousands of 32-bit registers
• Double precision units with

architecture variable ratio; in Kepler
3:1, nowadays more DPUs.

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most
powerful multiprocessor we’ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

Pascal architecture
2:1 ratio of
DPUs/FP32
cores

Programming models
• CUDA (NVIDIA)
• Radeon Open Compute (ROCm)

(AMD)
• HIP
• OpenCL
• OpenACC
• …

OpenMP

https://ppc.cs.aalto.fi/ch4/v0opencl/
For openCL examples, please refer to

CUDA Execution model
• Main program is executed by the

CPU
• CPU needs to communicate with the

GPU (Part I)
• Upload the data to the GPU

memory
• Upload program to the GPU

• Wait (or do something useful) for the
GPU to finish computations (Part 2)

• Fetch the results back from the GPU
memory (Part 3)

26 CHAPTER 2 Data parallel computing

vecAdd function returns, the subsequent statements in the main function can access
the new contents of C.

A straightforward way to execute vector addition in parallel is to modify the vec-
Add function and move its calculations to a device. The structure of such a modi!ed
vecAdd function is shown in Fig. 2.6. At the beginning of the !le, we need to add a
C preprocessor directive to include the cuda.h header !le. This !le de!nes the CUDA
API functions and built-in variables (see sidebar below) that we will be introducing
soon. Part 1 of the function allocates space in the device (GPU) memory to hold
copies of the A, B, and C vectors and copies the vectors from the host memory to the
device memory. Part 2 launches parallel execution of the actual vector addition ker-
nel on the device. Part 3 copies the sum vector C from the device memory back to the
host memory and frees the vectors in device memory.

POINTERS IN THE C LANGUAGE
The function arguments A, B, and C in Fig. 2.4 are pointers. In the C lan-
guage, a pointer can be used to access variables and data structures. While a
"oating-point variable V can be declared with:

float V;

a pointer variable P can be declared with:

float *P;

By assigning the address of V to P with the statement P=&V, we make P
“point to” V. *P becomes a synonym for V. For example U=*P assigns the value
of V to U. For another example, *P=3 changes the value of V to 3.

Part 1

CPU

Host memory

GPU
(Part 2)

Part 3

Device memory

#include <cuda.h>
…
void vecAdd(float* A, float* B, float* C, int n)
{

int size = n* sizeof(float);
float *d_A *d_B, *d_C;
…

1. // Allocate device memory for A, B, and C
// copy A and B to device memory

2. // Kernel launch code – to have the device
// to perform the actual vector addition

3. // copy C from the device memory
// Free device vectors

}

FIGURE 2.6

Outline of a revised vecAdd function that moves the work to a device.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Memory transfers between host and
device can be the bottleneck

CUDA programming model
Block

• threads that run on the same streaming multiprocessor (SM) form blocks;

• they communicate with each other through shared memory located on the SM;

Grid

• Blocks are grouped into a grid; both threads and blocks have a unique identification number

Kernel
• Is a function that gets executed in parallel on each thread;

• Are executed as a grid of thread blocks

332.5 Kernel functions and threading

Multiple-Data (SPMD) [Ata 1998] parallel programming style, a popular program-
ming style for massively parallel computing systems.5

When a program’s host code launches a kernel, the CUDA run-time system gen-
erates a grid of threads that are organized into a two-level hierarchy. Each grid is
organized as an array of thread blocks, which will be referred to as blocks for brevity.
All blocks of a grid are of the same size; each block can contain up to 1024 threads.
6 Fig. 2.11 shows an example where each block consists of 256 threads. Each thread
is represented by a curly arrow stemming from a box that is labeled with a number.
The total number of threads in each thread block is speci!ed by the host code when
a kernel is launched. The same kernel can be launched with different numbers of
threads at different parts of the host code. For a given grid, the number of threads in
a block is available in a built-in blockDim variable.

The blockDim variable is of struct type with three unsigned integer !elds: x,
y, and z, which help a programmer to organize the threads into a one-, two-, or
three-dimensional array. For a one-dimensional organization, only the x !eld will
be used. For a two-dimensional organization, x and y !elds will be used. For a three-
dimensional structure, all three !elds will be used. The choice of dimensionality for
organizing threads usually re"ects the dimensionality of the data. This makes sense
since the threads are created to process data in parallel. It is only natural that the
organization of the threads re"ects the organization of the data. In Fig. 2.11, each
thread block is organized as a one-dimensional array of threads because the data are
one-dimensional vectors. The value of the blockDim.x variable speci!es the total
number of threads in each block, which is 256 in Fig. 2.11. In general, the number of

5 Note that SPMD is not the same as SIMD (Single Instruction Multiple-Data) [Flynn 1972]. In an
SPMD system, the parallel processing units execute the same program on multiple parts of the data.
However, these processing units do not need to be executing the same instruction at the same time. In
an SIMD system, all processing units are executing the same instruction at any instant.
6 Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA ver-
sions allow only up to 512 threads in a block.

FIGURE 2.11

All threads in a grid execute the same kernel code.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Grid

How to Identify who is
who and operating on
which part of the data?

CUDA programming model
Block

• threads that run on the same streaming multiprocessor (SM) form blocks;

• they communicate with each other through shared memory located on the SM;

Grid

• Blocks are grouped into a grid; both threads and blocks have a unique identification number

Kernel
• Is a function that gets executed in parallel on each thread;

• Are executed as a grid of thread blocks

332.5 Kernel functions and threading

Multiple-Data (SPMD) [Ata 1998] parallel programming style, a popular program-
ming style for massively parallel computing systems.5

When a program’s host code launches a kernel, the CUDA run-time system gen-
erates a grid of threads that are organized into a two-level hierarchy. Each grid is
organized as an array of thread blocks, which will be referred to as blocks for brevity.
All blocks of a grid are of the same size; each block can contain up to 1024 threads.
6 Fig. 2.11 shows an example where each block consists of 256 threads. Each thread
is represented by a curly arrow stemming from a box that is labeled with a number.
The total number of threads in each thread block is speci!ed by the host code when
a kernel is launched. The same kernel can be launched with different numbers of
threads at different parts of the host code. For a given grid, the number of threads in
a block is available in a built-in blockDim variable.

The blockDim variable is of struct type with three unsigned integer !elds: x,
y, and z, which help a programmer to organize the threads into a one-, two-, or
three-dimensional array. For a one-dimensional organization, only the x !eld will
be used. For a two-dimensional organization, x and y !elds will be used. For a three-
dimensional structure, all three !elds will be used. The choice of dimensionality for
organizing threads usually re"ects the dimensionality of the data. This makes sense
since the threads are created to process data in parallel. It is only natural that the
organization of the threads re"ects the organization of the data. In Fig. 2.11, each
thread block is organized as a one-dimensional array of threads because the data are
one-dimensional vectors. The value of the blockDim.x variable speci!es the total
number of threads in each block, which is 256 in Fig. 2.11. In general, the number of

5 Note that SPMD is not the same as SIMD (Single Instruction Multiple-Data) [Flynn 1972]. In an
SPMD system, the parallel processing units execute the same program on multiple parts of the data.
However, these processing units do not need to be executing the same instruction at the same time. In
an SIMD system, all processing units are executing the same instruction at any instant.
6 Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA ver-
sions allow only up to 512 threads in a block.

FIGURE 2.11

All threads in a grid execute the same kernel code.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Grid

Phonebook

Area codePhone number

Call the number

threadIdx.x
blockIdx.x
blockDim.x
gridDim.x

CUDA concept of warps
• Thread blocks are divided into warps; can be implementation

dependent. In NVIDIA GPUs warps have 32 threads, in AMD’s 64.
• Warps are physically executed in parallel on the SMs in “SIMD”-like

manner.

11

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of
32-thread warps

A warp is executed
physically in parallel
(SIMT) on a multiprocessor

=

Warps

https://ppc.cs.aalto.fi/ch4/v1/

Programming model in practise

// Compute vector sum h_C =
h_A+h_B
void vecAdd(float* h_A, float*
h_B, float* h_C, int n)
{
for (int i = 0; i < n; i++)

h_C[i] = h_A[i] + h_B[i];
}

int main() {
// Memory allocation for h_A,
h_B, and h_C // I/O to read h_A
and h_B, N elements each ...
vecAdd(h_A, h_B, h_C, N);

Let us illustrate the difference of a normal C program and a CUDA one by adding together to numbers

C program (full) Cuda (host code)

// Compute vector sum h_C = h_A+h_B
void vecAdd(float* h_A, float* h_B, float* h_C, int
n) // ”h_”refers to host
{
int size = n * sizeof(float);
float *d_A, *d_B, *d_C; //Pointers to device mem, hence start
with “d_”
cudaMalloc((void **) &d_A, size); // Allocating device mem
cudaMemcpy(d_A,h_A,size,cudaMemcpyHostToDevice);
//Copying data over to device mem
cudaMalloc((void **) &d_B, size); // Same stuff for B
cudaMemcpy(d_B,h_B,size,cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_C, size); // Allocation C that’ll hold the
result
vecAddKernel<<<256,256>>>(d_A,d_B,d_C, n);
cudaMemcpy(h_C,d_C,size,cudaMemcpyDeviceToHost);
//Copying result to host
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}

Prgramming model in practise

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A, float* B, float* C, int n) {
int i = blockDim.x*blockIdx.x + threadIdx.x;
if(i<n) C[i] = A[i] + B[i];
}

Kernel function
CUDA (device code)

blockDim.x=dimensi
on of the blocks
requested
blockIdx.x=Block ID
amongst all blocks
reserved
threadIdx.x=Unique
identified of the
thread in a block

Step by step autopsy of the CUDA code
Allocation of global device memory
cudaMalloc((void**) &DevPtr, size_t size)

° Address of a pointer to the allocated object in device
memory

° Size of allocated object in terms of bytes
cudaFree(DevPtr)
Frees object from device global memory

° Pointer to freed object

Step by step autopsy of the CUDA code
Transferring data to/from device global memory
cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind

kind)
ο Pointer to destination
ο Pointer to source
ο Number of bytes copied
ο Type/Direction of transfer:

cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost

Step by step autopsy of the CUDA code
Calling the kernel function
vecAddKernel<<<256,256>>>(d_A,d_B,d_C, n);

332.5 Kernel functions and threading

Multiple-Data (SPMD) [Ata 1998] parallel programming style, a popular program-
ming style for massively parallel computing systems.5

When a program’s host code launches a kernel, the CUDA run-time system gen-
erates a grid of threads that are organized into a two-level hierarchy. Each grid is
organized as an array of thread blocks, which will be referred to as blocks for brevity.
All blocks of a grid are of the same size; each block can contain up to 1024 threads.
6 Fig. 2.11 shows an example where each block consists of 256 threads. Each thread
is represented by a curly arrow stemming from a box that is labeled with a number.
The total number of threads in each thread block is speci!ed by the host code when
a kernel is launched. The same kernel can be launched with different numbers of
threads at different parts of the host code. For a given grid, the number of threads in
a block is available in a built-in blockDim variable.

The blockDim variable is of struct type with three unsigned integer !elds: x,
y, and z, which help a programmer to organize the threads into a one-, two-, or
three-dimensional array. For a one-dimensional organization, only the x !eld will
be used. For a two-dimensional organization, x and y !elds will be used. For a three-
dimensional structure, all three !elds will be used. The choice of dimensionality for
organizing threads usually re"ects the dimensionality of the data. This makes sense
since the threads are created to process data in parallel. It is only natural that the
organization of the threads re"ects the organization of the data. In Fig. 2.11, each
thread block is organized as a one-dimensional array of threads because the data are
one-dimensional vectors. The value of the blockDim.x variable speci!es the total
number of threads in each block, which is 256 in Fig. 2.11. In general, the number of

5 Note that SPMD is not the same as SIMD (Single Instruction Multiple-Data) [Flynn 1972]. In an
SPMD system, the parallel processing units execute the same program on multiple parts of the data.
However, these processing units do not need to be executing the same instruction at the same time. In
an SIMD system, all processing units are executing the same instruction at any instant.
6 Each thread block can have up to 1024 threads in CUDA 3.0 and beyond. Some earlier CUDA ver-
sions allow only up to 512 threads in a block.

FIGURE 2.11

All threads in a grid execute the same kernel code.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

Gridexecution configuration parameters Traditional C function arguments

1. exec. config param.: Number of blocks
2. exec. config param.: Number of threads

Again works like a phonenumber: areacode-number

1.2.

Number of BLOCKS. Now hardcoded, but in reality
should depend on n, e.g. using ceil(n/256.0)

Number of THREADS in a
Block. Max number of threads
is 1024

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A, float* B, float* C, int n) {
int i = blockDim.x*blockIdx.x + threadIdx.x;
if(i<n) C[i] = A[i] + B[i];
}

Kernel function
Cuda (device code)

blockDim.x=dimensi
on of the blocks
requested
blockIdx.x=Block ID
amongst all blocks
reserved
threadIdx.x=Unique
identified of the
thread in a block

Step by step autopsy of the CUDA code
Construction of the kernel function

With the ceil function we might have reserved extra threads,
hence now we need to prevent their execution with this if

Two built-in variables that enable threads to identify
themselves amongst others and know their own data area.

The order of execution is random

CUDA C keywords for function declaration.
352.5 Kernel functions and threading

In general, CUDA C extends the C language with three quali!er keywords that
can be used in function declarations. The meaning of these keywords is summarized
in Fig. 2.13 The “__global__” keyword indicates that the function being declared is
a CUDA C kernel function. Note that there are two underscore characters on each
side of the word “global.” Such kernel function is to be executed on the device and
can only be called from the host code except in CUDA systems that support dynamic
parallelism, as we will explain in Chapter 13, CUDA dynamic parallelism. The “__
device__” keyword indicates that the function being declared is a CUDA device
function. A device function executes on a CUDA device and can only be called from
a kernel function or another device function.7

The “__host__” keyword indicates that the function being declared is a CUDA
host function. A host function is simply a traditional C function that executes on
host and can only be called from another host function. By default, all functions in a
CUDA program are host functions if they do not have any of the CUDA keywords in
their declaration. This makes sense since many CUDA applications are ported from
CPU-only execution environments. The programmer would add kernel functions and
device functions during porting process. The original functions remain as host func-
tions. Having all functions to default into host functions spares the programmer the
tedious work to change all original function declarations.

Note that one can use both “__host__” and “__device__” in a function decla-
ration. This combination tells the compilation system to generate two versions of
object !les for the same function. One is executed on the host and can only be called
from a host function. The other is executed on the device and can only be called from
a device or kernel function. This supports a common use case when the same func-
tion source code can be recompiled to generate a device version. Many user library
functions will likely fall into this category.

The second notable extension to ANSI C, in Fig. 2.12, are the built-in variables
“threadIdx.x” “blockIdx.x” and “blockDim.x”. Recall that all threads execute the
same kernel code. There needs to be a way for them to distinguish among themselves
and direct each thread towards a particular part of the data. These built-in variables

Only callable
from the:

Executed
on the:

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

hosthost__host__ float HostFunc()

FIGURE 2.13

CUDA C keywords for function declaration.

7 We will explain the rules for using indirect function calls and recursions in different generations of
CUDA later. In general, one should avoid the use of recursion and indirect function calls in their device
functions and kernel functions to allow maximal portability.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

vecAdd is a bad candidate for a CUDA code

• You do a lot of data transfers between the host and device
• Very little computations
• Your CUDA code will be performing worse than a sequential

code; there should always be more to compute than
communicate to make a reasonable application on GPUs.
Remember the ACC model!

• You are REALLY encouraged try this out.

GPU/vecAdd_CPU.c
GPU/vecAdd_GPU.cu

Generalization to multidimensional grids

The autopsied example case was dealing with one-dimensional
thread blocks. Generally, however, the exec. config params

KernelFunction<<<dimGrid, dimBlock>>>(...);
dimGrid and dimBlock are dim3 type, which is a C struct with three
unsigned integer fields: x, y, and z specifying the sizes of the three
dimensions. Less than three dimensions are chosen by setting the
size of the unused dimensions to 1.

dim3 dimGrid(2, 2, 1);
dim3 dimBlock(4, 2, 2);

Generalisation to multidimensional grids 473.2 Mapping threads to multidimensional data

only need to show one of them. Fig. 3.1 expands Block(1,1) to show its 16 threads. For
instance, Thread(1,0,2) has threadIdx.z=1, threadIdx.y=0, and threadIdx.x=2.
This example shows 4 blocks of 16 threads each, with a total of 64 threads in
the grid. We use these small numbers to keep the illustration simple. Typical CUDA
grids contain thousands to millions of threads.

3.2 MAPPING THREADS TO MULTIDIMENSIONAL DATA
The choice of 1D, 2D, or 3D thread organizations is usually based on the nature of
the data. Pictures are 2D array of pixels. Using a 2D grid that consists of 2D blocks is
often convenient for processing the pixels in a picture. Fig. 3.2 shows such an arrange-
ment for processing a 76 × 62 picture P (76 pixels in the horizontal or x direction
and 62 pixels in the vertical or y direction). Assume that we decided to use a 16 × 16
block, with 16 threads in the x direction and 16 threads in the y direction. We will
need 5 blocks in the x direction and 4 blocks in the y direction, resulting in 5 × 4 = 20
blocks, as shown in Fig. 3.2. The heavy lines mark the block boundaries. The shaded
area depicts the threads that cover pixels. It is easy to verify that one can identify the
Pin element processed by thread(0,0) of block(1,0) with the formula:

 PblockIdx.y*blockDim.y threadIdx.y,blockIdx.x*blockDim.x thhreadIdx.x 16,0P P1 16 0 0 16 0* , * .

host device

Kernel 1

Grid 1
Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Kernel 2

Grid 2
Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

FIGURE 3.1

A multidimensional example of CUDA grid organization.

This book belongs to Maarit KÃ¤pylÃ¤ (mjkorpi@gmail.com) Copyright Elsevier 2021

dim3 dimGrid(2, 2, 1);
dim3 dimBlock(4, 2, 2);

KernelFunction<<<dimGrid, dimBlock>>>(...);

Adapted from [1]

Launch of a kernel makes the
following structures available

blockDim.x, blockDim.y, blockDim.z
threadIdx.x, threadIdx.y, threadIdx.z
blockIdx.x, blockIdx.y, blockIdx.z

which tell the placement of the thread
in the hierarchy.

Brief intro to shared mem programming model

__global__
void staticReverse(int *d, int n) {
__shared__ int s[64];
int t = threadIdx.x;
int tr = n-t-1;
s[t] = d[t];
__syncthreads();
d[t] = s[tr];
}

Static shared memory device code Dynamic shared memory device code

__global__
void dynamicReverse(int *d, int n) {
extern __shared__ int s[];
int t = threadIdx.x;
int tr = n-t-1;
s[t] = d[t];
__syncthreads();
d[t] = s[tr];
}

dynamicReverse<<<1, n, n*sizeof(int)>>>(d_d, n);

Calling this kernel from the host:

Third execution configuration parameter
allocating the shared memory

CUDA streams

• Kernel calls are asynchronous; after the kernel is launched, the
code returns to the host

• CUDA calls are blocking or synchronous, such as cudaMemcpy
• All device operations run in a stream; if no stream is specified, the

default (or “null”) stream is used.

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

CUDA streams

• Overlapping host and device tasks is trivial due to the
asynchronous nature of the kernel calls.

• How to make CUDA calls concurrently, f. ex. the computation and
data transfers in the above example, requires further techniques
with the concept of streams.

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a);
DoSmtghOnHost();
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

CUDA streams

Non-default streams in CUDA are
• Declared (1st line),
• Created (3rd line), and
• Destroyed (4th line)

in host code as above.

cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate(&stream1);
result = cudaStreamDestroy(stream1);

CUDA streams

• Async data transfers can be accomplished by CUDA functions such as
cudaMemcpyAsync, cudaMemcpy2DAsync(), and
cudaMemcpy3DAsync(), where the 5th argument is the stream
identifier.

increment<<<1,N,0,streamX>>>(d_a)
• Kernel calls to be executed on non-default stream will have to specify the

stream identifier as the 4th argument. The third argument is to declare the
allocation of shared memory, here none is requested, hence 0.

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice,
streamN)

CUDA streams

• Since all operations in non-default streams are non-blocking with respect to
the host code, you need to synchronize the host code with stream
operations.

• Ways relevant to us:
1. the host code is blocked until all previously issued operations on the

device have completed
2. The host thread is blocked until all previously issued operations in the

specified stream have completed

1. cudaDeviceSynchronize();
2. cudaStreamSynchronize(stream);
3. cudaEventSynchronize(event) (ADVANCED)

GPU/Blocking_Async.cu

How to run on multiple GPUs?
• Nowadays commonly possible, also in Triton.
• You ask for multiple GPUs using --gres=gpu:N , where N stands

for number of requested GPUs. Use N>1 to reserve more than one
GPU. See example codes and scripts in code git repo GPU/X. Here,
for short:

srun -p courses -A courses --gres=gpu:teslap100:1 ./exec1
srun -p courses -A courses --gres=gpu:teslap100:4 ./exec2

How to setup a code for multiple GPUs and MPI?
GPU/sheet6/src/main.cu, reduce-multi.cu and reduce-
mpi.cu

How to run on multiple GPUs?
Two general cases:
• GPUs within a single network node: data transfers through

peer-to-peer or shared host memory
• peer-to-peer: cudaDeviceEnablePeerAccess(…),

cudaDeviceCanAccessPeer(…), cudaMemcpyPeerAsync(…)
[advanced, not needed to solve Sheet 6].

• Host launches streams on different devices and collects the
results.

• GPUs across network nodes
• Communication through CUDA-aware MPI

How to run on multiple GPUs?
cudaError_t cudaGetDeviceCount(int* count)

Returns the number of devices
cudaError_t cudaSetDevice(int device)

Device on which the active host thread should execute
the device code.

cudaError_t cudaGetDevice(int* device)
Returns the device on which the active host thread executes
the device code.

CUDA-aware MPI

//MPI rank 0
cudaMemcpy(s_buf_h,s_buf_d,size,

cudaMemcpyDeviceToHost);
MPI_Send(s_buf_h,size,MPI_CHAR,1,

100,MPI_COMM_WORLD);
//MPI rank 1
MPI_Recv(r_buf_h,size,MPI_CHAR,0,

100,MPI_COMM_WORLD,
&status);

cudaMemcpy(r_buf_d,r_buf_h,size,
cudaMemcpyHostToDevice);

//MPI rank 0
MPI_Send(s_buf_d,size,MPI_CHAR,1,100,

MPI_COMM_WORLD);
//MPI rank 1
MPI_Recv(r_buf_d,size,MPI_CHAR,0,100,

MPI_COMM_WORLD, &status);

The most likely case, as MPI
tends to be SOOO complicated

Or can we perhaps do this, and
life becomes wonderful?

Yes, this is how it works!!!!!!!

Thanks to Unified Virtual Addressing (UVA) feature in
CUDA; read more from [5]

srun -p courses -A courses --gres=gpu:teslap100:4 -n 4 -N 1 ./exec_comp_with_MPI

Useful reading
[1] David Kirk & Wen-Mei Whu: “Programming massively parallel
processors”, third edition, 2017, Morgan Kaufmann, Cambridge, USA
[2] https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-
Architecture-Whitepaper.pdf
[3] https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf
[4] https://ppc.cs.aalto.fi/ch4/v1/, …/v2 and …/v3

[5] https://developer.nvidia.com/blog/introduction-
cuda-aware-mpi/

https://ppc.cs.aalto.fi/ch4/v1/

