Mathematics for Economists

Mitri Kitti

Aalto University

Eigenvalues

Eigenvalues and eigenvectors

- Let A be a square matrix of size $n \times n$
- An eigenvalue of A is a number r which when subtracted from each of the diagonal entries of A converts A into a singular matrix
- In other words, r is an eigenvalue of A if and only if $A-r l$ is singular, where I is the identity matrix
- Recall that a matrix is singular if and only if its determinant is equal to zero. Thus we can say that r is an eigenvalue of A if and only if $\operatorname{det}(A-r l)=0$

Eigenvalues and eigenvectors

- Example. Let

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Then A has two eigenvalues: $r_{1}=2$ and $r_{2}=4$

- Let

$$
B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Then B has two eigenvalues: $r_{1}=0$ and $r_{2}=2$

Eigenvalues and eigenvectors

- Suppose r is an eigenvalue of A. By definition, $A-r l$ is singular
- Consider the system of linear equations

$$
\begin{equation*}
(A-r l) \boldsymbol{v}=\mathbf{0} \tag{1}
\end{equation*}
$$

where \boldsymbol{v} is an $n \times 1$ vector and $\mathbf{0}$ is the zero vector

- Since $A-r l$ is singular, there exists a non-zero vector \boldsymbol{v} that solves (1)
- Any non-zero vector that solves (1) is an eigenvector of A corresponding to the eigenvalue r
- Note: there are infinitely many non-zero solutions to (1)
- Also note that (1) is equivalent to

$$
A \boldsymbol{v}=r \boldsymbol{v}
$$

Eigenvalues and eigenvectors

Proposition

Let A be an $n \times n$ matrix and let r be a scalar. The following statements are equivalent:

1. Subtracting r from each diagonal entry of A transforms A into a singular matrix;
2. $A-r l$ is a singular matrix;
3. $\operatorname{det}(A-r l)=0$;
4. $(A-r l) \boldsymbol{v}=\mathbf{0}$ for some non-zero vector \mathbf{v};
5. $A \mathbf{v}=r \mathbf{v}$ for some non-zero vector \mathbf{v}.

Facts about eigenvalues and eigenvectors

- Diagonal elements of a diagonal matrix are eigenvalues
- Eigenvector determines a direction that is left invariant under A
- Matrix is singular if and only if 0 is its eigenvalue
- If a matrix is symmetric, it has n real eigenvalues
- If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $A \in \mathbb{R}^{n \times n}$, then $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{trace}(A)$ and $\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}=\operatorname{det}(A)$.
- trace (A) is the sum of diagonal elements of A

Eigenvalues: Example 2

$A=\left(\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right)$, because this is not a diagonal matrix we need characteristic equation for finding the eigenvalues

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
-1-\lambda & 3 \\
2 & 0-\lambda
\end{array}\right)= \\
& =-(1+\lambda)(-\lambda)-6=\lambda^{2}+\lambda-6 \\
& =(\lambda+3)(\lambda-2)
\end{aligned}
$$

the eigenvalues are $\lambda_{1}=-3$ and $\lambda_{2}=2$. The eigenvector corresponding to λ_{1} can be obtained from $(A-(-3) I) v=\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)\binom{v_{1}}{v_{2}}$, e.g., $v=(-3,2)$ is an eigenvector (like all vectors $\alpha v, \alpha \neq 0$), what is the other eigenvector?

Characteristic polynomial

- How to find eigenvalues and eigenvectors?
- Consider the following matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
2 & 0 & -2
\end{array}\right)
$$

- Eigenvalues can be found by calculating the determinant of

$$
A-r I=\left(\begin{array}{ccc}
2-r & 1 & -1 \\
0 & 1-r & 1 \\
2 & 0 & -2-r
\end{array}\right)
$$

- The polynomial $\operatorname{det}(A-r I)$ is called the characteristic polynomial of A; the eigenvalues of A are the roots of its characteristic polynomial

Characteristic polynomial

- You can verify that $\operatorname{det}(A-r l)=r(2-r)(1+r)$
- Therefore, A has three distinct eigenvalues:

$$
r_{1}=-1, \quad r_{2}=0, \quad r_{3}=2
$$

Eigenvectors

- To find an eigenvector associated with $r_{1}=-1$ we need to find a non-zero solution to

$$
\left(A-r_{1} I\right) \boldsymbol{v}_{1}=0 \Longleftrightarrow\left(\begin{array}{ccc}
2-(-1) & 1 & -1 \\
0 & 1-(-1) & 1 \\
2 & 0 & -2-(-1)
\end{array}\right) \boldsymbol{v}_{1}=0
$$

- The above system has infinitely many non-zero solutions. We can choose $\boldsymbol{v}_{1}=(1,-1,2)^{T}$
- Note: if \boldsymbol{v}_{1} is an eigenvector associated with r_{1}, then $\alpha \boldsymbol{v}_{1}$ is another eigenvector for all scalars $\alpha \neq 0$
- The set of all solutions of the above system (including $\boldsymbol{v}=\mathbf{0}$) is called the eigenspace of A with respect to the eigenvalue $r_{1}=-1$

Eigenvectors

- You can verify that an eigenvector associated with $r_{2}=0$ is

$$
\boldsymbol{v}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

and that an eigenvector associated with $r_{3}=2$ is

$$
\boldsymbol{v}_{3}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Eigenvalues: More facts

- Characteristic equation is a polynomial of degree n
\rightarrow there are n eigenvalues some of which may be complex numbers
- in general, finding the roots of nth degree polynomial is hard

Eigenvalues and eigenvectors

- Exercise. Consider the system at p. 2 in matrix form

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & 4 \\
\frac{1}{2} & 0
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

- Verify that two eigenvalues of the coefficient matrix A are $r_{1}=2$ and $r_{2}=-1$
- Verify that an eigenvector associated with $r_{1}=2$ is

$$
\boldsymbol{v}_{1}=\binom{4}{1}
$$

and that an eigenvector associated with $r_{2}=-1$ is

$$
\boldsymbol{v}_{2}=\binom{-2}{1}
$$

- Use the above eigenvalues and eigenvectors to solve this system

Diagonalization

- We have learned how to solve a system of difference equations by using the following transformation of the coefficient matrix A :

$$
\begin{equation*}
P^{-1} A P=D \tag{2}
\end{equation*}
$$

where D is a diagonal matrix

- The transformation (2) is called diagonalization of the matrix A
- If we can find matrices P, P^{-1}, and D such that (2) holds, we say that A is diagonalizable
- Notice that P must be invertible in order for A to be diagonalizable

Diagonalization

Proposition (Diagonalization)

Let A be an $n \times n$ matrix. Let $r_{1}, r_{2}, \ldots, r_{n}$ be eigenvalues of A, and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ the corresponding eigenvectors. Form the matrix

$$
P=\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & \boldsymbol{v}_{n}
\end{array}\right)
$$

whose columns are the n eigenvectors of A.

- If P is invertible, then

$$
P^{-1} A P=\left(\begin{array}{cccc}
r_{1} & 0 & \ldots & 0 \\
0 & r_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & r_{n}
\end{array}\right)
$$

- Conversely, if $P^{-1} A P$ is a diagonal matrix D, the columns of P must be eigenvectors of A and the diagonal entries of D must be eigenvalues of A

Diagonalization

- The proposition in the previous page relies on the hypothesis that the matrix P is invertible. This is equivalent to the hypothesis that the n eigenvectors of A are linearly independent (that is, no one of them can be written as a linear combination of the others)

Proposition (Linearly independent eigenvectors)

Let r_{1}, \ldots, r_{h} be h distinct eigenvalues of the $n \times n$ matrix A. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{h}$ be the corresponding eigenvectors. Then, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{h}$ are linearly independent.

Thus, if all the eigenvalues of A are distinct, A has n linearly independent eigenvectors and is diagonalizable

Systems of first-order linear difference equations

- Consider the following system of difference equations

$$
z_{t+1}=A z_{t}, \quad t=0,1,2, \ldots
$$

where A is an $n \times n$ coefficient matrix

Proposition (Solution of systems of linear difference equations)

Suppose the coefficient matrix A has n distinct real eigenvalues $r_{1}, r_{2}, \ldots, r_{n}$ and corresponding eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. The general solution of the system of difference equations $z_{t+1}=A z_{t}$ is

$$
\begin{equation*}
\boldsymbol{z}_{t}=c_{1} r_{1}^{t} \mathbf{v}_{1}+c_{2} r_{2}^{t} \mathbf{v}_{2}+\cdots+c_{n} r_{n}^{t} \boldsymbol{v}_{n}, \quad t=0,1,2, \ldots \tag{3}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are constants.

Systems of first-order linear difference equations

- The expression (3) is the general solution of the system $\boldsymbol{z}_{t+1}=A \boldsymbol{z}_{t}$ in the sense that one can use (3) to solve the system for any given vector z_{0} of initial conditions
- Given an initial vector \boldsymbol{z}_{0}, we must have by (3) that

$$
\begin{aligned}
\boldsymbol{z}_{0} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} \\
& =\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & v_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=P\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
\end{aligned}
$$

from which we obtain

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=P^{-1} \boldsymbol{z}_{0}
$$

Systems of first-order linear difference equations

- Example. Consider the following system:

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

- The two eigenvalues of the coefficient matrix are $r_{1}=3$ and $r_{2}=2$, with eigenvectors

$$
\boldsymbol{v}_{1}=\binom{1}{-2} \quad \text { and } \quad \boldsymbol{v}_{2}=\binom{1}{-1}
$$

- The general solution is

$$
\binom{x_{t}}{y_{t}}=c_{1} 3^{t}\binom{1}{-2}+c_{2} 2^{t}\binom{1}{-1}, \quad t=0,1,2, \ldots
$$

Systems of first-order linear difference equations

- Example (cont'd). Suppose the initial condition is $x_{0}=y_{0}=1$
- We can determine the coefficients c_{1} and c_{2} by solving

$$
\binom{1}{1}=c_{1}\binom{1}{-2}+c_{2}\binom{1}{-1}
$$

- You can verify that $c_{1}=-2$ and $c_{2}=3$
- Therefore, with the initial condition $x_{0}=y_{0}=1$, the solution to the system of difference equations is

$$
\binom{x_{t}}{y_{t}}=(-2) \cdot 3^{t}\binom{1}{-2}+3 \cdot 2^{t}\binom{1}{-1}, \quad t=0,1,2, \ldots
$$

Systems of first-order linear difference equations

- The solution of a system of difference equations can also be found by using the powers of the coefficient matrix
- Given the system $z_{t+1}=A z_{t}$ with initial condition z_{0}, we have

$$
\begin{aligned}
& z_{1}=A z_{0} \\
& z_{2}=A z_{1}=A\left(A z_{0}\right)=A^{2} z_{0} \\
& z_{3}=A z_{2}=A\left(A^{2} z_{0}\right)=A^{3} z_{0}
\end{aligned}
$$

and so on

- The solution is $\boldsymbol{z}_{t}=A^{t} \boldsymbol{z}_{0}$
- But how to compute A^{t} ?

Systems of first-order linear difference equations

- Let's use again the diagonalization $A=P D P^{-1}$ (which is equivalent to $\left.P^{-1} A P=D\right)$:

$$
\begin{aligned}
A & =P D P^{-1} \\
A^{2} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1} \\
A^{3} & =\left(P D^{2} P^{-1}\right)\left(P D P^{-1}\right)=P D^{3} P^{-1}
\end{aligned}
$$

and so on

- In general,

$$
\begin{equation*}
A^{t}=P D^{t} P^{-1} \tag{4}
\end{equation*}
$$

Systems of first-order linear difference equations

- In (4), we can use the following fact. For a diagonal matrix D, we have that

$$
D^{t}=\left(\begin{array}{cccc}
r_{1}^{t} & 0 & \ldots & 0 \\
0 & r_{2}^{t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & r_{n}^{t}
\end{array}\right)
$$

Systems of first-order linear difference equations

- In sum, if A is diagonalizable as $A=P D P^{-1}$, the solution to the system of difference equations is:

$$
\begin{aligned}
\boldsymbol{z}_{t} & =A^{t} \boldsymbol{z}_{0} \\
& =P D^{t} P^{-1} \boldsymbol{z}_{0} \\
& =P\left(\begin{array}{ccc}
r_{1}^{t} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & r_{n}^{t}
\end{array}\right) P^{-1} \boldsymbol{z}_{0} .
\end{aligned}
$$

- A useful property of A^{t} is this: If r is an eigenvalue of A, then r^{t} is an eigenvalue of A^{t}

Example

- Consider again the system

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

with initial condition $x_{0}=y_{0}=1$

- Here we have that

$$
P=\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right), \quad P^{-1}=\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

Example

- The solution is

$$
\begin{aligned}
\binom{x_{t}}{y_{t}} & =\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right)\left(\begin{array}{cc}
3^{t} & 0 \\
0 & 2^{t}
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)\binom{1}{1} \\
& =\binom{(-2) \cdot 3^{t}+3 \cdot 2^{t}}{4 \cdot 3^{t}+(-3) \cdot 2^{t}} \\
& =(-2) \cdot 3^{t}\binom{1}{-2}+3 \cdot 2^{t}\binom{1}{-1}
\end{aligned}
$$

Information of eigenvalues

- The nature of the linear function defined by A can be sketched by using eigenvalues
- if an eigenvalue of A is positive, then A scales the vectors in the direction of the corresponding eigenvector
- if an eigenvalue is negative, A reverses the direction of the corresponding eigenvector and scales
- example: how does $A=\left(\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right)$ behave?
- if there are no real eigenvectors, there is no directions in which A behaves as described above
\rightarrow the matrix turns all the directions (and possibly scales them)
- e.g., $A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ reverses vectors by angle θ (what are the eigenvalues?)

Complex eigenvalues

- Imaginary unit $i, i^{2}=-1$
- Complex number $a+i b$
- Some algebra
- $z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)$ for $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$
- $z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}-a_{2} b_{1}\right)$
- De Moivre's formula: $z^{k}=r^{k}(\cos (k \theta)+i \sin (k \theta))$, where $r=\sqrt{a^{2}+b^{2}}$ and θ satisfies $\cos (\theta)=a / r$
- If an eigenvalue is a complex number, then the corresponding eigenvector is a complex vector
- Assume that \mathbf{A} is 2×2 that has complex eigenvalues $z=\alpha \pm i \beta$
- eigenvectors $\mathbf{u} \pm i \mathbf{v}$ solution of the difference equation $\mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}$ is

$$
\mathbf{z}_{k}=2 r^{k}\left[\left(c_{1} \cos k \theta-c_{2} \sin k \theta\right) u-\left(c_{2} \cos k \theta+c_{1} \sin k \theta\right) v\right]
$$

Example

$\mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}$ with

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
-9 & 1
\end{array}\right)
$$

Characteristic polynomial: $\lambda^{2}-2 \lambda+10=0$. Solutions are

$$
\left.\lambda_{1,2}=(2 \pm \sqrt{4-4 \cdot 10}) / 2=(2 \pm \sqrt{-36})\right) / 2=(2 \pm 6 \sqrt{-1}) / 2=1 \pm i 3
$$

Eigenvectors:

$$
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right)=\left(\begin{array}{cc}
-3 i & 1 \\
-9 & -3 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0},
$$

i.e., $-3 i v_{1}+v_{2}=0$, e.g. $\mathbf{v}=(1,3 i)$ is an eigenvector and another is $(1,-3 i)$. In this case $r=\sqrt{1^{2}+3^{2}}=\sqrt{10}, \theta=\arccos (1 / \sqrt{10}) \approx 1.249$. Solution of the difference equation $\mathbf{z}=(x, y)$

$$
\binom{x_{k}}{y_{k}}=\sqrt{10}^{k}\left[\left(c_{1} \cos k \theta-c_{2} \sin k \theta\right)\binom{1}{0}-\left(c_{2} \cos k \theta+c_{1} \sin k \theta\right)\binom{0}{3}\right]
$$

Mathematics for Economists

Mitri Kitti

Aalto University

Eigenvalues

Eigenvalues and eigenvectors

- Let A be a square matrix of size $n \times n$
- An eigenvalue of A is a number r which when subtracted from each of the diagonal entries of A converts A into a singular matrix
- In other words, r is an eigenvalue of A if and only if $A-r l$ is singular, where I is the identity matrix
- Recall that a matrix is singular if and only if its determinant is equal to zero. Thus we can say that r is an eigenvalue of A if and only if $\operatorname{det}(A-r l)=0$

Eigenvalues and eigenvectors

- Example. Let

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Then A has two eigenvalues: $r_{1}=2$ and $r_{2}=4$

- Let

$$
B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Then B has two eigenvalues: $r_{1}=0$ and $r_{2}=2$

Eigenvalues and eigenvectors

- Suppose r is an eigenvalue of A. By definition, $A-r l$ is singular
- Consider the system of linear equations

$$
\begin{equation*}
(A-r l) \boldsymbol{v}=\mathbf{0} \tag{1}
\end{equation*}
$$

where \boldsymbol{v} is an $n \times 1$ vector and $\mathbf{0}$ is the zero vector

- Since $A-r l$ is singular, there exists a non-zero vector \boldsymbol{v} that solves (1)
- Any non-zero vector that solves (1) is an eigenvector of A corresponding to the eigenvalue r
- Note: there are infinitely many non-zero solutions to (1)
- Also note that (1) is equivalent to

$$
A \boldsymbol{v}=r \boldsymbol{v}
$$

Eigenvalues and eigenvectors

Proposition

Let A be an $n \times n$ matrix and let r be a scalar. The following statements are equivalent:

1. Subtracting r from each diagonal entry of A transforms A into a singular matrix;
2. $A-r l$ is a singular matrix;
3. $\operatorname{det}(A-r l)=0$;
4. $(A-r l) \boldsymbol{v}=\mathbf{0}$ for some non-zero vector \mathbf{v};
5. $A \mathbf{v}=r \mathbf{v}$ for some non-zero vector \mathbf{v}.

Facts about eigenvalues and eigenvectors

- Diagonal elements of a diagonal matrix are eigenvalues
- Eigenvector determines a direction that is left invariant under A
- Matrix is singular if and only if 0 is its eigenvalue
- If a matrix is symmetric, it has n real eigenvalues
- If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $A \in \mathbb{R}^{n \times n}$, then $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{trace}(A)$ and $\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}=\operatorname{det}(A)$.
- trace (A) is the sum of diagonal elements of A

Eigenvalues: Example 2

$A=\left(\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right)$, because this is not a diagonal matrix we need characteristic equation for finding the eigenvalues

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
-1-\lambda & 3 \\
2 & 0-\lambda
\end{array}\right)= \\
& =-(1+\lambda)(-\lambda)-6=\lambda^{2}+\lambda-6 \\
& =(\lambda+3)(\lambda-2)
\end{aligned}
$$

the eigenvalues are $\lambda_{1}=-3$ and $\lambda_{2}=2$. The eigenvector corresponding to λ_{1} can be obtained from $(A-(-3) I) v=\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)\binom{v_{1}}{v_{2}}$, e.g., $v=(-3,2)$ is an eigenvector (like all vectors $\alpha v, \alpha \neq 0$), what is the other eigenvector?

Characteristic polynomial

- How to find eigenvalues and eigenvectors?
- Consider the following matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 1 \\
2 & 0 & -2
\end{array}\right)
$$

- Eigenvalues can be found by calculating the determinant of

$$
A-r I=\left(\begin{array}{ccc}
2-r & 1 & -1 \\
0 & 1-r & 1 \\
2 & 0 & -2-r
\end{array}\right)
$$

- The polynomial $\operatorname{det}(A-r I)$ is called the characteristic polynomial of A; the eigenvalues of A are the roots of its characteristic polynomial

Characteristic polynomial

- You can verify that $\operatorname{det}(A-r l)=r(2-r)(1+r)$
- Therefore, A has three distinct eigenvalues:

$$
r_{1}=-1, \quad r_{2}=0, \quad r_{3}=2
$$

Eigenvectors

- To find an eigenvector associated with $r_{1}=-1$ we need to find a non-zero solution to

$$
\left(A-r_{1} I\right) \boldsymbol{v}_{1}=0 \Longleftrightarrow\left(\begin{array}{ccc}
2-(-1) & 1 & -1 \\
0 & 1-(-1) & 1 \\
2 & 0 & -2-(-1)
\end{array}\right) \boldsymbol{v}_{1}=0
$$

- The above system has infinitely many non-zero solutions. We can choose $\boldsymbol{v}_{1}=(1,-1,2)^{T}$
- Note: if \boldsymbol{v}_{1} is an eigenvector associated with r_{1}, then $\alpha \boldsymbol{v}_{1}$ is another eigenvector for all scalars $\alpha \neq 0$
- The set of all solutions of the above system (including $\boldsymbol{v}=\mathbf{0}$) is called the eigenspace of A with respect to the eigenvalue $r_{1}=-1$

Eigenvectors

- You can verify that an eigenvector associated with $r_{2}=0$ is

$$
\boldsymbol{v}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

and that an eigenvector associated with $r_{3}=2$ is

$$
\boldsymbol{v}_{3}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Eigenvalues: More facts

- Characteristic equation is a polynomial of degree n
\rightarrow there are n eigenvalues some of which may be complex numbers
- in general, finding the roots of nth degree polynomial is hard

Eigenvalues and eigenvectors

- Exercise. Consider the system at p. 2 in matrix form

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & 4 \\
\frac{1}{2} & 0
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

- Verify that two eigenvalues of the coefficient matrix A are $r_{1}=2$ and $r_{2}=-1$
- Verify that an eigenvector associated with $r_{1}=2$ is

$$
\boldsymbol{v}_{1}=\binom{4}{1}
$$

and that an eigenvector associated with $r_{2}=-1$ is

$$
\boldsymbol{v}_{2}=\binom{-2}{1}
$$

- Use the above eigenvalues and eigenvectors to solve this system

Diagonalization

- We have learned how to solve a system of difference equations by using the following transformation of the coefficient matrix A :

$$
\begin{equation*}
P^{-1} A P=D \tag{2}
\end{equation*}
$$

where D is a diagonal matrix

- The transformation (2) is called diagonalization of the matrix A
- If we can find matrices P, P^{-1}, and D such that (2) holds, we say that A is diagonalizable
- Notice that P must be invertible in order for A to be diagonalizable

Diagonalization

Proposition (Diagonalization)

Let A be an $n \times n$ matrix. Let $r_{1}, r_{2}, \ldots, r_{n}$ be eigenvalues of A, and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ the corresponding eigenvectors. Form the matrix

$$
P=\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & \boldsymbol{v}_{n}
\end{array}\right)
$$

whose columns are the n eigenvectors of A.

- If P is invertible, then

$$
P^{-1} A P=\left(\begin{array}{cccc}
r_{1} & 0 & \ldots & 0 \\
0 & r_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & r_{n}
\end{array}\right)
$$

- Conversely, if $P^{-1} A P$ is a diagonal matrix D, the columns of P must be eigenvectors of A and the diagonal entries of D must be eigenvalues of A

Diagonalization

- The proposition in the previous page relies on the hypothesis that the matrix P is invertible. This is equivalent to the hypothesis that the n eigenvectors of A are linearly independent (that is, no one of them can be written as a linear combination of the others)

Proposition (Linearly independent eigenvectors)

Let r_{1}, \ldots, r_{h} be h distinct eigenvalues of the $n \times n$ matrix A. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{h}$ be the corresponding eigenvectors. Then, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{h}$ are linearly independent.

Thus, if all the eigenvalues of A are distinct, A has n linearly independent eigenvectors and is diagonalizable

Systems of first-order linear difference equations

- Consider the following system of difference equations

$$
z_{t+1}=A z_{t}, \quad t=0,1,2, \ldots
$$

where A is an $n \times n$ coefficient matrix

Proposition (Solution of systems of linear difference equations)

Suppose the coefficient matrix A has n distinct real eigenvalues $r_{1}, r_{2}, \ldots, r_{n}$ and corresponding eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. The general solution of the system of difference equations $z_{t+1}=A z_{t}$ is

$$
\begin{equation*}
\boldsymbol{z}_{t}=c_{1} r_{1}^{t} \mathbf{v}_{1}+c_{2} r_{2}^{t} \mathbf{v}_{2}+\cdots+c_{n} r_{n}^{t} \boldsymbol{v}_{n}, \quad t=0,1,2, \ldots \tag{3}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are constants.

Systems of first-order linear difference equations

- The expression (3) is the general solution of the system $\boldsymbol{z}_{t+1}=A \boldsymbol{z}_{t}$ in the sense that one can use (3) to solve the system for any given vector z_{0} of initial conditions
- Given an initial vector \boldsymbol{z}_{0}, we must have by (3) that

$$
\begin{aligned}
\boldsymbol{z}_{0} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} \\
& =\left(\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & v_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=P\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
\end{aligned}
$$

from which we obtain

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=P^{-1} \boldsymbol{z}_{0}
$$

Systems of first-order linear difference equations

- Example. Consider the following system:

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

- The two eigenvalues of the coefficient matrix are $r_{1}=3$ and $r_{2}=2$, with eigenvectors

$$
\boldsymbol{v}_{1}=\binom{1}{-2} \quad \text { and } \quad \boldsymbol{v}_{2}=\binom{1}{-1}
$$

- The general solution is

$$
\binom{x_{t}}{y_{t}}=c_{1} 3^{t}\binom{1}{-2}+c_{2} 2^{t}\binom{1}{-1}, \quad t=0,1,2, \ldots
$$

Systems of first-order linear difference equations

- Example (cont'd). Suppose the initial condition is $x_{0}=y_{0}=1$
- We can determine the coefficients c_{1} and c_{2} by solving

$$
\binom{1}{1}=c_{1}\binom{1}{-2}+c_{2}\binom{1}{-1}
$$

- You can verify that $c_{1}=-2$ and $c_{2}=3$
- Therefore, with the initial condition $x_{0}=y_{0}=1$, the solution to the system of difference equations is

$$
\binom{x_{t}}{y_{t}}=(-2) \cdot 3^{t}\binom{1}{-2}+3 \cdot 2^{t}\binom{1}{-1}, \quad t=0,1,2, \ldots
$$

Systems of first-order linear difference equations

- The solution of a system of difference equations can also be found by using the powers of the coefficient matrix
- Given the system $z_{t+1}=A z_{t}$ with initial condition z_{0}, we have

$$
\begin{aligned}
& z_{1}=A z_{0} \\
& z_{2}=A z_{1}=A\left(A z_{0}\right)=A^{2} z_{0} \\
& z_{3}=A z_{2}=A\left(A^{2} z_{0}\right)=A^{3} z_{0}
\end{aligned}
$$

and so on

- The solution is $\boldsymbol{z}_{t}=A^{t} \boldsymbol{z}_{0}$
- But how to compute A^{t} ?

Systems of first-order linear difference equations

- Let's use again the diagonalization $A=P D P^{-1}$ (which is equivalent to $\left.P^{-1} A P=D\right)$:

$$
\begin{aligned}
A & =P D P^{-1} \\
A^{2} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1} \\
A^{3} & =\left(P D^{2} P^{-1}\right)\left(P D P^{-1}\right)=P D^{3} P^{-1}
\end{aligned}
$$

and so on

- In general,

$$
\begin{equation*}
A^{t}=P D^{t} P^{-1} \tag{4}
\end{equation*}
$$

Systems of first-order linear difference equations

- In (4), we can use the following fact. For a diagonal matrix D, we have that

$$
D^{t}=\left(\begin{array}{cccc}
r_{1}^{t} & 0 & \ldots & 0 \\
0 & r_{2}^{t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & r_{n}^{t}
\end{array}\right)
$$

Systems of first-order linear difference equations

- In sum, if A is diagonalizable as $A=P D P^{-1}$, the solution to the system of difference equations is:

$$
\begin{aligned}
\boldsymbol{z}_{t} & =A^{t} \boldsymbol{z}_{0} \\
& =P D^{t} P^{-1} \boldsymbol{z}_{0} \\
& =P\left(\begin{array}{ccc}
r_{1}^{t} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & r_{n}^{t}
\end{array}\right) P^{-1} \boldsymbol{z}_{0} .
\end{aligned}
$$

- A useful property of A^{t} is this: If r is an eigenvalue of A, then r^{t} is an eigenvalue of A^{t}

Example

- Consider again the system

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

with initial condition $x_{0}=y_{0}=1$

- Here we have that

$$
P=\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right), \quad P^{-1}=\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

Example

- The solution is

$$
\begin{aligned}
\binom{x_{t}}{y_{t}} & =\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right)\left(\begin{array}{cc}
3^{t} & 0 \\
0 & 2^{t}
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)\binom{1}{1} \\
& =\binom{(-2) \cdot 3^{t}+3 \cdot 2^{t}}{4 \cdot 3^{t}+(-3) \cdot 2^{t}} \\
& =(-2) \cdot 3^{t}\binom{1}{-2}+3 \cdot 2^{t}\binom{1}{-1}
\end{aligned}
$$

Information of eigenvalues

- The nature of the linear function defined by A can be sketched by using eigenvalues
- if an eigenvalue of A is positive, then A scales the vectors in the direction of the corresponding eigenvector
- if an eigenvalue is negative, A reverses the direction of the corresponding eigenvector and scales
- example: how does $A=\left(\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right)$ behave?
- if there are no real eigenvectors, there is no directions in which A behaves as described above
\rightarrow the matrix turns all the directions (and possibly scales them)
- e.g., $A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ reverses vectors by angle θ (what are the eigenvalues?)

Complex eigenvalues

- Imaginary unit $i, i^{2}=-1$
- Complex number $a+i b$
- Some algebra
- $z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)$ for $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$
- $z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}-a_{2} b_{1}\right)$
- De Moivre's formula: $z^{k}=r^{k}(\cos (k \theta)+i \sin (k \theta))$, where $r=\sqrt{a^{2}+b^{2}}$ and θ satisfies $\cos (\theta)=a / r$
- If an eigenvalue is a complex number, then the corresponding eigenvector is a complex vector
- Assume that \mathbf{A} is 2×2 that has complex eigenvalues $z=\alpha \pm i \beta$
- eigenvectors $\mathbf{u} \pm i \mathbf{v}$ solution of the difference equation $\mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}$ is

$$
\mathbf{z}_{k}=2 r^{k}\left[\left(c_{1} \cos k \theta-c_{2} \sin k \theta\right) u-\left(c_{2} \cos k \theta+c_{1} \sin k \theta\right) v\right]
$$

Example

$\mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}$ with

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
-9 & 1
\end{array}\right)
$$

Characteristic polynomial: $\lambda^{2}-2 \lambda+10=0$. Solutions are

$$
\left.\lambda_{1,2}=(2 \pm \sqrt{4-4 \cdot 10}) / 2=(2 \pm \sqrt{-36})\right) / 2=(2 \pm 6 \sqrt{-1}) / 2=1 \pm i 3
$$

Eigenvectors:

$$
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right)=\left(\begin{array}{cc}
-3 i & 1 \\
-9 & -3 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0},
$$

i.e., $-3 i v_{1}+v_{2}=0$, e.g. $\mathbf{v}=(1,3 i)$ is an eigenvector and another is $(1,-3 i)$. In this case $r=\sqrt{1^{2}+3^{2}}=\sqrt{10}, \theta=\arccos (1 / \sqrt{10}) \approx 1.249$. Solution of the difference equation $\mathbf{z}=(x, y)$

$$
\binom{x_{k}}{y_{k}}=\sqrt{10}^{k}\left[\left(c_{1} \cos k \theta-c_{2} \sin k \theta\right)\binom{1}{0}-\left(c_{2} \cos k \theta+c_{1} \sin k \theta\right)\binom{0}{3}\right]
$$

