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Recap

The two trajectories resulting from the power wall

Multicore processors (core==CPU)

Lecture 5

Multi-thread processors (e.g. processors with GPUs)

This material
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Schematic comparison

Adapted from [1]

DRAM

Optimising sequential execution Optimising parallel throughput

Peak throughput of GPUs about 10x higher than multi-core CPUs

DRAM access speed 10x higher for GPUs (made
A? S, for gaming)
|



Leading idea of large-scale computation

Execute sequential parts on CPUs

and parallel parts faster on GPUs;

Communications between GPUs
using MPI
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Schematic model of a GPU

CPU (host); has its own memory, but can access global device

Device

GPU
Core, or

streaming
processor

T 11
II Texture II
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Memory hierarchy

- Memory transfers between host
and device global memory have SM-0 SM-1 SM-N
the highest latency (as bad as

100x the smem); to be minimized 000 b

- Access to shared memory and ( y Y Y
registers have much lower m m o m
latency
- Registers are seen by single
threads !

- Shared memory is for fast
communication between
threads in a block

and registers are very limited.

Chapter 4 of Programming parallel computers teaches you how to make efficient code
by optimizing the memory usage; please read through

A? S e e https://ppc.cs.aalto.fi/lch4/v1/, ...Iv2 and .../v3



https://ppc.cs.aalto.fi/ch4/v1/

The GPUs in Triton
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The GPUs in Triton
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Kepler architecture

PCI Express 3.0 Host Interface

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller
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Programming models

« CUDA (NVIDIA)

« Radeon Open Compute (ROCm)
(AMD)

 HIP

« OpenCL

« OpenACC OpenMP

For openCL examples, please refer to
https://ppc.cs.aalto.fi/ch4/v0opencl/

Aalto University
School of Science
| |



CUDA Execution model

Main program is executed by the

CPU Part 1
« CPU needs to communicate with the r\
GPU (Part I) ] |
ost memory Device memory
« Upload the data to the GPU
memory CPU GPU
« Upload program to the GPU (Part 2)
Wait (or do something useful) for the w

GPU to finish computations (Part 2)

* Fetch the results back from the GPU Part 3

Memory transfers between host and
A mgmﬂs}fy (Part 3) device can be the bottleneck
School of Science
| |



CUDA programming model

Block

« threads that run on the same streaming multiprocessor (SM) form blocks;

«  they communicate with each other through shared MEeMOTrY located on the SM;
Grid
«  Blocks are grouped into a grid; both threads and blocks have a unique identification number

Kernel
« Is a function that gets executed in parallel on each thread,; Grid

e A t id of th lock
re executed as a grid of thread blocks Block 0 Block 1 Block N-1

1 | 2 |[254f2ss|| o [ 1 | 2 ||254]25s| | o | 1 | 2 ||254255]

powiowemywrors | 358 STECRSE TR

who and operating on

. ) i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
WhICh part Of the data b threadldx.x; threadldx.x; $.99 threadldx.x;

C[i] = A[i] + B[i]; C[i] = A[i] + B[i]; Cli] = A[i] + B[i];




CUDA programming model

Block
Phone number Area code

« threads that run on the same streaming multiprocessor (SM) form blocks;

«  they communicate with each other through shared MEeMOTrY located on the SM;
Grid Phonebook

«  Blocks are grouped into a grid; both threads and blocks have a unique identification number
Kernel Call the number

« Is a function that gets executed in parallel on each thread,;

Grid
 Are executed as a grid of thread blocks
g Block 0 Block I Block N-1
—
) [ 1] 2 |[2s4]2ss| [0 [ 1] 2 |]|254]255]

threadldx.x NN \ \ ] \ \\\ \\ \ \\\ \\
blockldx.x P

blockDim.x i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +

= B threadldx.x; threadldx.x; $.99 threadldx.x;

gridDim.x Cli] = A[i] + B[i]; Cli] = Ali] + B[i]; Cli] = A[i) + B[i];

A? e, SEAR N R RN |



CUDA concept of warps

 Thread blocks are divided into warps; can be implementation
dependent. In NVIDIA GPUs warps have 32 threads, in AMD’s 64.

« Warps are physically executed in parallel on the SMs in “SIMD” -like

manhner.
32 Threads ——
[
2222 . 2 — 32 Threads 2
32 Threads
Thread :
Block Warps Multiprocessor

https://ppc.cs.aalto.fi/ch4/v1/
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Programming model in practise

Let us illustrate the difference of a normal C program and a CUDA one by adding together to numbers

C program (full) Cuda (host code)
// Compute vector sum h_C = h_A+h_B
// Compute vector sum h _C = void vecAdd(float* h_A, float* h_B, float* h_C, int
h_A+h_B n) // "h "refers to host
void vecAdd(float* h_A, float* {
h_B, float* h_C, int n) int size = n * sizeof(float);
float *d_A, *d_B, *d_C; //Pointers to device mem, hence start
for (int i = 0; i < n; i++) with “d_"
h C[i] = h_A[i] + h_B[i]; cudaMalloc((void **) &d_A, size); // Allocating device mem
} cudaMemcpy(d_A,h_A,size,cudaMemcpyHostToDevice);
//ICopying data over to device mem
int main() { cudaMalloc((void **) &d_B, size); // Same stuff for B
// Memory allocation for h_A, cudaMemcpy(d_B,h_B,size,cudaMemcpyHostToDevice);
h B, and h C // I/0 to read h o cudaMalloc((void **) &d_C, size); // Allocation C that'll hold the
n - - result

and h B, N elements each ...
vecAdd(h_A, h B, h C, N);

vecAddKernel<<<256,256>>>(d_A,d_B,d_C, n);
cudaMemcpy(h_C,d_C,size,cudaMemcpyDeviceToHost);
A Aalto University //Copying result to host

u cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}



Prgramming model in practise

blockDim.x=dimensi
CUDA (device code) on of the blocks

Kernel function requested
/| Compute vector sum C = A+B blockldx.x=Block ID

Il Each thread performs one pair-wise addition amongs! all blocks

__global__ threadldx.x=Unique
void vecAddKernel(float* A, float* B, float* C, int n) { !dentified of the

thread in a block
int i = blockDim.x*blockldx.x + threadldx.x;
if(i<n) CI[i] = A[i] + BIi];
}

Aalto University
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Step by step autopsy of the CUDA code

Allocation of global device memory
cudaMalloc((void**) &DevPtr, size t size)

° Address of a pointer to the allocated object in device
memory
° Size of allocated object in terms of bytes

cudaFree(DevPtr)
Frees object from device global memory

° Pointer to freed object

Aalto University
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| |



Step by step autopsy of the CUDA code

Transferring data to/from device global memory

cudaMemcpy(void* dst, const void* src, size t count, cudaMemcpyKind
kind)
o Pointer to destination

o Pointer to source
o Number of bytes copied

o Type/Direction of transfer:
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost



Step by step autopsy of the CUDA code

. . Number of BLOCKS. Now hardcoded, but in reality
Calling the kernel function should depend on n, e.g. using ceil(n/256.0)
Number of THREADS in a
VeCAddKerne|<<<256 256>>>(d A d B d C n) Block. Max number of threads

execution configuration parameters Traditional C function arguments s 1ozG4ri q

Block 0 Block 1
[ o | 1|2 |[2salass|| o] 1 | 2]][254]255]

» TN SO A N T+

i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threadldx.x; threadldx.x; 0.8 threadldx.x;
C[i] = A[i] + B[i]; C[i] = A[i] + B[i]; C[i] = A[i] + B[i];

I E NN

1. exec. config param.: Number of blocks
2. exec. config param.: Number of threads

School of Science

A:, Aalto University Again works like a phonenumber: areacode-number



Step by step autopsy of the CUDA code

Construction of the kernel function
blockDim.x=dimensi

Cuda (device code) on of the blocks
Kernel function The order of execution is random requested

/| Compute vector sum C = A+B blockldx.x=Block ID
Il Each thread performs one pair-wise addition fgg:‘\f’:; all blocks
__global__ threadldx.x=Unique

void vecAddKernel(float* A, float* B, float* C, int n) { 'dentified of the
thread in a block

int i = blockDim.x*blockldx.x + threadldx.x;

if(i<n) C[I] = A[i] + BJi]; N Two built-in variables that enable threads to identify

themselves amongst others and know their own data area.

} With the ceil function we might have reserved extra threads,
hence now we need to prevent their execution with this if

Aalto University
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CUDA C keywords for function declaration.

Executed Only callable

on the: from the:
_device  float DeviceFunc () device device
~_global  wvoid KernelFunc() device host
__host float HostFunc () host host

Aalto University
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vecAdd is a bad candidate for a CUDA code

* You do a lot of data transfers between the host and device
* Very little computations

* Your CUDA code will be performing worse than a sequential
code; there should always be more to compute than
communicate to make a reasonable application on GPUs.
Remember the ACC model!

 You are REALLY encouraged try this out.

GPU/vecAdd_CPU.c
GPU/vecAdd_GPU.cu



Generalization to multidimensional grids

The autopsied example case was dealing with one-dimensional
thread blocks. Generally, however, the exec. config params

KernelFunction<<<dimGrid, dimBlock>>>(...);

dimGrid and dimBlock are dim3 type, which is a C struct with three
unsigned integer fields: x, y, and z specifying the sizes of the three
dimensions. Less than three dimensions are chosen by setting the

size of the unused dimensions to 1.
dim3 dimGrid(2, 2, 1);
dim3 dimBlock(4, 2, 2);



Generalisation to multidimensional grids

dim3 dimGrid(2, 2, 1);

host device
dim3 dimBlock(4, 2, 2);
Grid 1
KernelFunction<<<dimGrid, dimBlock>>>(...); Block Block
Kernel 1 jre—— (0, 0) (0, 1)
Launch of a kernel makes the Block Block
following structures available
blockDim.x, blockDim.y, blockDim.z
threadldx.x, threadldx.y, threadldx.z Gri
blockldx.x, blockldx.y, blockldx.z rid 2 L
- (1,0,0) (1,0,1) (1.02) (1.03)
which tell the placement of the thread Kernel 2 [ty p———~———
in the hlerarChy' Thread| Thread| Thread Thread

a a
A? Aalto University (0,1,0) | (0,1, (0,1,2)§ (0,1,3)
School of Science
| |
Adapted from [1]



Brief intro to shared mem programming model

Static shared memory device code Dynamic shared memory device code
__global__ __global__
void staticReverse(int *d, int n) { void dynamicReverse(int *d, int n) {
__shared__ int s[64]; extern __shared _int s]];
int t = threadldx.x; int t = threadldx.x;
inttr = n-t-1; int tr = n-t-1;
s[t] = dIt]; s[t] = dIt];
__syncthreads(); __syncthreads();
d[t] = S[tr]; d[t] = S[tr],
} }

Calling this kernel from the host:

dynamicReverse<<<1, n, N *sizeof(int)>>>(d_d, n);

Al, Ralto University Third execution configuration parameter
chool of Science ;]
C allocating the shared memory



CUDA streams

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);

increment<<<1,N>>>(d_a);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

A

Kernel calls are asynchronous; after the kernel is launched, the
code returns to the host

CUDA calls are blocking or synchronous, such as cudaMemcpy

All device operations run in a stream; if no stream is specified, the
default (or “null”) stream is used.

Aalto University
School of Science



CUDA streams

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a);

DoSmtghOnHost();

cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

« Overlapping host and device tasks is trivial due to the
asynchronous nature of the kernel calls.

« How to make CUDA calls concurrently, f. ex. the computation and
data transfers in the above example, requires further techniques
with the concept of streams.

Aalto University
School of Science
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CUDA streams

A

cudaStream_t stream1l;
cudaError_t result;

result = cudaStreamCreate(&stream1l);
result = cudaStreamDestroy(stream1l);

Non-default streams in CUDA are
« Declared (15t line),
« Created (3" line), and
« Destroyed (4t" line)

in host code as above.

Aalto University
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CUDA streams

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice,
streamN)

« Async data transfers can be accomplished by CUDA functions such as
cudaMemcpyAsync, cudaMemcpy2DAsync(), and

cudaMemcpy3DAsync(), where the 5" argument is the stream
identifier.

increment<<<1,N,0,streamX>>>(d_a)

« Kernel calls to be executed on non-default stream will have to specify the
stream identifier as the 4" argument. The third argument is to declare the
allocation of shared memory, here none is requested, hence 0.

Aalto University
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CUDA streams

1. cudaDeviceSynchronize();
2. cudaStreamSynchronize(stream);
3. cudaEventSynchronize(event) (ADVANCED)

Since all operations in non-default streams are non-blocking with respect to
the host code, you need to synchronize the host code with stream

operations.

 Ways relevant to us:
1. the host code is blocked until all previously issued operations on the
device have completed

2. The host thread is blocked until all previously issued operations in the
specified stream have completed

Aalto University
School of Science
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GPU/Blocking_Async.cu



How to run on multiple GPUs?

« Nowadays commonly possible, also in Triton.

* You ask for multiple GPUs using --gres=gpu:N , where N stands
for number of requested GPUs. Use N>1 to reserve more than one
GPU. See example codes and scripts in code git repo GPU/X. Here,

for short:

srun -p courses -A courses --gres=gpu:teslap100:1 ./exec1
srun -p courses -A courses --gres=gpu:teslap100:4 ./exec2

How to setup a code for multiple GPUs and MPI?
GPU/sheet6/src/main.cu, reduce-multi.cu and reduce-

Aalto University mpl .CU
School of Science
| |



How to run on multiple GPUs?

Two general cases:

« GPUs within a single network node: data transfers through
peer-to-peer or shared host memory

- peer-to-peer: cudaDeviceEnablePeerAccess(...),
cudaDeviceCanAccessPeer(...), cudaMemcpyPeerAsync(...)
[advanced, not needed to solve Sheet 6].

« Host launches streams on different devices and collects the
results.

e GPUs across network nodes
« Communication through CUDA-aware MPI

Aalto University
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How to run on multiple GPUs?

cudaError_t cudaGetDeviceCount(int* count)
Returns the number of devices
cudaError_t cudaSetDevice(int device)
Device on which the active host thread should execute
the device code.
cudaError_t cudaGetDevice(int* device)
Returns the device on which the active host thread executes

the device code.



CUDA-aware MPI

The most likely case, as MPI Or can we perhaps do this, and
tends to be SOOO complicated life becomes wonderful?
//MPI rank O //MPI rank O
cudaMemcpy(s_buf_h,s_buf_d,size, MPI_Send(s_buf _d,size, MPI_CHAR, 1,100,
cudaMemcpyDeviceToHost); MPI_COMM_WORLD);
MPI_Send(s_buf_h,size, MPI_CHAR,1, //MPI rank 1
100,MPI_COMM_WORLD); MPI_Recv(r_buf_d,size,MPI_CHAR,0,100,
//MPI rank 1 MPI_COMM_WORLD, &status);

MPI_Recv(r_buf _h,size, MPI_CHAR,O,
100,MPI_COMM_WORLD, o _
&status): Yes, this is how it works!!!!!!!

cudaMemcpy(r_buf_d,r_buf_h,size,

cudaMemcpyHostToDevice): Thanks to Unified Virtual Addressing (UVA) feature in

CUDA; read more from [5]

A? School of Seience srun -p courses -A courses --gres=gpu:teslap100:4 -n 4 -N 1 ./exec_comp_with_MPI



Useful reading

[1] David Kirk & Wen-Mei Whu: “Programming massively parallel
processors”, third edition, 2017, Morgan Kaufmann, Cambridge, USA

[2] https://lwww.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-

Architecture-Whitepaper.pdf

[3] https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf

[4] https://ppc.cs.aalto.fi/ch4/v1/, ...Iv2 and .../v3

[5] https://developer.nvidia.com/blog/introduction-
cuda-aware-mpi/
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