Mathematics for Economists

Problem Set 8

Due date: Friday 2.12 at 12.15

Exercise 1

a) Assume that

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and $a, b, c, d>0$ satisfy $a+b=1$ and $c+d=1$. Verify that $r=1$ is and eigenvalue of A with the corresponging eigenvetor $\mathbf{x}=(1,1)$.
b) Use the property of the determinant $\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)$ to show that the eigenvalues of A and A^{T} are the same.

Exercise 2

a) Assume that $A=\left(\begin{array}{cc}0.3 & 0.6 \\ 0.7 & 0.4\end{array}\right)$. Utilize the results of exercise 1 and the formula that $r_{1}+r_{2}=\operatorname{tr}(A)$ to find eigenvalues of A.
b) Find the eigenvector corresponding to the largest eigenvalue of A (.i.e., so called principal eigenvector). How is this eigenvector related to the asymptotic behavior of $\mathbf{z}^{k+1}=A \mathbf{z}^{k}$?

Exercise 3

Find the general solution of the following differential equations:
(a) $3 \ddot{y}+8 \dot{y}=0$;
(b) $4 \ddot{y}+4 \dot{y}+y=0$.

Exercise 4

a) Find the general solution of $\dot{x}_{1}=2 x_{1}+x_{2}, \dot{x}_{2}=-12 x_{1}-5 x_{2}$ by using eigenvalues. Is origin a stable steady-state?
b) Find the steady state of

$$
\left\{\begin{aligned}
\dot{x} & =5 x-\frac{1}{2} y-12 \\
\dot{y} & =-2 x+5 y-24
\end{aligned}\right.
$$

Is the steady state globally asymptotically stable? Why or why not?

Exercise 5

Consider the growth model $\dot{k}=s f(k)-(1+\delta) k$, where $k \geq 0$ is per capita level of capital, $f(k)=\sqrt{k}$ is the production function, $s \in(0,1]$ and $\delta>0$ are exogenous. The other steady-state is $k^{*}=0$. What is the other one? Is the steady-state stable? (Tip: stability may depend on s and δ)

