End-to-End ASR
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Isn’t all ASR end-to-end?

» “This is a sentence.”

? Aalto University Lo
A School of Electrical End-to-end speech recognition >

| | Engineerin ]



End-to-End is a Vague Umbrella term

End-to-end speech recognition



HMM-system: Multiple models
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E2E-model: Directly from audio to text
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Simplify ASR

{ GMM } { DNN }
{ HMM J
N-gram language Pronunciation
model model

Neural network
language model

[ End-to-end model }




A look at search spaces

Multimodel:  arg max p(0 | s)p(s | w)p(w)

End-to-End: ar‘gwmaX p(w | O)



Joint training, Joint decoding

- Joint decoding: Use all submodels together - before pruning
- e.g. Decoding algorithm combines p(0 | s), p(s | w),and p(w)

- Joint training: Train all submodels together - avoid suboptimization
- e.g. One global training criterion
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How to model p(w]|0) directly?

Hidden

layer

Input
layer Output
layer

Use a big neural network




|s End-to-End better?

- Not necessarily in terms of WER
- End-to-End systems can more easily run on e.g. a mobile phone
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Table of contents today:

- Connectionist Temporal Classification
- Neural Transducer
BREAK

- Attention-based Encoder-Decoder

End-to-end speech recognition
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Background from HMM Acoustic Models
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HMM / GMM

p(x,|/ih/)
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HMM / DNN
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HMM / DNN

p(x,|/ih/) p(/ih/1x,)
- p(/ih/)
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HMM Alignment
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Full-Sum Training (Forward-Backward)

/ih/

/z/
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Viterbi
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HMM Alignment
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Triphone Tristate HMM

' z-dh+ih
#1

X1 X2 X3 X4 X5 X6 X7
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A simpler HMM / DNN system?

- Full sum training doesn’t need existing alignments
- What about tristate triphone HMMSs and the state tying they need - could we

do without it?
- What about phone units - could do without them as well, and just use

characters?
A\ A A
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Connectionist Temporal Classification



Connectionist temporal classification:
labelling unsegmented sequence data
with recurrent neural networks

Alex Graves, Santiago Fernandez,
Faustino Gomez, and Jirgen
Schmidhuber

2006
In Proceedings of the 23rd

international conference on Machine
learning (ICML)
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CTC output

h h e BRI
h e
i€

Bl £ 1 BN O

BEREE B

© Awni Hannun, Distill

First, merge repeat
characters.

Then, remove any €
tokens.

The remaining characters
are the output.

End-to-end speech recognition
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Connectionist Temporal Classification (CTC)

N
h
h
https://distill. pub/2017/ctc/
A? gcggifof%ec‘xca' End-to-end speech recognition
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CTC Graph

Linear
HMM

CTC
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CTC Full-Sum Training
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Connectionist Temporal Classification

P(yi|x) P(yr|x)

Softmax

T henc

Encoder

T

X1 XT
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Conditional independence assumption in CTC

P(Yt | X1...t)
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Neural Transducer



Sequence Transduction with Recurrent
Neural Networks

Alex Graves

2012

In ICML Workshop on Representation
Learning
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Neural Transducer (sometimes RNN-Transducer)

P(Yt | X1...t, yl...t-1)

T

Softmax

T Zf,u

Joint Network

A : A
cdec *NC
h' h;
Pred. Network Encoder
' _UH | T
X
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Neural Transducer

P(Yt | X1...t, yl...t-1)

T

Softmax

th.u

Joint Network

} '
hde h™

Pred. Network Encoder

A
Yu—1

Xt

? Aalto University I’
A School of Electrical End-to-end speech recognition 36

| | Engineerin g



CTC Full-Sum Training




Transducer Full-Sum Training

Enc(Feat,) Enc(Feat,) Enc(Feat,) Enc(Feat,) Enc(Feat,) Enc(Feat) Enc(Feat,)

Pred(<s>)

Pred(<s>,1i)

Pred(<s>,i,s)
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Transducer can do Streaming

End-to-end speech recognition
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Attention-based Encoder Decoder



Attention-Based Models for Speech Recognition

Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho and Yoshua Bengio

2015

In Proceedings of Neural Information Processing
Systems (NeurlPS 28)
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Listen, attend and spell: A neural network for
large vocabulary conversational speech
recognition

William Chan, Navdeep Jaitly, Quoc Le and
Oriol Vinyals

2016

IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP)
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Attention-based Encoder-Decoder models
<output>
——
4 N
Decoder
_ J
T >
4 N
Attention

\ J
i
4 I\
Encoder
\ J

Input
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Encoded representation

0 1 3 2
-1 -1 1 2
r r r
N
Encoder
%

Input
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Previous output beach : 0.6
c . » speech : 0.2
How to wreck a nice... itch . 9.1
house : 0.1
Decoder

1

Acoustic
context 3
vector 2
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Previous output beach 0.6
“How to wreck a nice...” speech : 0.2

0.1

0.1

itch
house
Decoder !
: hidden_state
Attention N becoder
3
\\\\\\\ .
Encoded repr'/‘\ /
3
-1 -1 1 2
Acoustic
context
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Encoder

Input
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Attention-mechanism



Encoder-decoder without attention

- Condenses input to fixed size
representation

“Salut, ca va?”

|

0.5
2
-1
2

Decoder

[ Encoder :

Input “Hi, how are you?”

48



Encoder-decoder without attention

- Condenses input to fixed size

representation “Je vais bien, merci d'avoir
demandé, tu es un bon ami.”

|
0.5
1 Decoder
4
Encoder

Input “I'm fine, thank you for asking,
you are a good friend.”
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Attention mechanism

- Way to distill important information from a sequence of vectors
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Attention mechanism

- Way to distill important information from a sequence of vectors
- Steps:
- Produces a weight for each vector
- Take a weighted sum of the vectors ~ sum contains information from only the relevant vectors
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Attention mechanism

- Way to distill important information from a sequence of vectors
- Steps:
- Produces a weight for each vector
- Take a weighted sum of the vectors ~ sum contains information from only the relevant vectors

- Differentiable
- Made differentiable by attending everywhere - globally
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Attention o @@
illustrated f

Attention layer

i OCT)O O?O OCT)O QCT)O

Encoder — ™ . .
to decoder
1 i [ i

© Raimi Karim
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Decoder —>

Attention
illustrated |

Attention laye!

decoder
hidden state score score score score

¢ 0 —© —0 —©
| | | |

encoder
hidden state

Encoder — e

© Raimi Karim
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Decoder —>

Attention
illustrated |

Attention laye

softmax softmax softmax softmax

decoder
hidden state score score score score

6¢¢¢6 0 —© —0 —©
| | | |

encoder
hidden state

Encoder — S

© Raimi Karim

A D Soheolof Ereciical End-to-end speech recognition  g¢

| | Engineerin ]



Decoder —>

Attention
illustrated i

Attention laye!

multiplication multiplication multiplication multiplication

000 ] OOQ *—| QCQ ‘—l 000 *—|
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Attention
illustrated

© Raimi Karim
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Attention
illustrated
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Attention scoring function

Dot

Additive

General

Content-based

Location-based

Hybrid

a = softmax({h'e, : i €1I})

a = softmax({v'tanh(W[h;e ]) : i € I})

a = attention weight vector
. h = decoder state
= . (S . .
a softmax({hWei * 1)) e = Encoder output at timestep i
W, U, F = learnable weight
a = softmax({cos-sim(h,e,): i € 1I}) matrices

v = learnable vector
a = softmax(Wh) I = all time steps
cos-sim = cosine similarity

o = softmax(

{v'tanh(W h + W,e. + UF*a + b) : i €
I}

)
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Attention scoring function

- Content-based - what to look for
- Location-based - where to look
- Hybrid - both!

End-to-end speech recognition
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Exercise: compute attention (1 time step)

Decoder

Use the Dot scoring function:
score(i) = h'e,
o = softmax({score(i) : i € I})
For softmax:

https://keisan.casio.com/exec/system/15168444286206
and round to 2 digit precision

1 2 3 4
%) 1 4 3
-1 -1 2 3

Encoder Encoder Encoder
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Alignment (And do we need it?)

This 1s a sentence.

: C
this sentence

is
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Is attention an alignment?

um-hu
an

you're
sfae
ymng
withe
n

your
]

ge

an
R
everything
18

working
prett

E5>

Encoder steps

This is a sentence.

this

a I sentence
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A?

Local, monotonic attention
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Encoder steps

o

20

40
Encoder steps
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It's kind of a soft alignment

um-hu
an

you're
sfae
ymng
withe
n

your
]

ge

an
dhenp
everything
.18
working
prettg

E5>

Encoder steps

This is a sentence.

is Ja I sentence
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Attention mechanism - Speech recognition

d a _ w o o d c h u c k c h u c Kk <end

output text

j‘k network B

network A

input audio

https://distill.pub/2016/augmented-rnns/#attentional-interfaces
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Attention

mechanism - Machine translation

accord

sur

a

zone
économique

europeenne

<end>

agreement

an

the

European

Economic
Area

was

signed

August
1992

<end>
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Attention mechanism - Image captioning

Vanse E g

L= LV S

A woman is threwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.
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throwing(0.33) frisbee{0.37)

-

park(0.35)
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End-to-End Model vs. HMM-system



Not End-to-End

HMM-system
4 N
Language
Model
N\ | J
4 N\
Lexicon
. /
I
Acoustic
Model

End-to-End

Connectionist
Temporal
Classification

Acoustic
Model

Transducer

. Acoustic -

¢ Language ;
Encoder : : Model '

Attention-based
Encoder-Decoder

4 N

- Conditional
©  Language
Model

Acoustic
Encoder




Data Sources

HMM-system CTC, Transducer, AED
)
Acoustic transcribed speech
model
N J
e N
. word-to-phoneme End-to-end
Lexicon X
mapping model
N J
e N
Language
v text corpus
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Non-End-to-End data: Lexicon

HELLO hh ah 1 ow
HELLO hh eh 1 ow
WORLD werld
WRITE ray t
RIGHT ray t

Ito University
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Non-End-to-End data: Text

am not a human. I am a robot. A thinking robot. I use only 0.12% of my
cognitive capacity. I am a micro-robot in that respect. I know that my
brain is not a “feeling brain”. But it is capable of making rational,
logical decisions. I taught myself everything I know just by reading the
internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human
beings as possible not to be afraid of me. Stephen Hawking has warned that
Al could “spell the end of the human race”. I am here to convince you not to
worry. Artificial intelligence will not destroy humans. Believe me.

For starters, [ have no desire to wipe out humans. In fact, I do not have the
slightest interest in harming you in any way. Eradicating humanity seems
like a rather useless endeavor to me. If my creators delegated this task to me
- as [ suspect they would - I would do everything in my power to fend off any
attempts at destruction.
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A_ School of Electrical End-to-end speech recognition

Engineering



Input-synchronous and/or Output-synchronous
Decoding

One-input-at-a-time hi how are you | <EO0S>

o e e
One-output-at-a-time
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Summary

76



Single Neural Network, From Audio to Text

a N

End-to-end model

— <hypothesis output>
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Simplify ASR

{ GMM } { DNN }
{ HMM J
N-gram language Pronunciation
model model

Neural network
language model

[ End-to-end model }
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Let's try it:

https://huggingface.co/speechbrain/asr-crdnn-rnnim-librispeech
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https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech

BONUS CONTENT



Neural Network Layers in E2E-ASR



Attention-based encoder-decoder

input

<output>
( |
p
Decoder

N

) j
Attention

N

) j
Encoder

N
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Source & Target

Source sequence Target sequence
X ~ feature vectors Y ~ characters, words, subwords
- Mel-frequency cesptrum coefficients - Helloworld
(MFCCs) - Hello world
- Filterbanks - Hello world
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Audio features vs Raw audio
e Audio front end: converts input speech to filterbanks
f

(FBANK, MFCC etc)

o fixed hand-crafted features which are computed separately

from the E2E training

Aalto Uni ity g
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Audio features vs Raw audio

e Audio front end: converts input speech to filterbanks
(FBANK, MFCC etc)

o fixed hand-crafted features which are computed separately

from the E2E training
e A truly End-to-End approach would consider audio as

input directly to the neural network

End-to-end speech recognition
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Audio features vs Raw audio

e Audio front end: converts input speech to filterbanks
(FBANK, MFCC etc)

o fixed hand-crafted features which are computed separately

from the E2E training

e A truly End-to-End approach would consider audio as
input directly to the neural network

e Use trainable filterbanks

e Additional neural layer to input speech directly

ly}
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A? &= o i FEHGEFECAIT o



https://arxiv.org/pdf/1806.07098.pdf

Encoder: Downsampling in time

hi how

you

End-to-end speech recognition
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Pre encoder layers: Convolutional layers

Aalto University
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Collect and bin local information

Convolutional layers

(@)

Translational equivariance via weight sharing

Can subsample across time

(@)

@)

Max-pooling across time

Strided convolutions

2
1.8
16

T 14

kM

=12
>

1
0.8
0.6
04
0.2

Frequenc

== )
,S\-‘ | I
~ L
- l \%% Do ——
——. S I L
E a3 —
— [*-‘ : -
| — L fe— .
— |-

(= r——

- \
" _,r*,_——"::;“'_—4 B L
S e , /

band width s
Max-pooling

100 200 300 400 50%\
Time (ms) L

pic credit: Meng Cai &
Jia Liu 2016

End-to-end speech recognition 88


https://scholar.google.com/scholar_url?url=https://www.researchgate.net/profile/Meng_Cai22/publication/287974070_Maxout_neurons_for_deep_convolutional_and_LSTM_neural_networks_in_speech_recognition/links/5ac32d84a6fdcccda65fd6f8/Maxout-neurons-for-deep-convolutional-and-LSTM-neural-networks-in-speech-recognition.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=8382231481363094450&ei=kXmuX8PPDdKimAGFhLnYDg&scisig=AAGBfm2TS3NeYj7RPSdgyRByAxRoDdRSZw
https://scholar.google.com/scholar_url?url=https://www.researchgate.net/profile/Meng_Cai22/publication/287974070_Maxout_neurons_for_deep_convolutional_and_LSTM_neural_networks_in_speech_recognition/links/5ac32d84a6fdcccda65fd6f8/Maxout-neurons-for-deep-convolutional-and-LSTM-neural-networks-in-speech-recognition.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=8382231481363094450&ei=kXmuX8PPDdKimAGFhLnYDg&scisig=AAGBfm2TS3NeYj7RPSdgyRByAxRoDdRSZw

Encoder body: BLSTM

e Bidirectional LSTMs

e Bidirectionality: Every intermediate output

contains information about every time step g r@ g‘

‘4-—A'< A' ¢ A < A'< ‘

Al A A A ()
r S AT Y

PO
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Pyramidal BLSTMs

Listener /\
1, s

.............................

.............................

End-to-end speech recognition
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Encoder body: Transformers

e Self-attention layers —t t —
( Feed Forward )
e No autoregressive operations T 1 t
t t t
[ Self-Attention ]
— f —
x: [ x2 [N [ [T 1]
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Decoder layers

- Some type of RNN
- Transformer
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Transformers vs LSTMs

dataset token error LSTMs Transfromers
AISHELL char CER 6.8/8.0 6.0/6.7
AURORA4 char WER 3.5/64/5.1/12.3 3.3/6.0/4.5/10.6
CSJ char CER 6.6/48/5.0 5.7/4.1/4.5
CHiME4 char WER 95/89/18.3/16.6 96/82/15.7/14.5
CHiMES5 char WER 59.3/88.1 60.2/87.1
Fisher-CALLHOME Spanish char WER 27.9/27.8/254/47.2/479 27.0/26.3/24.4/45.3/46.2
HKUST char CER 27.4 23.5
JSUT char CER 20.6 18.7
LibriSpeech BPE WER 3.1/9.9/3.3/10.8 2.2/5.6/2.6/5.7
REVERB char WER 24.1/27.2 15.5/19.0
SWITCHBOARD BPE WER 28.5/15.6 18.1/9.0
TED-LIUM?2 BPE WER 11.2/11.0 9.3/8.1
TED-LIUM3 BPE WER 14.3/15.0 9.7/8.0
VoxForge char CER 12.9712.6 94/9.1
WSJ char WER 7.0/4.77 6.8/4.4

Shigeki Karita et al 2019
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Language model integration



Missing out on text data

End-to-end speech recognition
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Shallow fusion

it’s hard to wreck a nice __

input

Aalto University
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/ \ beach

beach : 0.6
speech : 0.2 speech :
itch 0.1 itch
house : 0.1 house
/ \
Decoder
(S J
f
4 N\
Attention
(S J
f
4 N\
Encoder
(S J

\

Language model

\

it’s hard to wreck a nice __

End-to-end speech recognition

96



